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We study a one-dimensional fluid of hard rods interacting with each other via binary inelastic
collisions and a short-ranged square-well potential. Upon tuning the depth and the sign of the well,
we investigate the interplay between dissipation and cohesive or repulsive forces.
Molecular-dynamics simulations of the cooling regime indicate that the presence of this simple
interparticle interaction is sufficient to significantly modify the energy dissipation rates expected by
Haff’s law for the free cooling. The simplicity of the model makes it amenable to an analytical
approach based on the Boltzmann-Enskog transport equation which allows deriving the behavior of
the granular temperature. Furthermore, in the elastic limit, the model can be solved exactly to
provide a full thermodynamic description. A meaningful theoretical approximation explaining the
properties of the inelastic system in interaction with a thermal bath can be directly extrapolated from
the properties of the corresponding elastic system, upon a proper redefinition of the relevant
observables. Simulation results both in the cooling and driven regimes can be fairly interpreted
according to our theoretical approach and compare rather well to our predictions. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2161215]

I. INTRODUCTION

Granular materials are ubiquitous in nature and their
handling occurs in many types of industrial activities. While
they are very common, their properties often are not. In the
last 20 years there has been a great progress in the compre-
hension of static and dynamical properties of granular
flows."” In spite of the fact that most of the theoretical re-
search in this context has been based on the inelastic hard-
sphere model, several observations suggest that neither co-
hesive forces® nor electrostatic repulsion7 can be ignored.
Understanding how simple interactions modify the behavior
of a granular gas can have important practical consequences.
Cohesive forces have to be considered when studying wet
granular matter: the humidity may lead to the formation of
thin layers of water on the surface of the grains and induce
adhesion through capillarity effects. The presence of liquid-
vapor interfaces can enhance the mechanical stability of an
assembly of grains, as illustrated by sand castles.® On the
other side, repulsive forces also play a role, as stressed by
Sheffler and Wolf.’ Dry granular materials tend to become
electrically charged due to contact electrification during
transport. In the case of monopolar charging the particles
experience mutual Coulombic repulsion. Finally, Blair and
Kudrolli’ studied the behavior of a vibrated system of mag-
netic grains, where forces of tensorial character are in action,
and found coexistence of long-lived clusters with isolated
particles. Clusters can manifest as chains or globular struc-
tures according to the driving intensity.

In this work we introduce and study a one-dimensional
model which can be tuned to describe both the cohesive and
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the repulsive regime. One-dimensional models have often
been employed in the literature' > to study granular fluids
because their simplicity provides a valuable testing ground
for theoretical approaches and approximations. Our model
consists of a set of inelastic hard rods subjected to square-
well potential, as shown in Fig. 1. The attractive potential
mimics the action of cohesive forces responsible for adhe-
sion among particles which are crucial effects when consid-
ering fine particulates such as powders or sands. On the con-
trary, the barrier describes the effect of soft materials which
may present a deformable shell covering the hard-core
nucleus.

The choice of a square-well interparticle interaction is
particularly convenient in a computer implementation of the
model since it reduces Newton’s equations to algebraic ex-
pressions. Indeed, in the cooling regime, rods move with
constant velocity until they pass a barrier or their cores
touch. Thus the collisional cooling can be simulated through
the collision driven algorithm of Alder and Wainwright.15 We
shall analyze the interplay between the potential and the col-
lisional dissipation typical of granular materials. In particu-
lar, we discuss the influence of the square-well interaction on
the rate of energy dissipations in the same spirit of
reference.” It is well known that in the homogeneous free
cooling process, a system of inelastic hard spheres dissipates
its kinetic energy at a rate proportional to the square root of
the kinetic temperature, 7, the so-called granular tempera-
ture, and that 7 decreases in time as the inverse of square
time.'® As we shall see, this picture is partially modified by
the presence of a short-range repulsive or attractive potential
barrier. By treating collisions according to Enskog’s equa-
tion, a generalization of Boltzmann equation to dense-fluid
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FIG. 1. Sketch of the interaction potential Eq. (1) as a function of the
interparticle distance x,, for b=2 and o=1. Solid line refers to attraction
(€>0) while dashed to repulsion (e<0).

regime, we are able to make some predictions about the cool-
ing behavior of the model. In addition we consider its prop-
erties when it is kept in contact to a stochastic source of
energy which balances the energy loss due to inelastic colli-
sions. In this case, the system reaches a steady regime whose
properties can be partly understood through a direct compari-
son with the properties of corresponding elastic system.

The paper is organized as follows. Section II describes
the model we use and the main features of the simulations
and technical details. Section III shows the thermodynamics
of the elastic version of the model in order to have a refer-
ence system to compare inelastic results. In Sec. IV, an ana-
lytic estimate of granular temperature of the system is de-
rived through a Boltzmann-Enskog approach. Section V
illustrates simulation results of the inelastic model both in
the cooling and driven regimes with a comparison with the-
oretical predictions. Finally Sec. VI contains a brief discus-
sion and conclusions.

Il. THE MODEL

We consider N identical impenetrable rods of mass m
=1, size o=1, and positions x,(¢) and velocities v(t) con-
strained to move in a periodic domain of size L. They inter-
act through a potential V(|xl~—xj|) consisting of a hard-rod
part and a square-well potential, as shown in Fig. 1. Explic-
itly, we consider

o ifx<o
Vix)=y—€ ifo<x<bo (1)
0 ifx>bao,
where the parameter b defines the characteristic range of the
interaction. The effect of a piece-wise constant potential V(x)
amounts to a set of simple collision rules, similar to those
involved in the dynamics of hard rods. Several kinds of col-

lisions between two neighbor particles may occur when their
distance is

Ax(t) = x;11(1) = x(t) = bo.

If €>0 the following cases are possible: (I) particles entering
the well, (I) particles leaving the well, and (IIT) particles
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being trapped and rebounding at the inside square-well edge,
because their relative kinetic energy is not sufficient to es-
cape.

On the other hand, if e<0 one has the cases: (I') par-
ticles overcoming the repulsive barrier [m(v;—v,;)*>4|€],
(II') particles descending the barrier, and (III") particles be-
ing repelled by the barrier, when m(v;—v,,,)> <4|¢.

The postcollisional velocities in cases III and III' are
given by

/
U = Visl»

/
Vie1 = Ui

In the remaining cases the collision rules are found by
requiring again the conservation of the total energy and total
momentum at the edge of the square-well potential. If par-
ticles are entering [s;=sgn(v,—v;;) >0], while if they are
leaving the well (s;<<0), and the collision rule reads

, () (v - Ui+1)2 €
= + S; — + Si—
2 4 m
(v + vii) (= v1)? €
Ui,+l = ) -8 4 +Si%, (2)

where precollisional and postcollisional velocities are indi-
cated by unprimed and primed symbols, respectively.
We finally consider the hard-core inelastic collision at

Ax(1) = x4 (1) = x,(1) = 0,
which results in the transformation

I 1+_a(v v)
Visl = Vis1 — 5 i+1~ Yi)s

©)

1+«
vi'=v,~+—2 (URERR

where « indicates a constant coefficient of restitution and O
sa<].

Besides impulsive forces between particles, we shall also
consider an external stochastic white-noise force, whose role
is to fluidize the system and balance the energy losses due to
dissipative forces. The dynamics between two consecutive
collisions is described by the following Langevin equation:

dz.xi(t) dxl(t)

m _ htd S04

dt2 =—my dt +§i’ (4)

where —mydx;/dt is a viscous term and & is a Gaussian
random force, with zero average and variance satisfying a
fluctuation-dissipation relation,

(E(NE (') =2myT6;6(t—1'), (5)

with 7 proportional to the intensity of the stochastic
d1riving.17’]8 The damping term renders the system stationary
even in the absence of collisional dissipation and physically
can represent the friction between the particles and the con-
tainer. Summarizing, the position x; (i=1, N) of the ith par-
ticle evolves according to the equation
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d*x(1) dx;( )
m—,—=—-m (1) + t 6
P Y, TE0 Ef,,() (6)

where f;; indicates the resultant of impulsive forces between
particles i and j. Since the dynamics of the model is mainly
ruled by impulsive forces, molecular-dynamics (MD) simu-
lations make use of a collision driven algorithm.

lll. ELASTIC SYSTEM: EQUILIBRIUM PROPERTIES

The elastic fluid, corresponding to the limit a=1 in Eq.
(3), serves conveniently as a reference system. Thus, we con-
sider its equilibrium properties, that we shall compare to
properties of the stationary inelastic system to build a theo-
retical approach valid in the region of moderate inelasticity.
The equilibrium square-well fluid model is exactly solvable
when the interaction range is restricted to first neighbors, i.e.,
b=<2, the excluded volume allows no more than two par-
ticles to experience the same potential well. In that case, the
Gibbs free energy, G(P,T N) can be derived using the
isothermal-isobaric ensemble.'”?® Here, the partition func-
tion Y(P,T,N) is related to that of the one-dimensional ca-
nonical ensemble Z(T,L,N) by

Y(P,T,N) = f dLe PPt7(T,L,N), (7)

AR ),

where P is the thermodynamic pressure, A =h/\2mmkgT is
the temperature-dependent de Broglie wavelength, and A, is
an arbitrary constant with dimension of a length.

Following the existing literature,”® the isothermal-
isobaric partition function for N rods of length o can be
written as

A N+1
Y(P,T,N) = ™ [ePe(ePPo — e7BPbO) 4 o=PPDO] .
0

BPA
(8)
The associated Gibbs potential,
1
G(P,T,N)=-—InY(P,T,N),
B
reads a part from a constant
1
G(P,T,N)=(N+ l){bo’P + Eln(,BPA)
1
- Eln[l + ePe(PPb-Do _ 1)]} 9)

The equation of state, relating density, pressure, and tem-
perature, is obtained by differentiating G with respect to P
and defining the “volume” per particle, p~'=L/N, of the sys-
tem,

1 1

—=bo+
p BP

that can be recast to the more familiar form

b-1)o
1 + e PP-Do(g=Be _ 1)°

(10)
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(11)

1+ be PP-Vo(p=Pe_q)
T 14 e BPONo(Be_ 1)

Notice that b=1 implies B— 1, therefore the hard-rod pres-
sure is straightforwardly recovered.

In order to apply Enskog’s kinetic approach, we need to
compute the equilibrium pair-correlation function in the ther-
modynamic limit. The pair correlation is defined as

[

2 (S —x= ). (12)

r=1

pg(y) =

To perform the average in Eq. (12), we represent the delta
distribution (with /=1 and g=r+I[) by its Fourier transform

S, —x,—y) = J j—:_exp[ik(xq -x1=y1, (13)

—00

and write the average explicitly in terms of the Boltzmann

weights f(x)=exp[-BV(x)],
. f dxl

(8(x,—x1 =)
; —lkyf dx f dx
Z(T L,N)]J_., 277
Floey = x))fxp)e™ (eg 1),
(14)

Xf(L_xq)f(xq_xq—l)' e

Since the last expression has the form of an iterated convo-
lution, one can obtain the desired average by means of stan-
dard Laplace transform method, a simple generalization of
the method®” employed to compute Z(T,L,N) in the
isothermal-isobaric ensemble. After a lengthy calculation, in
the thermodynamic limit N— and constant pressure, we
get the series

©

r —BPy
pg(y) = E (BPYe

—,BPba') + e—ﬁPbo’]r’

Ay)
1)| [ ,Be(e BPo _

(15)
where the coefficients can be written as

A =2 (,:)G[y —o(r+(b-1k)]
k=0

X[y =o(r+(b-Dk](1 =PI EP) ™, (16)

where O(x) is the unitary step function.”’ Notice that for a
pure hard-rod system [e=0, BP=p/(1-p0o)], one finds

F

—9 ro)(y — ro)!
pgu(y) = g( _1),(1 Y (y—ro)(y - ro)
Xexp[——p (y—rcr)], (17)
1-po

a result which agrees with the well known result by Zernike
and Prins.”** From expressions (15) and (16), the value of

the pair correlation at contact can be extracted explicitly,
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BP 1
g(o) = p 1+ e PPN Be_ )

(18)

Since the thermodynamic pressure can be expressed in terms
of g(x) through the virial equation®*

oy

dxV' (x)xg(x), (19)
p 2 )

after some rearrangements, the pressure reads
BP . _
T 1+ poig(o) + bg(ba*) — bg(bo)], (20)

where the discontinuity of the potential (1) at x=bo results in
a jump of the binary correlation function,

g(ba*) = g(a)e PPb-Nope, (21)

g(bo") = g(a)e PPN, (22)

with g(bo™)=limy_,og(bo= ). These relations are consistent
with Eq. (10) and show that the pressure depends not only on
the value of the pair correlation at contact, but also on its
values at x=bo.

IV. BOLTZMANN-ENSKOG EQUATION

The system dynamics is determined by the combined
effects of the heat-bath and interparticle collisions. Thus, the
one-particle phase distribution function f(x,v,7), in the ab-
sence of external drift and large density fluctuations, evolves
under the action of a Kramers operator associated with the
interaction with the heat bath,

Y & J
=———S+vyv,
K mpB v 7(91}

plus a collision operator that we represent for the sake of
simplicity as a Boltzmann-Enskog collision integral,

If (vt

% = Lof(ut) + I(1). (23)
Adapting to the present case argumentszs’26 similar to those
leading to the derivation of the standard Enskog theory
(SET) we arrive at the following form of the Boltzmann-

Enskog collision integral I(v,?):
I(v,1) = Iy(v,t) + L(v,1) + I_(v,1) + I35(v,1), (24)
where the four contributions represent, respectively,

¢ the inelastic hard-core collision,

Io(v,t)=g(<f)Jdv’fdlf'lv’—l/'| X fW)f(W)

X{B[v— l;av’— l+al/'] —5[1)—1/']},

2
(25)

« the entering collision [(v —v')>0],
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1(u1) = g(bo") j v j dd’e[(v’ — )+ 4;]
X\ 0| v— + +—
2 4 m

- dv- d’]}lv' - I, (26)

e the escape collision [(v' -¢/) <0],

I—(U’f)=g(b0_)fdv’fdz/’e[(v’—z/’)z—ie]

m
2 4 m
- dv- U’]}Iv’ - V|f(W)f(), (27)

* the elastic bound-state collision at Ax=bo™,

IBs(U,[) = 0,

which in one dimension vanishes and therefore can be omit-
ted.

We can apply the previous analysis to the theoretical
description of the cooling process in the presence of the in-
terparticle potential, under the hypothesis of spatial homoge-
neity. By integrating with respect to v the second term in the
right-hand side of Egs. (25)—(27) and approximating f(v)
with Maxwellian distribution of temperature T,, we obtain
the Enskog collision frequency at Ax= o, and the frequencies
of entering and escaping collisions,

wy(po) = {|val)pg(0),
w,(pa) = |u)pg(ba*)[O(€) + O(- €)eP], (28)

0_(p0) = {|ta)pg(bo)[O(= €) + O(e)e P].

The expression for w, is formally identical to that obtained in
the case of simple hard rods without potential tail. It can be
easily verified that the two factors containing the © functions
are exactly the terms that compensate the asymmetry coming
from expressions (21) and (22). Therefore, the rates become
equal,

{vapg(@)e =D if e<0

W, =w_=
" {<|vrell>pg(o)e‘[”’(b‘””‘ﬂf if €>0,

and thus satisfy a detailed balance relation between entering
and escape collisions. The presence of the potential is re-
flected in the modified value of the pair correlation at con-
tact, Eq. (18). By substituting {|ve|y=2(87m)~""? we find the
following expression for the collision time of the square-well
fluid:

B P
=24/— . 30
@0 am 1 + ¢ PPE-Do(o=Pe_ 1) (30)

For the sake of comparison the hard-rod Enskog frequency
reads

(29)
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| B
Wy = 2 Ephr’ (31)

with BP,,=p/(1-po).

Interestingly, in an elastic system with repulsive forces,
the ratio between the hard-core collision frequency and the
entering/escape frequency reads

@

Y :e,BP(b—l)(r, (32)
W,

it suggests that at high densities hard-core collisions domi-
nate, because the pressure is a growing function of the den-
sity. Therefore, increasing the density amounts somehow to
lowering the height of the effective potential barrier, i.e., the
kinetic energy required to perform an elastic collision.

We now consider, how the average kinetic energy of the
inelastic system (a<1) is dissipated. By multiplying Eq.
(24) by 7 and integrating over the velocity, we can compute
the loss of kinetic energy due to collisions. Since only hard-
core collisions dissipate energy we find that solely the pro-
cess represented by Eq. (25) contributes to the evolution
equation’’ for the granular temperature T,(1),

d—Tg=—(1 —az)ong. (33)
dt

Notice that the expression (30) for wy, entering Eq. (33),
employs a pair-correlation function g(o) extrapolated from
its equilibrium value, where 8 has been identified with the
inverse granular temperature, i.e., S=1/ T,. Moreover, the
value of the pressure necessary to compute the frequency w
can be obtained numerically by inverting Eq. (10) for a given
density of the system. The rate w, decreases with increasing
the repulsive barrier (€ — —°) or when the temperature tends
to zero. Consequently, as the system cools down, the dissi-
pation rate will be much slower than the corresponding rate
when €=0.

V. NUMERICAL RESULTS

Whereas the equilibrium properties of the conservative
system are analytically accessible, most of the properties of
its dissipative version need MD simulations to be investi-
gated. After resorting to numerical methods we shall com-
pare their results with our theoretical estimates. At values of
the restitution parameter « less than 1, the system is certainly
not in thermodynamic equilibrium, but can achieve a station-
ary state when in contact with the heat bath described by Eq.
5).

We shall consider the behavior of the system both in the
cooling regime (y=0 and 7=0) and in the stationary heated
regime. The numerical methods employed have been briefly
mentioned in the previous section and described in detail in
papelrszg’29 which the reader can refer to.

In order to minimize surface effects and simulate an in-
finite system, periodic boundary conditions are imposed on
the equations of motion. During each simulation run, we
monitor the kinetic temperature, named granular tempera-
ture, T, which by definition is proportional to the average of
the kinetic energy per particle,
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N
T,= }VE m[(a7) - (uy?], (34)

having chosen units in which kz=1. The values of pressure,
instead, can be obtained from the virial formula™ properly
modified for the present system,

PL l+a m
— =1+ Z, (35)
NT, 2 1NT,
where Z indicates the sum,
Z= E xijvij’ (36)

all coll

where ¢, is the observation time and x;;=(x;—x;) and v;
=(y;—v)) are, respectively, the separation and the relative ve-
locity at the moment of collision. Both kinds of collisional
events |x;|=0 and |x;|=bo determine an exchange of mo-
menta among the particles.

A. Cooling regime

We consider, first, the properties of a system of N
=2000 particles evolving without the presence of heat bath,
thus no energy injection (7=0) and no friction (y=0) occur.
In the literature this situation is generally referred to as free
cooling. The properties of this system with e=0 have been
studied th01r0ughlylo_m’3]’32 and are well known. Due to the
repeated inelastic collisions, the temperature 7, decreases
and after a short transient, lasting only few collisions per
particle, T, displays the typical power-law behavior 2,
known as Haff’s law. During such a regime, the density re-
mains homogeneous and the velocity distribution converges,
from the initial Maxwellian, to a two-hump function. As the
system cools down, particles cluster into two “streams” at
the outer edges the distribution and a bimodal velocity dis-
tribution emerges.

Our MD simulations show that this scenario is modified
by the the presence of potential tail [see Eq. (1)]. Every MD
run starts from an initial state characterized by N=2000 par-
ticles with a Maxwellian velocity distribution of temperature
T and uniformly distributed in space with no overlaps. Dur-
ing the dynamics, the grains spontaneously organize toward
a state where the velocity distribution P(v) depends on the
attractive or repulsive character of V(x). The behavior of
P(v) is clearly shown in Fig. 2, where later time distributions
are characterized by a nearly Gaussian shape for e>0 and no
longer Gaussian for €<<(. The attractive interaction has the
effect to accelerate the dissipation, however, the velocity dis-
tribution does not display the typical two-hump feature
proper of the e=0 case, remaining a single peak function of
shrinking width (see Fig. 2, left panel).

On the contrary, when the potential is repulsive, only
those pairs with velocities satisfying the condition (v;
—;,1)>>4|€|/m may perform inelastic collisions. Such a se-
lection mechanism is irrelevant when T, > €, i.e., the very
early stages of the simulations, however, it eventually leads
to velocity distributions with small tails outside the region
—\|e|/m=v=\|€|/m and almost flat inside (Fig. 2, right
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FIG. 2. Quenching of particle velocities observed at two stages of the cool-
ing process of a system with attractive (e=1, left) and repulsive (e=-1,
right) interparticle interactions. The histograms of the rescaled (dimension-
less) velocity u=wvym/|€| are collected after n, hard-core collisions per par-
ticle have occurred. Simulations refer to a system of N=2000 particles and
parameters a@=0.99, pa=0.002, and b=2. The Gaussian fits (dashed lines)
are plotted for comparison.

panel)._Two small peaks can also be observed at v
=+\|€|/m, likely, a reminiscence of the free-cooling two
stream mechanism.

Equation (30) indicates that, under repulsive interaction,
particles collide inelastically with an initial rate wg \T,,
that, as the syste_m cools down, makes the crossover to the
behavior w, > \T, exp(e/T,). Accordingly, fewer and fewer
particle pairs will collide and the cooling slows down leading
to a logarithmic decay in time of the temperature. However,
this argument turns out to be incorrect. Indeed, Fig. 3 proves
that the energy dissipation process occurs with a slower time
decay than the prediction given by Eq. (33). The direct com-
parison between theoretical and simulated dimensionless rate
R:TTg/ T, is shown in the inset, where 7 is a proper time
scale. The reason for such a discrepancy relies on the fact
that the Maxwellian approximation for the velocity distribu-
tions, used to derive the rate expression (30), fails as it seen
from Fig. 2 (right). With the actual shape of the distribution
P(v), indeed, the system dissipates only a negligible fraction
of the kinetic energy and undergoes an effective reelasticiza-
tion, implying that the non-Maxwellian character of P(v) is
maintained up to the inelastic collapse. Our theoretical esti-
mate of the collision frequencies works better at moderate
densities, where dissipation can counterbalance the reelasti-
cization. As it suggested by Eq. (32) indeed, the pressure
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FIG. 3. Simulation results of the energy decay with time measured units 7
=om/T,, for e=0 (squares), e=—1 (circles), and e=1 (triangles) at effec-
tive density po=0.002. Each point is the average over 100 trajectories of a
system with N=2000 hard rods and initial temperature 7,=10. The lines
represent the analytical estimate from Egs. (30) and (33), coherently with
Eq. (10). Inset: plot of the theoretical and numerical (dimensionless) dissi-

pation rates R= T vs the rescaled granular temperature (same symbols).

exerted by the dense surrounding fluid on two colliding part-
ners may overwhelm their repulsion, so that they will expe-
rience frequent hard-core collisions, i.e., wy> w..

B. Driven regime

The scenario changes when the system is coupled to a
heat bath at temperature 7. A steady regime, characterized by
almost constant granular temperature and pressure, is at-
tained. As already done for the cooling regime, we can de-
rive an implicit relation for 7, (Refs. 28 and 29) by multi-
plying both sides of Eq. (23) by ¢* and integrating with
respect to v,

{1 +(1 —az)wOT(:gl]Tg:T. (37)

The variation of T, with density, given by the numerical
solution of Eq. (37), is compared in Fig. 4 with the results of

1.0—

0.8
TJT:

0.6

0.4|.V|I|||x[....I....T||

FIG. 4. Dependence of the ratio between granular 7, and bath temperature
T=10 on the density, for a system with repulsive e=—10 (squares), vanish-
ing €=0 (circles), and attractive e=10 (triangles) interparticle interactions.
The points indicate the average over a set of 10* samplings in a single MD
run of duration ,,,,=10* The solid lines refer to theoretical temperatures
extracted from the numerical solution of Eq. (37). The number of particles is
N=2000, the remaining parameters are chosen as «=0.9, y=0.2, and b=2.
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FIG. 5. Pressure of an inelastic system, rescaled to the equivalent ideal gas
pressure (Pi=pT), as a function of po in the case of e=—10 (squares), €
=0 (circles), and e=10 (triangles), for a system with the same parameters as
in Fig. 4. The solid lines are the corresponding analytical values obtained
according to formula (20).

MD simulations. The agreement between theory and numeri-
cal experiments is satisfactory for the three possible cases:
attractive, repulsive, and vanishing interparticle interactions.
The virial formula (35) is employed to compute the pressure
of the system by averaging over different MD runs. The
simulated pressure values are plotted, in Fig. 5, together with
those obtained by a self-consistent solution of formula (20)
with the appropriate replacement of the heat-bath tempera-
ture T by the granular temperature T, Eq. (37).

The use of formula (20) implicitly assumes that the pair-
correlation function for the inelastic model maintains the
same functional dependence as its equilibrium counterpart.
Such a hypothesis can be checked by measuring during MD
runs the three collision frequencies w, w,, and w_ and com-
paring them with their theoretical prediction. The behavior of
these quantities with the dimensionless variable po is re-
ported in Fig. 6, for both attractive and repulsive interac-
tions. Even in the inelastic case, one observes that the ratio,
wy/ w,, between frequencies of dissipative collisions and bar-
rier crossing increases with density from the value of 1, ob-
served in a very diluted system, as shown in Fig. 7. This is
very consisent with the prescription provided by formula
(32) that, hard-core collisions, in this model, become domi-
nant events at higher densities.

In the case of barriers [Fig. 6(a)], the theoretical frequen-
cies agree fairly with those extracted from simulations. How-
ever, some discrepancies arise when particles may mutually
attract [Fig. 6(b)], even though the overall trend of the fre-
quencies with the particle density is correctly captured by the
theoretical predictions. The differences induced by inelastic-
ity become more evident in Fig. 8, where we plot the theo-
retical and numerical pair-correlation functions g(y) at the
value po=0.05 for repulsive (c) and attractive (d) particles.
Again, the theory fits faithfully the simulations for the sys-
tem with repulsive interactions, while, for attracting par-
ticles, the simulated g(y) deviates of about a factor 2 from its
estimate in the interval o<y <bgo. Figures 8(a) and 8(b), on
the contrary, indicates clearly that our theoretical approach
perfectly describes the functions g(y) of the elasitc system
with both attractive and repulsive forces.
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FIG. 6. Collision frequencies at particle separation x;=0 and x;=bo as
a function of po. (a) Shows the repulsive case (e=—10) while (b) refers
to attractive interaction (e=10). The lines correspond to the theory from
Eq. (28). The remaining parameters are as in Fig. 4.

The difficulty encountered by the theory to fit some re-
gimes of the system with attracting inelastic particles can be
ascribed to the different effects that the repulsive and attrac-
tive interactions induce on the inelastic system. The former
basically entails a system reelasticization which may favor
homogeneous particle distributions, while the latter enhances
the frequency of inelastic collisions leading to clustering.
The relevant physical parameter controlling the system be-

e —

6.0F

20

FIG. 7. Collision ratio [Eq. (32)], as a function of po at temperatures T,
=le|, T,=5|e|, and T,=10]], for a driven system of N=2000 particles with
inelasticity a=0.99 and a barrier of sizes b=2, e=—1 in contact with a bath
of viscosity y=0.2. Each point is the average over a single run of duration
max=10%, sampled every Tsample= 1.0 time units=1/1y.
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g

of the granular temperature 7, from Eq. (37), is based on the
assumptions of spatial homogeneity. For repulsive interac-
tions (barriers) the homogeneous state occurs, while for co-
hesive interactions, particles, under specific conditions, can
easily cluster making the system inhomogeneous. If this hap-
pens, the single observable, T,, does not describe properly
the kinetic state of the system and, in addition, its estimate
from Eq. (37) is incorrect since that formula neglects local
temperature fluctuations.

The deviations of the theory from simulations become
less pronounced as 7y increases, and the reliability of the
theoretical approach can be quantified by the integrated dif-
ference between numerical, g,(y), and theoretical, g,(y),
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FIG. 9. Parametric plot of the cumulated difference Ag between theoretical
and simulated correlations function [see Eq. (38)] vs the friction coefficient
v, for an inelastic system with N=2000 rods and parameters a=0.9, T=10,
€=10, po=0.05, and b=2.

for various values of 7y, but €/T=const. The dependence of
Ag on 7y shown in Fig. 9 reflects the fact that the response of
the fluid to the action of the heat bath is faster as y— % and
thus erases more rapidly the memory of inelastic collisions.
Within this limit one recovers the behavior of the elastic
system.

VI. CONCLUSIONS

In this paper we have investigated both theoretically and
numerically the influence of a finite range interparticle inter-
action on the behavior of a one-dimensional inelastic hard-
rod system. Forces and interactions whose range is larger
than the size associated with the excluded volume constraint
are often present in many realistic granular materials. In the
specific case, we have chosen a square-well potential to
model attraction and a square barrier to model repulsion.
These simple shapes, in the case of undriven system, still
enable a computer implementation of the particle evolution
in terms of a collision driven molecular dynamics. In fact,
simple transformations describe the instantaneous changes of
velocities when the separation between two particles corre-
sponds to the two characteristic ranges of the potential. We
first analyzed how the interplay between these finite range
forces and inelasticity modifies the cooling scenario with re-
spect to the free inelastic system. We found that in the case
of repulsive barriers the temperature decay becomes slower
than Haff’s 1/7> power law and eventually reaches a regime
where the system is nearly elastic. In the case of attractive
wells, instead, the granular temperature is lost faster than an
inverse time power law.

Second, we studied the behavior of the stationary regime
obtained through a stochastic forcing of the system. The
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steady state has been analyzed via MD simulations and the-
oretical approaches based on the direct comparison with the
elastic counterpart of the system whose equilibrium proper-
ties are well understood. Our results show that, in the dense
limit, particle spatial correlations are relevant and modify the
collision rate, the excluded volume of the other particles en-
hances the probability that two particles are at contact and
thus reduce the repulsive barrier. The theoretical approach
we have attempted remains a reliable approximation for the
behavior of the dissipative system at not too small densities
while it is correct for the elastic system at every density.
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