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Abstract

A synchronization mechanism driven by annealed noise is studied for two replicas of a coupled-map lattice which exhibits
stable chaos (SC), i.e., irregular behavior despite a negative Lyapunov spectrum. We show that the observed synchronization
transition, on changing the strength of the stochastic coupling between replicas, belongs to the directed percolation universality
class. This result is consistent with the behavior ofchaotic deterministic cellular automata (DCA), supporting the equivalence
ansatz between SC models and DCA. The coupling threshold above which the two system replicas synchronize is strictly related
to the propagation velocity of perturbations in the system. 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.45.+b; 05.40.+J; 05.70.Jk
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1. Introduction

The occurrence of disordered patterns and their
propagation in the presence of a negative Lyapunov
spectrum have been often observed in spatiotemporal
systems [1–5]. One can classify this kind of irregular
behavior into two general groups with basically differ-
ent features:transient chaos andstable chaos.

Transient chaos (TC) is a truly chaotic regime
with finite lifetime, characterized by the coexistence
in the phase space of stable attractors and chaotic
non-attracting sets — named chaotic saddles or re-
pellers [6]. The system, starting from a generic con-
figuration, typically exhibits irregular behavior until it
collapses abruptly onto a non-chaotic attractor.
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Stable chaos (SC) constitutes a different kind of
transient irregular behavior [1,2] which cannot be as-
cribed to the presence of chaotic saddles and there-
fore to divergence of nearby trajectories. In SC sys-
tems, moreover, the time spent in transient regimes
may scale exponentially with the system size (super-
transients [1,2]), and the final stable attractor is prac-
tically never reached for large enough systems. One is
thus allowed to assume that such transients may be of
substantial experimental interest and become the only
physically relevant states in the thermodynamic limit.
While TC remains associated to information produc-
tion, i.e., to the response of the system to infinitesi-
mal disturbances, SC is mainly related to propagation
and mixing of information. In other words, SC sys-
tems are sensitive only to perturbations of finite am-
plitude [7], while they respond to infinitesimal distur-
bances in a way similar to stable systems. Such a key
feature makes meaningless any characterization of the
SC complexity by means of Lyapunov theory.
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In this Letter we focus on SC behavior whose ori-
gin has not yet found a convincing explanation, even
though, it has been observed in several spatially ex-
tended models such as coupled-map lattices [1–3] and
oscillators [4]. To provide an adequate description of
SC systems we invoke their strict similarity with dis-
crete models such as deterministic cellular automata
(DCA). In fact, according to the conjecture that “SC
systems represent a continuous generalization of de-
terministic cellular automata” [2], we can argue that
what is known about DCA could be automatically
translated into the language of SC. Although a gen-
eral mapping of SC onto DCA models is still missing,
the conjecture is supported by the fact that, also in fi-
nite size DCA, limit cycles and fixed points are the
only allowed attractors, since the number of possible
configurations is finite. Moreover, in some DCA, the
transient dynamics towards the final attractor may ex-
hibits a long living irregular behavior with lifetimes
that typically grow exponentially with the system size.
In this case it is practically impossible to find any re-
currence (Poincaré cycles) for large systems. Accord-
ing to Wolfram classification [8], these DCA form the
third (“chaotic”) class and they share several proper-
ties with continuous SC systems.

The emergence of this “chaoticity” in DCA dynam-
ics is effectively illustrated by the damage spreading
analysis [9,10], which measures the sensitivity to ini-
tial conditions and for this reason is considered as the
natural extension of the Lyapunov technique to dis-
crete systems. In this method, indeed, one monitors
the behavior of the distance between two replicas of
the system evolving from slightly different initial con-
ditions. The dynamics is considered unstable and the
DCA is said chaotic, whenever a small initial differ-
ence between replicas spreads through the whole sys-
tem. On the contrary, if the initial difference eventu-
ally freezes or disappears, the DCA is considered non-
chaotic.

A similar scenario holds for systems exhibiting
SC [3], where a transitions between regular and ir-
regular dynamics may occur upon changing a control
parameter (e.g., the spatial coupling between sites);
the irregular dynamics is often associated to spreading
of damages.

In this Letter we show that another characterization
of the SC behavior can be achieved through a suitable
synchronization method, which has been successfully

employed in Ref. [11] to classify the chaotic proper-
ties of DCA. In our opinion this method may be used
to complement the common damage spreading analy-
sis. The basic idea consists of measuring the minimal
“strength” of the coupling between a replica (slave)
and the original system (master) required to achieve
their perfect synchronization. The master–slave inter-
action is a stochastic and spatially extended version of
the Pecora–Carroll synchronization mechanism [12].
Unlike the damage spreading method, where replicas
are independent, this coupling scheme implies that the
evolution of slave is driven by the master. Practically
each time step is composed by two phases: in the first
one, the master and slave system evolve freely with the
same evolution equation, and then a fractionp of the
degrees of freedom in the slave system is enforced to
take the value of the corresponding degrees of freedom
in the master. Synchronization of spatially extended
systems has been usually studied with symmetrical in-
teractions [13–17]. Our asymmetric scheme, instead,
allows probing the dynamical properties of the master
system. Through a gradual increase ofp from 0 to 1,
the dynamics of the slave system tends to synchronize
to that of master, and at a thresholdp∗ a synchro-
nization transition occurs: the pinching synchroniza-
tion transition (PST). The thresholdp∗ above which
the replicas synchronize is an indicator of the chaotic
behavior of the unperturbed system (master). Indeed,
a large value ofp∗ implies a large fraction of sites
to be pinched in order to achieve the synchronization,
indicating that the dynamics of the replicas is rather
irregular and difficult to control.

In DCA, the PST belongs to the directed percolation
(DP) universality class [11,17], while in fully chaotic
continuous systems (e.g., coupled-map lattices) the
synchronization is never perfect for finite times, nor it
is equivalent to an absorbing state [17]. This generally
implies non-DP scaling exponents [18–20]. Here, we
find that the PST is well defined for a model showing
typical SC behavior originally introduced in Ref. [2].
This PST is found to belong to the DP universality
class, in agreement to what happens for DCAs. The
result further supports the conjecture that SC class
contains DCAs.

The sketch of this Letter is the following. In the next
section, we study a simple coupled-map lattice which
is particularly suitable for discussing the distinction
between SC and TC behaviour. The model, in fact, dis-
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plays a TC regime before falling into DCA dynamics
with the typical properties of a discrete SC regime. In
Section 3, we describe the SC model of Ref. [2], whose
dynamics never reduces to a DCA, and the pinching
synchronization technique applied to it. For the latter
model we obtain the PST phase diagram (Section 4),
by measuring the synchronization threshold as a func-
tion of the coupling strength between sites. Such a
phase diagram agrees remarkably with that already ob-
tained through damage spreading analysis in Ref. [3].
We provide an argument to explain this consistency.
Finally, conclusions and remarks are reported in the
last section.

2. Transient and stable chaos

It is instructive to discuss the main differences
between SC and TC regimes with the aid of a simple
spatiotemporal model in which both of them occur.

Let us consider the one-dimensional coupled-map
lattice (CML), i.e., an array of state variables{x1, . . . ,

xL} in the interval[0,1] subject to the discrete-time
evolution rule

(1)xi(t + 1)= gε
(
xi−1(t), xi(t), xi+1(t)

)
.

Each site-variablexi interacts diffusively with its
nearest neighbors

(2)gε(u, v, z)= (1− 2ε)f (v)+ ε
[
f (u)+ f (z)

]
,

whereε sets the coupling strength among maps.
The local mapping has the form shown in Fig. 1:

(3)

f (x)=




0 for 0� x < α,
x−α

1/3−2α for α � x < 1/3− α,

1 for 1/3− α � x < 1/3+ α,

1− x−1/3−α
1/3−2α for 1/3+ α � x < 2/3− α,

0 for 2/3− α � x < 2/3+ α,
x−2/3−α
1/3−2α for 2/3+ α � x < 1− α,

1 for 1− α � x < 1.

In this example, we always use the democratic cou-
pling ε = 1/3, and we shall neglect to indicate theε
dependence. A typical grayscale pattern generated by
the evolution of the above CML is shown in Fig. 2
(see the caption for the grayscale code), forα = 0.068.
Note that the continuous dynamics (gray) is limited
to restricted domains, while in the rest, the system

Fig. 1. Plot of the map of Eq. (3) for different values ofα: α = 0.02
(dotted line),α = 0.08 (dashed line) andα = 1/6 (continuous line).

Fig. 2. Grayscale representation of space-time evolution of model
of Eq. (2) with ε = 1/3 andα = 0.068. Time runs from top to
bottom, white (black) color indicatesxi (t) = 0 (xi (t) = 1), while
gray indicates all other values.

has fallen into a Boolean dynamics (typical of DCA),
which is, however, far from being trivial.

Systems showing SC and TC regimes are asymp-
totically stable, therefore the standard Lyapunov spec-
trum is not able to detect their transiently irregu-
lar states. In TC regimes, however, the existence of
chaotic saddles in the phase space is revealed by the
finite-time (or effective) Lyapunov exponent

(4)γ (t)= 1

t

〈
log‖w(t)‖〉,
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wherew(t) = {w1(t), . . . ,wL(t)} indicates a generic
infinitesimal perturbation (i.e., a tangent vector) at
time t , which evolves following the linearization of
Eqs. (1)–(3). The average in expression (4) is taken
over the ensemble of trajectories which have not yet
left a certain neighborhood of the saddle at timet
[21]. The indicator γ (t) is expected to fluctuate
around a positive value during the transient [5] and
switches to negative values after the transition to
the stable attractor occurs. In SC, however, even the
finite-time Lyapunov exponent does not provide much
information, as it becomes negative already in the
transients. This indicates that the source of the SC
behaviour cannot rely on the instability associated to
repelling sets. Although, the existence of repellers may
not be excluded a priori, certainly their role is not
observable in SC.

We now see how the above considerations apply
to our toy model. First, we discuss the case of
infinite slope map (i.e.,α = 1/6, full line in Fig. 1),
corresponding to a pure SC regime. In fact, after one
time step, each configuration of the lattice reduces to a
sequence of “0” and “1” (Boolean configuration). The
system evolution remains, however, irregular since,
when α = 1/6, the model is equivalent to a DCA
which follows therule 150,

g(u, v, z)= u+ v + z− 2(uv + uz+ vz)+ 4uvz,

with u, v andz Boolean variables. This dynamics is
known to generate highly irregular patterns [8]. On the
other hand, this irregular behaviour cannot be associ-
ated to either chaotic saddles or local fluctuations of
Lyapunov exponent, the latter being−∞ due to the
specific form of the map. Despite Lyapunov analysis
ensures that this system is totally insensitive to infini-
tesimal perturbations, finite perturbations of amplitude
greater than 1/6 give rise to a “defect” which propa-
gates through the lattice. Indeed, it can be easily shown
that a defect also evolves with the chaoticrule 150, be-
cause the rule is additive modulo two.

A slight tilting of the vertical edges of the map
(0 < α < 1/6, dotted and dashed lines in Fig. 1)
introduces some expanding regions in the phase space.
Accordingly, one obtains a typical TC behaviour, due
to the competition between stable and unstable effects,
which decays into the above mentioned SC regime
(see Fig. 2). Fig. 3 shows a typical time fluctuation
of the local expansion rate (or local multiplier)µ(t)=

Fig. 3. Time behaviour of Lyapunov multiplierµ(t) = |z(t)|/
|z(t − 1)| for CML of Eq. (2) with α = 0.052. The simulation is
stopped at timeTr = 4455 when the systems reaches the absorbing
SC state.

Fig. 4. Histogram of the finite-time Lyapunov exponentγ of model
of Eq. (2) computed from a set of 2000 arbitrary initial conditions
with α = 0.052. The size of the system isL = 3000 sites. For each
initial condition, the evolution of Eq. (2) and its linearization are
iterated until the system approaches a Boolean configuration.

‖w(t)‖/‖w(t − 1)‖, for α = 0.052,w being a tangent
vector as in Eq. (4). The irregularity of the signal is
a clear indication of the chaotic-like behavior of the
system. The simulation is stopped at timeTr when
w(t) becomes exactly0, i.e., when the system settles
down into a Boolean configuration (SC state) which is
Lyapunov-stable by definition. Therefore,Tr provides
an estimate of the time spent in the TC regime.

For all those trajectories which have not yet entered
binary configurations at timet , γ (t) remains positive,
as seen in Fig. 4, where the distribution ofγ (t) is
shown for a set of 2000 trajectories starting from
arbitrary initial conditions.
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The lifetime Tr of the TC regimes preceding the
SC behavior depends onα. Tr becomes shorter asα
approaches 1/6, value at which it vanishes, because
the system behaves as a true DCA after just one time
step. In the limitα → 0, instead, the flat regions of
the map disappear (the slope being equal to 3) and TC
regime becomes persistent and degenerates into fully
developed chaos (FDC).

A more detailed analysis of the behavior of the
model of Eqs. (1)–(3) upon changing the control
parameterα will be presented elsewhere. Here such a
qualitative discussion has the only aim to highlight the
key differences between SC and TC dynamics, both
present in this toy model.

In the example discussed so far, the SC regime
occurs only as a DCA behavior, since, as soon as the
system falls into a Boolean configuration, it evolves as
a genuine “chaotic” DCA. In the following section we
discuss a continuous SC model whose behavior never
reduces to DCA dynamics. In particular, we study the
synchronization properties of two replicas of such a
system.

3. The model and the synchronization dynamics

The dynamical system considered now is the one-
dimensional CML of Eqs. (1), (2) with the coupling
constantε ∈ [0,1/2] and periodic boundary condi-
tions over a lengthL (system size). The local mapping
has the form

(5)f (x)=
{
bx if 0 < x < 1/b,
a + c(x − 1/b) if 1/b < x < 1,

as shown in Fig. 5.
We use here the parameter values(a = 0.07,

b = 2.70, c = 0.10) of Ref. [3], for which the map
of Eq. (5) is attracted into a stable period-3 orbit. An
example of the space-time evolution of the CML is
shown in Fig. 6, where the presence of propagating
structures similar to those in Fig. 2 is observed, de-
spite here the system dynamics never relaxes onto a
pure DCA state.

In Ref. [3] anε-dependent dynamical phase transi-
tion between periodic and chaotic regimes of this sys-
tem has been carefully investigated by damage spread-
ing analysis. The periodic (chaotic) phase is character-
ized by the absence (presence) of damage propagation

Fig. 5. Plot of the map of Eq. (5).

Fig. 6. Space-time evolution of the map Eq. (5), withε = 0.32.
Grayscale fromxi (t)= 0 (white) toxi (t)= 1 (black).

which is found to behave linearly,

(6)S(t)= S(0)+ 2VF t,

S being the linear size of the region affected by the
damage. The factor 2 is a consequence of the symmet-
ric coupling scheme which requires the left and right
damage front to progress at the same velocityVF , but
in opposite directions. The damage spreading veloc-
ity VF can be considered a good indicator for this
transition, because it vanishes in periodic phases. It
turns out from Ref. [3], that forε < ε

(1)
c � 0.3 only

periodic phases are observed, forε > ε
(2)
c � 0.3005

only chaotic states exist. In the intermediate region
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Fig. 7. Schematic representation of the pinching synchronization.
Vertical dashed lines indicate the sites of the slave system identified
to those of the master corresponding tori = 1 in Eq. (7).

ε ∈ [ε(1)c , ε
(2)
c ], periodic and chaotic behaviors alter-

nate in an apparently irregular manner (fuzzy region).
We study the effects of the pinching synchroniza-

tion on this model and its interplay with the above de-
scribed transition.

The master system follows the dynamics of Eq. (1),
while the slave system evolves as

yi(t + 1)= [
1− ri (t)

]
gε

(
yi−1(t), yi(t), yi+1(t)

)
(7)+ ri (t)gε

(
xi−1(t), xi(t), xi+1(t)

)
,

whereri (t) is a Boolean random variable:

ri (t)=
{

1 with probabilityp,
0 otherwise.

Practically, at each time step, a fractionp of site
variables in the slave system is set equal to the
corresponding variables of the master (see Fig. 7).
In the limit casep = 0, the slave system evolves
independently of the master, while forp = 1, its
evolution coincides with the master one.

The synchronization order parameter is the asymp-
totic value of the topological distanceρ between
master and slave systems (i.e., the fraction of non-
synchronized sites),

(8)ρ(t,p)= lim
L→∞

1

L

L∑
i=1

Θ
(∣∣xi(t)− yi(t)

∣∣),
where Θ(s) is the unitary step-function. We de-
note byp∗ the synchronization threshold, such that
ρ(∞,p < p∗) > 0 and ρ(∞,p < p∗) = 0. This
synchronization mechanism defines an associated di-
rected site-percolation problem ind = 1 + 1 dimen-
sion, where a site of coordinate(i, t) is “wet” if ri (t)=
0 and it is connected to at least one neighboring wet
site at timet − 1. At t = 0 all sites are assumed to be
wet. We denote bypc the critical threshold for which a

cluster of wet sites percolates along the time direction.
The master and the slave systems can stay different
only on the cluster of wet sites.

For chaotic CMLs two synchronization scenarios
are possible, calledweak and strong chaos, respec-
tively [22]. A system is said strongly chaotic if it does
not synchronize even on the critical wet cluster (i.e.,
for p∗ = pc) and therefore the distanceρ of Eq. (8)
always exhibits DP scaling. Alternatively, one can say
that for strongly chaotic systems the active and the wet
clusters are essentially the same for every value ofp.

Instead, for weakly chaotic systems, the synchro-
nization thresholdp∗ is always located belowpc and
the transition is discontinuous (first-order like). For
p < p∗ again the active and wet clusters coincide,
whereas forp > p∗ the active cluster disappears, but
the wet cluster still percolates. Such a behavior is due
to the exponential vanishing of the difference field
h(t) = {xi(t) − yi(t)}Li=1, even though local fluctua-
tions ofh can sporadically appear.

However, for chaotic systems, the synchronized
state is not robust with respect to an infinitesimal per-
turbation in the absence of the synchronization mech-
anism, i.e., it is not a proper absorbing state. Con-
versely, DCAs [11] always synchronize atp∗ be-
low pc (i.e., synchronization occurs in presence of the
percolating wet cluster) butρ(t,p) still exhibits DP
scaling. This is a straightforward consequence of the
finiteness of the number of states in DCAs, which pre-
vents fluctuations ofh in the absorbing state. The toy
model of Section 2 trivially follows this behavior, and
the synchronized state is insensitive with respect to
sufficiently small perturbations. We show in the fol-
lowing that this scenario holds also for continuous SC
systems.

4. Numerical results

A first set of simulations has been performed for lat-
tices of sizeL= 3000, with periodic boundary condi-
tions. We measuredρ(t,p) at different times and the
results have been averaged over a 5000 randomly cho-
sen initial conditions. For each simulation a transient
of 104 time steps has been discarded in order to avoid
initial bias and reach stationary states. A sitei is con-
sidered to be synchronized (andyi(t+1) is set equal to
xi(t + 1)) if |yi(t)− xi(t)| < τ , whereτ is a sensibil-
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Fig. 8. Log–log plot of the order parameterρ(t,p) vs. t for
p = 0.1269,0.1270,0.1271, . . . from top to down, and forε =
0.305. The dot-dashed straight line indicates the critical DP scaling
t−δ with δ = 0.159. The estimated synchronization threshold turns
to bep∗ = 0.1272(1).

ity threshold. In this way we can control the effects of
the finite precision of computer numbers. We checked
that the results are independent ofτ (for smallτ ), and
we chooseτ = 10−8 for massive simulations.

A typical behavior ofρ(t,p) near p∗ is shown
in Fig. 8. The value ofp corresponding to the
most straight curve at larget represents the best ap-
proximation ofp∗, which can be estimated with good
accuracy. The straight dashed line indicates the DP
scaling results.

For those values ofε, for which the above analy-
sis provided a too uncertain result in the estimation
of p∗, we have carried out single-site simulations for
larger systems, obtaining a more accurate determina-
tion of p∗. These simulations consist in preparing the
slave system exactly synchronized to the master ex-
cept for the central site and in measuring how non-
synchronized sites propagate throughout the system,
generating DP-like clusters. This method probes the
stability of synchronized states with respect to mini-
mal perturbations.

As usual in this type of simulations, we measured
the survival probabilityP(t) of the desynchronized
states, the number of non-synchronizedsitesN(t), and
their second momentR2(t) with respect to the center
of the lattice (generally called the gyration radius).
Near the synchronization threshold and in the long
time limit, these magnitudes are expected to scale as
[23,24]

(9)N(t)∼ tη, P (t) ∼ t−δ, R2(t)∼ tz.

The determination of the asymptotic value of such
exponents (e.g.,η) is performed by plotting the effec-
tive exponent

η(t)= log(N(at))

log(N(t))

versus 1/t for several values ofp. Herea indicates
an arbitrary scale factor and we always seta = 2. In
the limit t → ∞, η converges toη for p = p∗ and
diverges for other values ofp. In pure DP systems this
method allows the simulation of effectively infinite
lattices, since the reference state, i.e., the absorbing
one (usually made of “0”s) is unique and does not
change in time. Conversely, in our case the absorbing
state coincides with the synchronized state and this
implies the detailed knowledge of the evolution of
the master system. This circumstance imposes severe
limitations on lattice sizes and performances of the
method.

In Fig. 9 we report the behavior of the effective
exponentsη, δ andz+ η versus 1/t for several values
of p. The asymptotic values of the exponents (η =
0.330(5), δ = 0.13(2), z = 1.25(2)) are consistent
with the best known DP ones (η = 0.31368(4), δ =
0.15947(3), z= 1.26523(3) [24]).

This analysis, repeated for several values ofε, indi-
cates that the synchronization of SC systems reason-
ably belongs to the DP universality class. The very
slow convergence of the system dynamics to the as-
ymptotic state makes hard to exclude that for some
values ofε the DP character of the transition is vio-
lated. However, we believe that, owing to the stabil-
ity of the model of Eqs. (1)–(3), small local distur-
bances are re-absorbed at exponential rate and cannot
generate desynchronization effects. In other words, the
synchronized state is absorbing with respect to small
fluctuations. This is also consistent with the fact that
the simulation results are independent of the preci-
sion thresholdτ . Therefore, the local stability guar-
antees that, for what concerns synchronization prop-
erties, SC systems behave mainly like discrete ones
and differently from continuous chaotic systems. This
further supports the “equivalence ansatz” between
SC and DCA. Indeed, preliminary simulations show
that the DP scenario holds even if the local pinching
is performed only up to a small difference∆. This
remark suggests the possibility of defining a finite-
size maximum Lyapunov exponent, in a way simi-
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Fig. 9. Effective exponentsη(t) (a), δ(t) (b), andz(t) + η(t) (c)
for ε = 0.3004 and several values ofp. The average is taken over
50,000 runs,a = 2 andL= 2000.

lar to Ref. [25]. Further work in this direction is in
progress.

Finally, the PST phase diagram is shown in Fig. 10,
wherep∗ is plotted versusε. The behavior ofp∗ is
compared with that of the damage spreading veloc-
ity VF (Ref. [3]), properly re-scaled. The consistency
of the two phase diagrams, even in the fuzzy region,
suggests that the indicators,VF andp∗, characterize
different aspects of the same phenomenon. The strict
correlation betweenVF and p∗ is not surprising if
one considers the changing rate of the density of non-

Fig. 10. Dependence of the synchronization thresholdp∗ on the
coupling constantε (diamonds) compared with the behaviour ofVF
(open circles), theVF values are properly re-scaled. In the inset an
enlargement of the region aroundε = 0.3 is shown. The line is a
guide to eye.

synchronized sites,n(t) = N(t)/L, in the pinching
synchronization mechanism. For large time and sys-
tems and in a mean-field description of the process,
we can write forn(t) an equation similar to that one
employed in contact processes and DP theory [26]:

(10)ṅ= 2VFn(1− n)− pn.

The first term of the r.h.s. represents the active-site
production due to the linear spreading of desynchro-
nization regions, which occurs with a velocityVF (see
Eq. (6)). The second term accounts for the destruc-
tion of active sites by the pinching mechanism. The
process becomes critical when the linear contributions,
2VFn andpn, balance, thus we obtainp∗ ∼ VF . The
proportionality holds even outside of mean-field ap-
proach, i.e., when other terms, such as higher pow-
ers of n, diffusion and multiplicative noise, are in-
cluded in Eq. (10), provided one considers the renor-
malized parameters. The conclusion thatp∗ is a non-
decreasing function ofVF is, however, intuitive, be-
cause the higherVF , the greater is the desynchroniza-
tion rate, so the pinching probability has to be large to
ensure the synchronization.

5. Conclusions

In summary, we have applied the pinching synchro-
nization method to systems showing stable chaos. As
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for cellular automata, we have found that even in this
continuous case the pinching synchronization transi-
tion (PST) is well defined, and that this transition be-
longs to the DP universality class. Our results show
that the stable chaos is indeed equivalent to cellular
automata “chaoticity” and definitively different from
transient chaos. The PST phase diagram is consistent
with that reported in Ref. [3] for damage spreading ve-
locities, including the fuzzy region.
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