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The idea of predicting the future from the knowledge of the past is quite natural, even when
dealing with systems whose equations of motion are not known. This long-standing issue is
revisited in the light of modern ergodic theory of dynamical systems and becomes particularly
interesting from a pedagogical perspective due to its close link with Poincaré’s recurrence. Using
such a connection, a very general result of ergodic theory—Kac’s lemma—can be used to establish
the intrinsic limitations to the possibility of predicting the future from the past. In spite of a naive
expectation, predictability is hindered more by the effective number of degrees of freedom of a
system than by the presence of chaos. If the effective number of degrees of freedom becomes large
enough, whether the system is chaotic or not, predictions turn out to be practically impossible.
The discussion of these issues is illustrated with the help of the numerical study of simple models.

© 2012 American Association of Physics Teachers.
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I. INTRODUCTION

Predicting the future state of a system has always been a nat-
ural motivation for science, with applications such as weather
forecasting and tidal prediction. Understanding the limitations
to the predictability of a system evolution is often crucial.

In deterministic systems, where the future is uniquely
determined by the present, two main approaches to the pre-
dictability problem can be taken. The first applies to systems
whose evolution laws are known, in terms of either differen-
tial or difference equations. In this case, predictability is
limited mainly by the presence of sensitivity to initial condi-
tions (deterministic chaos). As taught in dynamical system
courses, this sensitivity is characterized by the Lyapunov
exponent. The second approach applies to phenomena whose
governing laws are not known but whose evolution can be
measured and recorded. In such a case, the best practical
strategy is to use the past, as a full-scale model of the system,
to make predictions of the future evolution.

The present paper discusses at an introductory level the lat-
ter method, which was developed in the framework of nonlin-
ear time series analysis.'~ This topic is seldom included in
basic courses and is closely related to an apparently distant
classical theme, the Poincaré recurrences.* Surprisingly,
although simple to establish, such a connection has been over-
looked even by specialists, as recently remarked by Altmann
and Kantz.® Such a link also allows us to clarify the practical
role of theoretical concepts such as the attractor dimension of
a dynamical system. Indeed, as we shall see, when the evolu-
tion laws are unknown, the actual constraints to our prediction
capabilities are rather set by the number of degrees of freedom
(attractor dimension) than by the presence of chaos. This fact
is often overlooked in favor of the widespread folklore of the
so-called butterfly effect.” In this respect, it is important to
stress that such limitations to predictability are a consequence
of rather general results of ergodic and dynamical-system
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theory. Although the main ideas had been already put forward
by Boltzmann,® many misguided applications of nonlinear
time series analysis appeared in the literature after the redis-
covery of chaos (see, e.g., Ref. 9).

One of the main reasons for excluding this topic from ba-
sic courses is the necessity to introduce advanced technical
tools® such as the embedding technique.3’10 Therefore, here,
we present the problem in its simplest formulation. Often,
when recording the evolution of a system with unknown dy-
namics, not all the variables necessary to identify the states
or even their number are known. Moreover, if we are lucky
enough to know them, we can access only one or a few scalar
functions of them, typically affected by measurement errors.
Throughout this paper, we will disregard all these technical
difficulties (which can be to a large extent handled with spe-
cific techniques®) and assume that the necessary variables
can be recorded with arbitrary precision. Even with such an
ideal working hypothesis, the above-mentioned fundamental
constraints to predictability are unavoidable.

The material is organized as follows. In Sec. II, after some
historical notes, we introduce the method of analogs as the
simplest procedure to predict the future from past time se-
ries. Section III introduces the model system used to clarify
the main issues. In Sec. IV, we discuss the link between ana-
logs and Poincaré recurrences, and show how the actual limi-
tation to predictability from data stems from the effective
number of degrees of freedom. Section V discusses two
cases where the method works successfully; one is illustrated
by a numerical example and the other refers to the important
practical problem of tidal predictions. Finally, Sec. VI is
devoted to conclusions.

II. THE METHOD OF ANALOGS

“If a system behaves in a certain way, it will do so again”
seems a rather natural claim when referred, for instance, to

© 2012 American Association of Physics Teachers 1001

Downloaded 31 Oct 2012 to 150.146.8.108. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



~ e 'y
/’ \\ -7 M+T
/ ' _ - -
————— ~ ~
X 0 \ #! N
g,—‘*\ —\_\\\ /, / R \
\‘ NV /’ N , N\ ! * \
Xe / --- X R A® ]
\\ v \\___1 M+T ) \ =X
~ =~ @ ---- P \ M+T k+T 7
\ A - N ’
\ - A / g P
AN VX=X ~_-
ey N MeT kT /7
L (a)

---------- 7 (b)

Fig. 1. (Color online) Sketch of the method of analogs: (a) illustration of Eq. (1) and of the error growth; (b) generalization of the method to more than one ana-
log. In particular, if N, analogs {xy, }g;l are found, Eq. (1) can be replaced by X7 = ZLV; E, xi,+7 where the matrices £, can be computed by suitable

interpolations.

the diurnal and seasonal cycles. This claim is also supported
by Biblical tradition:'! “What has been will be again, what
has been done will be done again; there is nothing new under
the sun.” This idea, together with the belief in determinism
(“from the same antecedents follow the same consequents”),
is at the basis of prediction methods. However, as Maxwell
argued,'? “It is a metaphysical doctrine that from the same
antecedents follow the same consequents. ... But it is not of
much use in a world like this, in which the same antecedents
never again concur, and nothing ever happens twice. ... The
physical axiom which has a somewhat similar aspect is ‘That
from like antecedents follow like consequents.”” These
words no more surprise scientists, aware, by now, of the
almost exceptional character of periodic behaviors and of the
ubiquitous presence of irregular evolutions due to determin-
istic chaos; but at that time, they constituted a departure
from tradition.

In spite of Maxwell’s authoritative opinion, until World
War 1, weather forecasters substantially used empirical
implementations of the naive idea, exploiting their experi-
ence and memory of past similar “patterns” (roughly surfa-
ces of discontinuity between warm and cold air masses) to
produce weather map predictions.'? In the preface to his
seminal book Weather Prediction by Numerical Process,
Richardson criticizes the empirical approaches and, through
an argument similar to Maxwell’s, 4 contends that for
weather forecasting, it is much more useful to integrate the
partial differential (thermo-hydrodynamical) equations rul-
ing the atmosphere. Although, as history witnessed, the suc-
cessful approach to predictions is that foreseen by
Richardson, it is interesting to discuss the range of applic-
ability of predictions based on the past evolution of a deter-
ministic system.

1002 Am. J. Phys., Vol. 80, No. 11, November 2012

Lorenz introduced a mathematical formulation of the idea,
called method of analogs,">'® which is the most straightfor-
ward approach to predictability in the absence of a detailed
knowledge of the physical laws.

In its simplest form, the method works as follows. Assume
that the known state x(#) of a process can be sampled at times
tr = kAt with arbitrary precision. The sampling interval At is
also assumed to be arbitrary but not too short. We collect the
sequence of states x; = x(#;) with k = 1...M. If from the
present state x,;, we would like to forecast the future x,, 7 at
time tyr (T > 1), the basic idea is to search in the past
(x1,x2,...,xy—1) for that state, say x;, most similar to xy,
and to use its consequents as proxies for the future evolution
of x). Mathematically, we require that |x; — xy| <€, and
we dub x; an e-analog to xj. If the analog were perfect
(e =0), the system (being deterministic) would surely be
periodic and the prediction trivial xy;.7 = X1 for any T. If
it is not perfect (¢ > 0), we can use the forecasting recipe

XM4T = XpsTs (D

where the” symbol denotes an approximation. This prediction
is depicted in Fig. 1(a) and simply expresses the principle
that from similar antecedents follow similar consequents.
For the prediction of Eq. (1) to be meaningful, the analog x;
must not be a near-in-time antecedent. When more than one
analog can be found, the generalization of Eq. (1) is depicted
in Fig. 1(b).

Once a “good” analog (meaning e reasonably small) has
been found, the next step is to determine the accuracy of the
prediction (1), namely the difference between the forecast and
the actual state, |Xy; 7 — xp.7|. In practice, the e-analog is
the present state with an uncertainty, x; = x3; + Jo (0o < €),
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and the prediction (1) can be considered acceptable until
the error 07 = |xp47 — X47| remains below a tolerance A,
dictated by the practical needs. The predictability time T =
T (00, A) is then defined by requiring oy S AforT < T.

Accuracy and predictability time are clearly related to
(possible) sensitivity to initial conditions, as pioneered by
Lorenz himself.!” As taught in basic dynamical systems
courses, chaotic evolutions exponentially amplify an infini-
tesimal error

S ~ 8o, )

where /, is the maximal Lyapunov exponent.'® For a gentle
introduction to Lyapunov exponents, the reader may refer to
Ref. 19. Therefore, given a good analog, the prediction will
be A-accurate up to a time

~ 1. A

Strictly speaking, for the above equation to be valid, both
and A must be very small.'® It is worth remarking that the
evaluation of the error growth rate (2) provides, at least in
principle, a way to determine the Lyapunov exponent A;
from a long time series.

Conversely, deterministic non-chaotic systems are less
sensitive to initial conditions: The error grows polynomially
in time, and usually, T (Jg, A) turns out to be longer than that
of chaotic systems, making long-term predictions possible.

For those familiar with chaotic systems, we have appa-
rently reached the obvious conclusion that the main limit to
predictions based on analogs is the sensitivity to initial con-
ditions, typical of chaos. But, as realized by Lorenz himself,
the main issue is actually to find good (small ¢) analogs:'®
“In practice, this procedure may be expected to fail, because
of the high probability that no truly good analogues will be
found within the recorded history of the atmosphere.” Lorenz
also pointed out that the method is limited by the need for a
very large data set,"” independent of the presence of chaos.

It is worth concluding this historical presentation with a
brief comment on the application of the method of analogs
in Lorenz’s original work.'” Lorenz was strongly supporting
weather forecasting based on solving the (approximate)
equations of the atmosphere, as outlined by Richardson. He
realized that the intrinsic limits to weather forecasting cannot
be established by estimating the intrinsic error growth of
these solutions. This work represents the first attempt to esti-
mate the Lyapunov exponent from data, pioneering modern
time series analysis.zo He also realized that, unfortunately,
the true Lyapunov exponent of the atmosphere cannot be
estimated from data, as good analogs cannot be found and
the difference between mediocre analogs may be expected to
amplify more slowly than the difference between good ana-
logs, because nonlinear effects play a greater role when the
errors are large.

III. STUDY OF A SIMPLE MODEL

The difficulties in finding good analogs can be quantified
by studying analog statistics. As an illustrative example, we
compute numerically the probability of finding e-analogs to a
state in a simple model system introduced by Lorenz in
1996,2! hence called the Lorenz-96 model. It consists of the
following nonlinearly coupled ordinary differential equations:

1003 Am. J. Phys., Vol. 80, No. 11, November 2012

X,
dt

— anl (XnJrl _Xn72) - Xn + F7 (4)

where n=1,...,N and periodic boundary conditions
(Xy+n = X+,) are assumed. The variables X,, may be thought
of as the values of some atmospheric representative observ-
able along the latitude circle, so that Eq. (4) can be regarded
as a one-dimensional caricature of atmospheric motion.”
The quadratic coupling conserves energy, ».,X-. In the
presence of forcing F and damping —X,,, the energy is only
statistically conserved. The motion is thus confined to a
bounded region of RM. Moreover, dissipation constrains the
trajectories to evolve onto a subset of this region possibly
with dimension <N, namely an attractor (fixed points, limit
cycles, or a strange attractor if the dynamics is chaotic). The
dynamical features are completely determined by the forcing
strength F and by the system dimensionality N. In particular,
for F > 8/9 and N > 4, the system displays chaos with ex-
ponential separation of nearby initial conditions.*

In principle, the statistics of the analogs of system (4) can
be determined according to the following procedure. Given a
state of the system x), on the attractor, we have to consider
its precursors (xy,...,xy_1) along the trajectory ending in
xy; sampled at regular time intervals of duration Az,
x; = x(t; = iAr). Hence, the e-analogs of xj, are those states
x; such that |x; — x| < e. Finally, the fraction of e-analogs,

1 M—1
CM(E)ZWZG)(E—\XJ—)‘MD, Q)
=1

provides an estimate of the probability to find e-analogs to
xy as a function of both the desired degree of similarity e
and the length of the history M we recorded. Being interested
in typical behaviors and not just in the properties around a
specific state xy, it is convenient to average Cy(€) over r in-
dependent reference states. Therefore, instead of considering
only the end point xy;, we select r states {x*},_, along the
trajectory, well spaced in time to be considered independent
configurations on the attractor, and we replace Eq. (5) by the
average fraction of e-analogs,

r

1
Cru(e) = MZZ(’D(G = | — xM)). ©)

k=1 j=1

Because in our case we know the evolution laws (4), it is not
really necessary to look at the backward time series of the
reference states. In practice, we can select the {x*};_, and
look at their forward e-analogs.

The latter procedure is used to produce Fig. 2, where we
show C, y(¢) obtained with r = 10? reference states and dif-
ferent lengths M of the time series, from 10 to 107. Of
course, when the degree of similarity e becomes larger than
the attractor size, say €max, the fraction C, y(€) saturates to 1.
Therefore, it is meaningful to normalize the degree of simi-
larity by €nax. As for the dynamics (4), the forcing is fixed to
F =35 and we consider two system sizes, N =20 and N =21.
In both cases, the system is chaotic. While for N =21, ana-
logs can be found with reasonable probability even for small
values of € (<10 *epqx ), for N =20, analogs are found only
for large values of e(zlo_zemax), even for M = 10”. The
solid lines in Fig. 2 indicate that for € < ep,x, the probability
to find an analog is fairly well approximated by a power law,

Cecconi et al. 1003
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Fig. 2. (Color online) C, p(€) VS €/€max for F =5, N=20 and N =21; the ref-
erence states are 7 = 1000 and different values of M ranging from 10* to 10’
are considered. The solid lines are the fits of the data by means of relation (9).

Crum(e) oc €. (7)

In particular, we find D4 ~ 3.1 and D4 ~ 6.6 for N=21 and
N =20, respectively. Therefore, the exponent D4 quantifies
the difference between the two cases: upon lowering e, the
probability to find e-analogs with N =20 becomes about €
times smaller than with N =21.

The probability to find e-analogs is expected to decrease
upon increasing the number of degrees of freedom N, as
more constraints on the single components of the state vector
should be satisfied. In this perspective, the above result
seems at odds with intuition unless the exponent D4 in
Eq. (7) is interpreted as the “effective” number of degrees of
freedom.

We end this section by warning the reader that the
counter-intuitive inequality Da(N = 21) < Do(N =20) is a
peculiar consequence of the choice of the parameters F' and
N.2? Generally, D4 is expected to increase with N.'8 Here,
we made this choice to emphasize the importance of the
effective number of degrees of freedom that, in general, is
not trivially related to (and can be much smaller than) the
number of variables N. As we shall see in Sec. IV, D, is
nothing but the attractor dimension, a measure of the effec-
tive number of degrees of freedom.

IV. DEGREES OF FREEDOM, RECURRENCE
TIMES, AND ANALOGS

In this section, we recall some basic notions of ergodic dy-
namical systems and underline their connections with the
analogs. In particular, we link the difficulty of finding ana-
logs to the presence of long recurrence times.

A. The role of dimensions

The founding principle of ergodic theory is that the long-
time statistical properties of a system can be equivalently
described in terms of the invariant (time-independent) proba-
bility, p, such that p(o) is the probability of finding the sys-
tem in any specified region ¢ of its phase space. The phase
space of a system described by N degrees of freedom is a
region of R™, that is, an N-dimensional space.

If the evolution conserves phase-space volumes (as in the
Hamiltonian motion of classical systems), then the probabil-

1004 Am. J. Phys., Vol. 80, No. 11, November 2012

ity du(x) of finding the state in a small region of volume dV,
as defined in elementary geometry, around x is proportional
to dV, i.e., to the Lebesgue measure of that region. In dissipa-
tive systems, phase-space volumes are contracted on average
and the invariant probability du(x) is not proportional to dV,
but concentrates on a set (the attractor) A C RY of dimen-
sion Dy < N. Slightly more formally, the dimension Dj4
describes the small-scale (¢ < 1) behavior of the probability
,u(B’yV (¢)) of finding points x € A, which are in the N-dimen-
sional sphere of radius ¢ around y

WEY0) = | - dux) ~ ®)

BY(0)

Therefore, the trajectories of dissipative systems are effec-
tively described by a number D4 < N of degrees of freedom,
though defined in an N-dimensional space.

For a noninteger D4, the attractor and probability are said
to be fractal. In general, attractors are nonhomogeneous with
Dy, in Eq. (8), depending on y, and an infinite set of dimen-
sions is needed to fully characterize the invariant probability;
we speak of multifractal objects.”> For the sake of our dis-
cussion, these technical complications can be ignored, and
the attractor can be assumed homogeneous and characterized
by a single dimension Dy.

Upon reconsidering Cy(¢) defined in Eq. (5), we see that
it is nothing but the fraction of time the trajectory spends in
a sphere or radius € centered in x;,. For large M, as a conse-
quence of ergodicity, Cy(¢) gives the probability of finding
the system in that sphere, and the quantity (6) is an averaged
probability. Therefore, for sufficiently large M and small e,
Eq. (8) implies

Cru(e) = {u(e)) ~ €. )

Strictly speaking, in Eq. (9), the right exponent should be the
correlation dimension D>, which controls the small-scale
asymptotics of the probability to find two points on the
attractor at distance < e.'®* Thanks to the homogeneity
assumption; however, we have D, ~ Dy.

Relation (9) links the observed behavior (7) in Fig. 2 to the
attractor dimension, showing that the limiting factor to find
good analogs is the attractor dimension, which quantifies the
number of “active” degrees of freedom of the system. For those
accustomed to chaotic systems, this result is rather obvious as
C,y(€) in Eq. (6) provides a standard approximation® to the
correlation sum, 2/(M(M —1))>_, .. ©(e — |x; — x;|), at the
basis of the Grassberger and Procaccia method to determine the
correlation dimension D2.24 Indeed, the correlation sum is an
unbiased estimator of the probability P,(€) to find two ran-
domly chosen points on the attractor (using a long trajectory on
it) at a distance < e. For small €, P, ge) ~ €P2 and thus the cor-
relation dimension can be estimated.'®

B. Poincaré recurrence theorem and Kac’s lemma

The quantity Cy(¢), besides approaching (for large M) the
probability to find the system state e-close to x,y, relates to the
average time interval Tz between two consecutive e-analogs
of x;;, which is given by

, (10)

TR =
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M(e) being the number of e-analogs in the interval
[f1 : ty—1]. As by definition Cy(e) = M(e)/(M — 1), we
have

CM(E):Al/fR. (11

This is actually a classical result of the ergodic theory,
known as Kac’s lemma.

To clarify this connection, it is worth recalling the
Poincaré recurrence theorem* stating that, in Hamiltonian
systems with a bounded phase space (Q, the trajectories exit-
ing from a generic set ¢ C Q will return back to ¢ infinitely
many times. The theorem holds for almost all points in ¢
except for a possible subset of zero probability. In general, it
applies to the class of systems with volume-preserving dy-
namics in phase-space, of which Hamiltonian ones are a par-
ticular sub-class. Actually, although often not stressed in
elementary courses, it can be straightforwardly extended to
dissipative ergodic systems provided one only considers ini-
tial conditions on the attractor, and “zero probability” is
interpreted with respect to the invariant probability on the
attractor.

Poincaré’s theorem merely proves that a trajectory surely
returns to the neighborhood of its starting point but does not
provide information about the time between two consecutive
recurrences—the Poincaré recurrence time. The latter is cru-
cial to the method of analogs, because long recurrence times
critically spoil its applicability [see Eq. (11)].

To estimate the average recurrence time, let us assume
that an infinitely long sequence of states can be stored. With-
out loss of generality, we consider a discrete time sequence
x; = x(kAr) (k=0,...,00) of states generated by a deter-
ministic evolution from the initial condition x(. Given a set o
including xy, the recurrence time of x, relative to o, 7, (xo)
can be defined as the minimum & such that x; is again in ¢

7o (x0) = ir}:f{k > 1|xp € 0 and x; € g}. (12)

Note that we are using dimensionless times, with A = 1.
The mean recurrence time relative to o, (t,) can then be
computed as

1
(20) MU)Ldu(x)fa(x% (13)

u being the invariant probability with respect to the dynam-
ics, defined in Sec. IV A. For ergodic dynamics, a classical
result known as Kac’s lemma states that

J du(x)ts(x) =1, sothat (t,) =1/u(a). (14)

That is, the average recurrence time to a region ¢ is just the
inverse of the probability of that region. We stress that Eq.
(14) is a straightforward consequence of ergodicity.*®

In a system with phase-space volume preservation (those for
which the Poincaré theorem is typically invoked) with N
degrees of freedom, if ¢ is a hypercube of linear size €, one has

n(o) ~ ({)N and  (z,) ~ (%)N (15)

where L is the typical excursion of each component of x.
Thus, the mean return time grows exponentially with N.

1005 Am. J. Phys., Vol. 80, No. 11, November 2012

Consequently in a macroscopic body (N > 1), (z,) is astro-
nomically large, for any o. The result (15) is surely positive
for the validity of statistical mechanics, as recognized by
Boltzmann himself who (without knowing Kac’s lemma)
replied to Zermelo’s criticism of irreversibility, “Of course if
one waits long enough, the initial state will eventually recur,
but the recurrence time is so long that there is no possibility of
ever observing it.”® But the result is dramatically negative for
the possibility to find analogs in high-dimensional systems.

In the case of ergodic dissipative systems, where the
coarse-grained probabilities are ruled by the dimension Dy
[compare Eq. (8)], Kac’s result (15) applies with N replaced
by DA.

We conclude this digression on Poincaré recurrences by
noting that the limitations to find the analogs set by relation
(15) are unrelated to chaos. For instance, Eq. (15) also
applies to a chain of n harmonic oscillators with incommen-
surable frequencies, a system with regular (quasiperiodic)
behavior. Strictly speaking, such a system is not ergodic in
the whole angle-action phase space, but in the space of
angles only. Therefore in Eq. (15), instead of N=2n, one
has to set N = n.>”*8

C. Consequences of Kac’s lemma

The above results allow us to quantify Lorenz’s pessimism
with respect to the number of data necessary for finding
good analogs in the atmosphere.'> Clearly, we must require
MAt = 7g, which from Eq. (11) implies M = 1/Cy(€). Then
using Eq. (9), we can see that the minimum length of the
time series is

Dy
M ~ (£> , (16)

€

where L is the typical excursion of each component of x.
Equation (16) implies that, at least in principle, the method
can work for deterministic systems having an attractor of fi-
nite dimension provided that the time series is suitably long.
However, the exponential dependence on D4 in Eq. (16)
imposes, upon putting in numbers, constraints that are too
severe even if we content ourselves of poor precision, i.e., not
too small e-analogs. For instance, in Fig. 3, we show how the

10° . . : ,
107 1
g 102 ]
<
=3
[
= _3 |
£ 10
10-4 N=20 . .
N=21 @
-1/Dp
10-5 1 - I2 I.3 I4 I5 ‘6 ‘7 8
10 10 10 10 10 10 10 10

M
Fig. 3. (Color online) The ratio €min/€max Vs M. The parameters of the model

are the same as in Fig. 2: F =5, N=20, and N = 21; the reference states are
r=1000. The solid lines are the fits of the data by means of relation (16).
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distance between a reference point and its best analog (€min)
scales with M. We see that for €min/€max = 1072, a sequence
of 10° points is sufficiently long in the case N=21
(D4 = 3.1) while, on the contrary, even 10’ points are not yet
enough in the case N=20 (D4 = 6.6). Indeed, by inverting
Eq. (16), we should expect €yin 0x M~'/P4 as shown in Fig. 3.
The differences between the cases N=21 and N=20 in
Figs. 2 and 3 are thus a mere consequence of the different
attractor dimensionality, namely D4 (N = 21) < Ds(N = 20).

Relation (16) also lays the basis for understandlng the lim-
its of the Grassberger and Procaccia method** to compute
the correlation dimension from the scaling behavior of the
correlation sum or its approximation (6). In fact, it states that
the larger the dimension of the attractor, the larger the num-
ber of points M necessary to sample it within a given accu-
racy €. For example a segment of size L will requlre
M~LJe pomts a square will require M ~ (L/¢)%, and
so on. Smith* proposed a minimum number of points of
M ~ 42P+ (about a decade and a half of scaling region) to
get reliable results. For D4 = 5 or 6, Smith’s recipe requires
from hundreds of millions to billions of data points, too large
for standard experiments. The above considerations on the
limits of applicability of the Grassberger and Procaccia®*
technique may sound trivial. However, in the 1980s, when
nonlinear time series analysis started to be massively
employed in experimental data analysis, the limitations due
the length of the time series were overlooked by many
researchers and a number of misleading papers appeared
even in important journals (for a critical review see Ref. 9).

In conclusion, the possibility to predict the future from the
past using analogs has its practical validity only for low-
dimensional systems. More than one century after Maxwell,
scientists working on prediction problems rediscovered his
warning: “same antecedents never again concur, and nothing
ever happens twice,” whenever the system’s dimension is
moderately high.

D. Remarks on the case of unknown phase space

So far, we have assumed that the vector x determining the
state of the system is known and can be measured with arbi-
trary precision. The real situation is less simple: Usually, we
do not know the whole set of variables (not even their num-
ber) that define the state of a system. Moreover, even knowing
them, in experimental measurements, we normally have
access only to very few scalar observables #, depending on
the state of the system: u, = G[x;]. In these cases, there exists
a powerful technique (based on Takens’ delay embedding the-
orem'?) that can reconstruct the phase space, £r0v1ding a rig-
orous foundation for the use of analogs.”® Beyond the
technical (often nontrivial) aspects, the main limit of the
method, namely the exponential increase of M with Dy, still
remains. Moreover, in practical implementations, the presence
of unavoidable measurement errors introduces a further source
of complications. Ways to deal with the general case of
phase-space reconstruction and measurement errors have been
developed, but their discussion is beyond the scope of this pa-
per, so we refer the reader to specialized monographs.”

V. TWO EXAMPLES WHERE THE METHOD
OF ANALOGS WORKS

Chaotic low dimensional attractors (D4 ~ 2—4) may occur
in many physical systems such as electric circuits, lasers,
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fluid motion, etc.; see Ref. 3. Other natural phenomena, such
as weather, are instead characterized by high dimensional
attractors with D4 proportional to the total number of varia-
bles involved, which is huge in the case of the atmosphere.
Thus, the conclusions of Sec. IV are very pessimistic: When
D, is that large, only mediocre analogs (rather large €) can
be found and those are, from the point of view of predictability,
usually not so informative about the future evolution of the
system.15

It is instructive, however, to consider here two exceptions
to this rule. One is a variation on the theme of the Lorenz-96
model (4). We will then briefly discuss tidal predictions,
which represent, to the best of our knowledge, one of the few
instances in which the idea of using the past to predict the
future works and has important practical applications.

A. Systems with multiscale structure

We consider here systems with a multiscale structure,
where the vector state x can be decomposed into a slow com-
ponent X which is also the “largest” one, and a fast compo-
nent y that is “small” with respect to X (i.e., Yyms << Xims)- If
the slow components can be described in terms of an
“effective number” of degrees of freedom much smaller than
those necessary to characterize the whole dynamics, medio-
cre (referred to the whole system) analogs can be used to
forecast at least the slower evolving component.

As an illustration of such a system, we consider a variant
of the model (4) introduced by Lorenz himself*! to discuss
the predictability problem in the atmosphere, where indeed a
multiscale structure is present. The model reads

dx, he &

=Xt (X = Xp2) = X+ F — ;Zyk,n, (17)
Adyin hc

% - bek+l,n(ykfl$n - yk+2‘n) — CVkn + ;Xm (18)

where n=1,....N and k = 1,...,K, with boundary condi-
tions Xy+, = X+, YK+1,0 = Ylnt1s and Yon = YK n—1- Equa-
tion (17) is essentially (4) except for the last term which
couples X to y. The variables y evolve with a similar dynam-
ics but are ¢ times faster and b times smaller in amplitude.
The parameter 4, set to 1, controls the coupling strength.

We repeat the computation to measure the probability of
e-analogs for the dynamics of this system, by assuming that
the whole state of the system x(¢) = (X(¢),y(¢)) is accessi-
ble, and by ignoring which are the slow and fast variables, so
that we must search for the analogs in the sequence of states
xi = (X(t),¥(tx)), with #; = kAt. Figure 4 shows C, y(¢) as
a function of €/en,x for a long sequence, M = 107, for fixed
time scale separation ¢ = 10 and taking the fast component y
to be respectively b =20, 50, and 100 times smaller than the
slow one X. The phase-space dimensionality is 50, with
N =5 slow and K = 10 fast degrees of freedom. The attractor
dimension of the whole system Dy, given by the scaling
C(e) ~ €P+ at very small ¢, is rather large (D4 ~ 10). How-
ever, for €/émax > O(1/b), we see a second power law
C(e) ~ P with D¢ ~ 3 < D4, which defines a sort of
effective dimension at large scale.

Therefore, if we are interested in predicting the slow
evolving component of the system, provided it is described
by a relatively low number of effective degrees of freedom,
as here, we can exploit the mediocre analogs (i.e., the
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Fig. 4. (Color online) C; a1 (€) Vs €/€mayx for the model of Egs. (17) and (18),
computed for three scale separations b (as labeled), holding the other param-
eters fixed at h=1, c=10, F=10, N=35, and K = 10. The gray straight line
has slope ~3.1 while the dashed lines all have the same slope ~ 9.8.
Expression (6) has been computed with » = 10° and M = 10’.

e-analogs with €/emax > O(1/b)). Moreover, with reference
to Eq. (2), it is reasonable to expect that the redlctlon error
related to mediocre analogs grows as ~ee*97, where A (e)
can be much smaller than the Lyapunov exponent A1 (indeed,
as shown in Ref. 31, A(€) ~ 4;/c). This implies that slow
variables can be predicted over a longer term than the whole
state of the system, as already realized by Lorenz.! In gen-
eral multiscale systems, increasing € amounts to performing
a coarse-graining on the system description, which implies
the “elimination” of the fastest degrees of freedom, associ-
ated to the smallest scales. Consequently, coarse-graining
reduces the number of effective degrees of freedom
(D5 (€) < D) and the error growth rate (4(€) < 4y).

The previous example is somehow the simplest multiscale
system, i.e., C(e) vs € shows only two logarithmic slopes,
Deff and D4. More generally one can have a logarithmic
slope D(e) with a series of plateaus: D(e) ~ DS for ¢
€ [eo, 1], D(e) = DSt > DT for € € [e), &), and so on
(€0 > €1 > €...). The interested reader may reproduce such
a behavior by computing the correlation integral of the
discrete-time system discussed in Ref. 32.

B. Tidal prediction from past history

Tidal prediction is a problem of obvious importance for
navigation. The appropriate governing equations were estab-
lished long ago by Laplace. It is necessary to study the water
level, with suitable boundary conditions, under the gravita-
tional forcing of the Moon, the Sun, and the Earth.>® Due to
the practical difficulties in the treatment of boundary condi-
tions (only partially known and hard to solve numerically),
even with powerful computers the fundamental equations
cannot be directly used for tide forecasting.

However, and remarkably, already in the first half of the
19th century, there existed efficient empirical methods to
compile numerical tables of tldes in any location where a re-
cord of past tides was known.** As recognized by Laplace, a
great simplification comes from the periodicity of the forcing
(related to the motions of celestial bodies), which naturally
suggests treating tides in terms of Fourier series, whose fre-
quencies are known from celestial mechanics. Lord Kelvin
and George Darwin (Charles’ son) showed that water levels
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can be well predicted by a limited number of harmonics (say
10 or 20), determining the Fourier coefficients from the past
time data at the location of interest. To make the numerical
computations automatic, minimizing the possibility of error,
Kelvin and Darwin built a tide-predicting machine: a special-
purpose mechanical computer made of gears and pulleys.
Tide-predicting machines were in use until half century ago,
when they were replaced by digital computers to compute the
Fourier series.”

Since tides are chaotic, it is natural to wonder why their
prediction from past records is a relatively easy task. The
reason is the low number of effective degrees of freedom
involved. In a detailed description of tides, small-scale phe-
nomena are also involved, with very short characteristic
times, e.g., micro-turbulence; therefore the “true” D, is
surely very large, together with 4;. Hence, the success of
tidal prediction is mainly a consequence of the multiscale
character of the system, which has a small D*f (and also a
small /(e)) on the interesting not-too-small scales, in a way
similar to the multiscale model of Sec, V A. Indeed, quite
recently, investigations®® of tidal time series by using the
standard method of nonlinear time series analysis (such as
embedding; see Sec. IV D) found effective attractor dimen-
sions quite low (between 3 and 4) with effective Lyapunov
exponents of the order of 5 days~'. That explains a posteri-
ori the success of the empirical method. Thanks to the low
Deft analogs can be found. Moreover, to forecast tides a few
hours in advance, the relatively low value of the Lyapunov
exponent makes the predictability time long enough for prac-
tical purposes. Of course, quantitative details (the precise
values of D" and of /(e)) depend on the locations,?” but for
the method to work, the very important aspect is the limited
value of the effective attractor dimension.

VI. CONCLUSIONS

It is a common belief that chaos is the main limiting factor
to predictability in deterministic systems. This is correct as
long as the evolution laws of the system under consideration
are known. However, if the information on the system evolu-
tion is based only on observational data, the bottleneck lies
in Poincaré recurrences which, in turn, depend on the num-
ber of effective degrees of freedom involved. Indeed, even in
the most optimistic conditions, if the state vector of the sys-
tem were known with arbitrary precision, the amount of data
necessary to make the meaningful predictions would grow
exponentially with the effective number of degrees of free-
dom, independently of the presence of chaos. However,
when, as for tidal predictions, the number of degrees of free-
dom associated with the scales of interest is relatively small,
the future can be successfully predicted from past history.

We stress that the necessity of an exponentially large (with
D,) amount of data constitutes a genuine intrinsic difficulty of
every analysis based on time series without any guess on the
underlying dynamics. Such a difficulty is not a peculiarity of
the method of analogs but is inherent to all methods based on
the occurrence frequency of sequences of states to estimate the
average of observables. In other words, the problem arises
whenever one needs to collect enough recurrences. This obsta-
cle may be partially overcome by suitable information-
theoretic techniques (see, e.g., Ref. 38) allowing for optimized
reconstructions of the dynamics, whose dimensionality, how-
ever, increases with the required accuracy. These conclusions
are further supported by a recent work by Cubitt and
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coworkers,” showing that the reconstruction of dynamical

equations from data is a computationally NP-hard problem,
because the needed observation time scales exponentially with
the number of degrees of freedom.

In general, the best strategy for meaningful prediction is
that envisaged by Richardson, as a clever compromise
between modeling and data analysis. In this regard, we
would like to conclude by mentioning that, in the era of in-
formation technology, the enormous capacity of data storage,
acquisition, and elaboration may encourage some people to
believe that meaningful predictions can be extracted merely
from data. For example, recently Wired Magazine provoca-
tively titled an article “The end of theory: The data deluge
makes the scientific method obsolete,”40 asserting that nowa-
days, with the availability of massive data, the traditional
way science progresses by hypothesizing, modeling, and
testing is becoming obsolete. In this respect, we believe that,
while it is undeniable that the enormous amount of data
opens new opportunities, the role of modeling cannot be dis-
counted. When the number of effective degrees of freedom
underlying a dynamical process is even moderately large,
predictions based solely on observational data soon become
problematic, as in the case of weather forecasting.
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