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Abstract

We investigate the origin of diffusion in non-chaotic systems. As an example, we consider 1D map models whose slope is
everywhere 1 (therefore the Lyapunov exponent is zero) but with random quenched discontinuities and quasi-periodic forcing.
The models are constructed as non-chaotic approximations of chaotic maps showing deterministic diffusion, and represent
one-dimensional versions of a Lorentz gas with polygonal obstacles (e.g., the Ehrenfest wind-tree model). In particular, a
simple construction shows that these maps define non-chaotic billiards in space–time. The models exhibit, in a wide range
of the parameters, the same diffusive behavior of the corresponding chaotic versions. We present evidence of two sufficient
ingredients for diffusive behavior in one-dimensional, non-chaotic systems: (i) a finite size, algebraic instability mechanism;
(ii) a mechanism that suppresses periodic orbits.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The presence of randomness in many natural pro-
cesses is traditionally ascribed to the lack of perfect
control on observations and experiments. Then, usu-
ally, “disorder” and “irregular behaviors” are consid-
ered only as unavoidable factors which, in phenomena
modellizations, can be described effectively through
external sources (random numbers in computer sim-
ulations, noise in stochastic equations etc.). However
randomness may also have another origin associated
to local instabilities of the deterministic microscopic
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dynamics of a system, i.e. microscopic chaos (MC).
For instance, macroscopic diffusion of a particle in a
fluid can be interpreted as a consequence of chaos on
microscopic scales generated by collisions of the par-
ticle with the surrounding others.

The possibility of describing the Brownian behav-
ior in terms of deterministic motion has stimulated
a large amount of work in the field of deterministic
diffusion to study purely deterministic systems ex-
hibiting asymptotically a linear growth of the mean
square displacement[1–3]. The deterministic inter-
pretation of transport phenomena establishes a close
connection between transport and chaos theory, and,
at least in principle, macroscopic properties such as
transport coefficients (viscosity, thermal and electrical
conductivity, diffusion etc.) could be directly com-
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puted through indicators of chaos[4–6] or by applying
the standard techniques of chaos theory such as pe-
riodic orbit expansion[7–10]. However, considering
randomness and transport in general as signatures of
MC raises subtle and fundamental issues in statistical
physics that have to be carefully discussed and inves-
tigated. First, there is the main problem of conceiving
and realizing experiments able to prove, beyond any
doubt, the existence of MC in real systems. An ex-
periment in this direction was attempted in Ref.[11]
but the conclusions were object of criticism by many
authors, as we discuss later. Besides, for real systems,
the definition of MC appears to be ambiguous. In-
deed, real systems involve a large number of degrees
of freedom and their model description entails taking
the thermodynamic limit but, in this limit, the concept
of Lyapunov exponent becomes metric dependent so
not well established[12]. Moreover, the large number
of degrees of freedom poses severe limitations also in
the applicability of standard techniques to distinguish
between chaotic and stochastic signals[13–15] when
data are extracted from real experiments. In fact, the
noise-chaos distinction requires a extremely fine res-
olution in the observations that is impossible to reach
when one deals with systems with large dimensionality
[16–18].

References[11,19] summarized an ingenious ex-
periment devised to infer the presence of chaos on
microscopic scales. In the experiment the position of
a Brownian particle in a fluid was recorded at reg-
ular time intervals. The time series were processed
by using the same techniques developed for detecting
chaos from data analysis[14,15]. Authors measured
a positive lower bound for the Kolmogorov–Sinai en-
tropy, claiming that this was an experimental evidence
for the presence of microscopic chaos. However in
the papers[16,17] it was argued that a similar re-
sult holds for a non-chaotic system too, hence the ex-
periment cannot provide a conclusive evidence either
for the existence of microscopic chaos or for the rel-
evance of chaotic behavior in diffusion phenomena.
Such papers show that, through the analysis performed
in Refs.[11,19], there is no chance to observe differ-
ences in the diffusive behavior between a genuine de-
terministic chaotic system as the 2D Lorentz gas with

circular obstacles[6] and its non-chaotic variant: the
wind-tree Ehrenfest model. The Ehrenfest model con-
sists of free moving independent particles (wind) that
scatter against square obstacles (trees) randomly dis-
tributed in the plane but with fixed orientation. Due to
collisions, particles undergo diffusion, however their
motion cannot be chaotic because a reflection by the
flat planes of obstacles does not produce exponential
trajectory separation; the divergence is at most alge-
braic leading to zero Lyapunov exponent. Such con-
siderations can be extended to square obstacles with
random orientations and to every polygonal scatter-
ers, so there is a whole class of models where dif-
fusion occurs in the absence of chaotic motion. A
difference between the 2D chaotic and non-chaotic
Lorentz gas relies on the presence of periodic orbits
[17].

The question that naturally arises “What is the
microscopic origin of the diffusive behavior?” re-
mains still open. In this paper, focusing on this prob-
lem, we extend the analysis of Dettman and Cohen
showing that standard diffusion may also occur in
one-dimensional models where every chaotic effect is
surely absent. These systems, being one-dimensional,
can be much easily studied than wind-tree models
without spoiling the essence of the problem. Accurate
results are obtained with relatively small computa-
tional efforts, and the interpretation of the results is
clearer since we are able to better control and quan-
tify the effects of the local instabilities. We shall see
that, in such models, the relevant ingredients to obtain
diffusion in the absence of deterministic chaos is the
combined action of a “finite size instability”, quenched
disorder and a quasi-periodic perturbation. Where by
“finite size instability” we mean that infinitesimal
perturbations are stable, while perturbations of finite
size can grow algebraically. The interplay between
these three features guarantees the system to be still
diffusive as it would be chaotic. This outcome is an-
other striking effect of finite size instabilities which
make the behaviors of certain non-chaotic system
similar, to some extent, to those generated by gen-
uine chaotic systems[20–23]. In Ref. [24] the reader
can find a study of an interesting system with weak
mixing properties and zero Lyapunov exponent, i.e.
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an intermediate case between integrability and strong
mixing.

The paper is organized as follows. InSection 2,
we first recall the general features of 1D models
showing deterministic diffusion. Then we present
two non-chaotic, one-dimensional models that exhibit
deterministic diffusion when properly perturbed. In
Section 3, we characterize numerically the diffusion
properties of the models and their dependence on
the external perturbation.Section 4shows how these
models can be viewed as non-chaotic space–time
billiards, and discusses in more detail the role of pe-
riodic orbits.Section 5is devoted to conclusions and
remarks.

2. Non-chaotic models for deterministic
diffusion

Motivated by the problem of deterministic diffusion
in non-chaotic Lorentz systems (i.e. with polygonal
obstacles) we introduce models that, somehow, repre-
sent their one-dimensional analog. We begin consid-
ering one of the simplest chaotic model that generates
deterministic diffusion: a 1D discrete-time dynamical
system on the real axis

xt+1 = [xt ] + F(xt − [xt ]), (1)

wherext is the variable performing the diffusion (po-
sition of a point-like particle) and [· · · ] denotes the in-
teger part.F(u) is a map defined on the interval [0,1]
that fulfills the following properties:

(i) |F ′(u)| > 1, so the system has a positive Lya-
punov exponent.

(ii) F(u)must be larger than 1 and smaller than 0 for
some values ofu, so there exists a non-vanishing
probability to escape from each unit cell (a unit
cell of real axis is every intervalC
 ≡ [
, 
+ 1],
with 
 ∈ Z).

(iii) Fr(u) = 1 − Fl(1 − u), whereFl andFr define
the map inu ∈ [0,1/2[ andu ∈ [1/2,1], respec-
tively. This antisymmetry condition with respect
to u = 1/2 is introduced to prevent the presence
of a net drift.

The map,ut+1 = F(ut ) (mod 1) is assumed to be
also ergodic. One simple choice ofF is

F(u) =
{

2(1 + a)u, if u ∈ [0,1/2[,

2(1 + a)(u− 1)+ 1, if u ∈ [1/2,1],

(2)

wherea > 0 is the parameter controlling the insta-
bility. This model has been so widely studied, both
analytically and numerically[3,25,26] that it can be
considered as a reference model for deterministic
diffusion. The deterministic chaos which governs the
evolution inside each unit cell is responsible of the ir-
regular jumping between cells and the overall dynam-
ics appears diffusive, in the sense that asymptotically
the variance ofxt scales linearly with time. Following
the literature on deterministic diffusion we consider
systems with no net drift (i.e.〈xt 〉/t → 0 for t → ∞).
In this paper we will see that there is no need to in-
voke chaos to induce diffusive behavior in 1D maps,
as already shown in[17] in the context of 2D billiards.

The construction of the models begins by dividing
the first half of each unit cellC
 intoN micro-intervals
[
+ ξn−1, 
+ ξn[, n = 1, . . . , N , with ξ0 = 0< ξ1 <

ξ2 < · · · < ξN−1 < ξN = 1/2. In each micro-interval
the maps are defined by prescribing a linear function
F∆ with unit slope. The map in the second half of the
unit cell is determined by the antisymmetry condition
(iii).

In the first model{ξk}N−1
k=1 is a uniformly distributed

random sequence between [0,1/2], so the size of the
micro-intervals israndom and the function is defined
as

F∆(u) = u− ξn + F(ξn), if u ∈ [ξn−1, ξn[, (3)

whereF(ξn) is the chaotic map function inEq. (2)
evaluated atξn.

In the second model, the size of the micro-intervals
is uniform, i.e. |ξn− ξn−1| = 1/N , but the “height” of
the function israndom. That is,

F∆(u) = u− ξ̃n + λn, if u ∈ [ξn−1, ξn[, (4)

whereξ̃ = (ξn−1 + ξn)/2, and the height at the mean
point, λn, is a random variable distributed uniformly
in the interval [−δ,1 + δ], with δ ≥ 0. Figs. 1 and 2
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Fig. 1. Sketch of the random staircase-map in the unitary cell.
The parametera defining the macroscopic slope is set to 0.23.
Half domain [0,1/2] is divided intoN = 12 micro-intervals of
random size. The map on [1/2,1] is obtained by applying the
antisymmetric transformation with respect to the center of the cell
(1/2,1/2).

show examples of these two models. Let us note that
the random variablesξn andλn are quenched variables,
i.e. in a given realization of a model they depend on
the cellC
 (so one should properly writeξ (
)n andλ(
)n )
but they do not depend on time.

As Fig. 1 illustrates in model(3) each cell is par-
titioned in the same numberN of randomly chosen
micro-intervals of mean size∆ = 1/N and in each of

Fig. 2. Sketch of model(4) in the unit cell. In this case the half
domain [0,1/2] is divided intoN = 12 uniform micro-intervals.
The map on [1/2,1] is obtained by applying the antisymmetric
transformation with respect to the center of the cell(1/2,1/2).
In each micro-intervals the map is defined by prescribing a linear
function with unit slope and random height, withδ = 0.2 (see
text).

them the slope of the map (microscopic slope) is one.
For ∆ → 0 (equivalentlyN → ∞) we recover the
chaotic system(1) but the limit F∆ → F has to be
carefully interpreted. This kind of modification of the
original chaotic system is somehow equivalent to re-
placing circular by polygonal obstacles in the Lorentz
system[17], since the steps with unitary slope are the
analogues of the flat boundaries of the obstacles. The
discontinuities ofF∆ produce a dispersion of trajec-
tories in a way similar to that of a vertex of poly-
gons that splits a narrow beam of particles hitting on
it. However, at variance with the 2D wind-tree model,
both randomness and forcing are needed to attain a
full diffusive behavior. Note that, thanks to the lo-
cal preservation of the antisymmetry with respect to
the cell center, no net drift is expected and also the
Sinai–Golosov[27–29] effect is absent. Also model
(4) is non-chaotic and the randomness is introduced in
the function but not in the partition of the unit cells.

Since F∆ has slope 1 almost everywhere, the
chaoticity condition (i) is no more satisfied in these
models. However, these models can exhibit diffusion
provided condition (i) is replaced by the following
two requirements:

(i-a) presence of quenched disorder;
(i-b) presence of a quasi-periodic external perturba-

tion.

In models(3) and (4), requirement (i-a) is satis-
fied by the randomness in the partition of the micro-
intervals, and the randomness in the linear function. To
fulfill requirement (i-b) we introduce a time-dependent
perturbation intoEq. (1)

xt+1 = [xt ] + F∆(x
t − [xt ])+ ε cos(αt), (5)

where ε tunes the strength of the external forcing,
α defines its frequency and the index∆ indicates a
specific quenched disorder realization. We underline
again that the linear piecewise mapF∆ explicitly
depends on the cellsC
 due to the disorder, which
varies from cell to cell. Even though by construction
the system is not unstable in the Lyapunov sense,
it exhibits standard diffusion. In particular, numer-
ical simulations show a linear growth of the mean
square displacement. It is important to note that, for
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model (3) a uniform partition of cell domains plus
the quasi-periodic perturbation is not sufficient to
produce diffusive dynamics. Even in the presence of
quenched randomness (i.e. random partitions or ran-
dom heights) alone, the system spontaneously settles
onto periodic or quasi-periodic trajectories and does
not diffuse. The periodic and quasi-periodic behavior
is broken down, only when a time-dependent pertur-
bation is explicitly superimposed onto the quenched
randomness. Hence, we can say that, in our models,
the time plays somehow the role of the missing spatial
dimension with respect to the 2D models of Ref.[17].
We will explore this idea in more detail inSection 5.

3. Diffusion without chaos, numerical results

In this section, we characterize the diffusion prop-
erties of model(3), while in the next, we discuss dif-
fusion on model(4).

The diffusion coefficient:

D = lim
t→∞

1

2t
〈(xt − x0)2〉, (6)

has been numerically computed from the slope of the
linear asymptotic behavior of the mean square dis-
placement. The average has been performed over a
large number of trajectories starting from random ini-
tial conditions uniformly distributed in cell [0,1] and
the results are shown inFig. 3 for three different per-
turbation amplitudesε. In all performed simulations
we present in this section we setα = 1; the influence

Fig. 3. Time behavior of〈(xt )2〉 for three different perturbation
amplitudes:ε, a = 0.23 andN = 100 micro-intervals per cell.

of α on diffusive behavior is discussed in the follow-
ing section.

We see that diffusion is absent forε small enough,
thus, a transition between a diffusive to non-diffusive
regime is expected upon decreasingε. When the limit
in expression(6) exists, coefficientD can be expressed
in terms of the velocity correlation function as in the
Green–Kubo formula[6,25]

D = 1

2
〈(v0)2〉 +

∞∑
k=1

〈v0vk〉, (7)

wherexi+1 − xi = vi can be formally regarded as
a discrete-time velocity. The simplest approximation
for D amounts to assuming that velocity correlations
decay so fast that only the first term of the above
series can be retained. In the pure chaotic system(1),
this condition is often verified, and with the further
assumption of uniform distribution for the quantity
xt − [xt ], one obtains the approximated expression

D(a) = a

2(1 + a)
, (8)

that works rather well in the parameter region we ex-
plored[25]. In the non-chaotic system(5) this approx-
imation is expected to hold only in the large driving
regime limit, where the stair-wise structure ofF∆ is
hidden by the perturbation effects.

The role of the external forcing on the activation
of the diffusion process in the non-chaotic system has
been studied by looking at the behavior of the dif-
fusion coefficientD upon changing the perturbation
amplitudeε and the “discretization level” defined by
the number of the micro-intervalsN in each cell.

Results ofFig. 4 show thatD is significantly dif-
ferent from zero only for valuesε > εc, for which the
system performs normal diffusion. Below this thresh-
old the values ofD, when non-zero are so small that
we cannot properly speak of diffusion. Whenε in-
creases well aboveεc, D exhibits a saturation toward
the value predicted by formula(8) (horizontal line)
for the chaotic system defined through(1) and (2).
The onset of a diffusive regime as a threshold-like
phenomenon, with respect to the external perturbation
amplitude, is expected. It can be explained by notic-
ing that, due to the staircase nature of the system, the
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Fig. 4. Log–Log plot of the dependence of the diffusion coefficient
D on the external forcing strengthε. Different data relative to a
number of cell micro-intervalsN = 50, 100 and 150 are plotted vs
the natural scaling variableεN to obtain a collapse of the curves.
Horizontal line represents the theoretical result(8) holding for the
chaotic system(1) and (2).

perturbation has to exceed the typical discontinuity of
F∆, to activate the local instability which is the first
step toward the diffusion. Data collapsing inFig. 4
confirms this view, because it is achieved by plotting
D vs the scaling variableεN . This means that, forN
intervals on each cell, the typical discontinuity in the
staircase-map is O(1/N), then theε-threshold isεc ∼
1/N . This behavior is robust and does not depend on
the precise shape of the forcing, as we have verified
by considering other kinds of external perturbations.
However, as will be discussed in the next section, there
is some connection among the diffusive properties of
the system, the periodic orbits, the parameterN , and
the value of the perturbation frequencyα.

The activation of the instability performed by the
perturbation can be studied by considering a well lo-
calized ensemble of initial conditions. We choose a
uniform initial distribution ofN walkers withσ 2

0 =
10−12,10−8, and 10−6 and monitored the distribution
spreading under the dynamics by following the evolu-
tion of its variance:

σ 2(t) = 1

N

N∑
i=1

〈(xti − 〈xti 〉)2〉. (9)

Note that, in contrast with the average inEq. (6)now
the average is over an ensemble of initial conditions,

Fig. 5. Time behavior of the variance (Eq. (9)) for chaotic
and non-chaotic system witha = 0.23. The discretization
level is N = 100 for the latter. Full lines refer to the
non-chaotic model and from below correspond to initial values
σ 2

0 = 10−12,10−8, and 10−6, respectively. For a direct compari-
son, full dots representσ 2(t) in the chaotic case, withσ 2

0 = 10−12,
which clearly exhibits a crossover from the exponential growth at
small times (governed by Lyapunov exponent) to normal diffusion
at large times. Dotted lines indicate the predicted chaotic growth
exp(2λt) and diffusion 2D(a)t (see formula(8).

uniformly distributed on a small size interval. The
spreading of the initial cloud of points is better un-
derstood when we make a comparison between the
chaotic(1) and non-chaotic system(5). In the former,
the instability makes the variance growing exponen-
tially at the rate ln[2(1 + a)] which is its Lyapunov
exponent. This exponential separation lasts until the
typical linear behavior of the diffusion takes place (see
Fig. 5). In the non-chaotic system, instead, the behav-
ior of σ 2(t) strongly depends on its initial valueσ 2

0
and we have to consider two sub-cases, whetherσ0 �
1/N or σ0 � 1/N . Whenσ0 � 1/N , basically one
observes the same behavior of the continuous limit,
i.e. σ 2(t) ∼ σ 2

0 exp(2λt) for timest < t∗ ∼ ln(1/σ0)

andσ 2(t) ∼ t for t > t∗. Instead, ifσ0 � 1/N we can
distinguish three different regimes: (a)σ(t) remains
constant for a certain time span [0, t1]; (b) the instabil-
ity starts being active and theσ grows exponentially
as in the chaotic case,σ(t) ∼ (1/N)exp[λ(t−t1)]; (c)
the system eventually reaches the regime of standard
diffusion whereσ 2 behaves linearly. The crossover
time t1 between the regimes (a) and (b) depends on
the size of the discontinuities ofF∆ and the specific
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realization of the randomness and, of course, it de-
creases when eitherN or σ0 increases. We stress that
the above scenario is due to the presence of finite size
instabilities that in a non-chaotic Lorentz gas would
correspond to the defocusing mechanism of a beam
by the vertices of polygonal obstacles.

The onset of standard diffusive behavior in model
(5) depends on large time features of the determinis-
tic dynamics. Indeed the presence of periodic trajec-
tories, standing or running, have a strong influence on
the diffusion, because the former tend to suppress dif-
fusion while the latter induce a “trivial” ballistic be-
havior. In Ref.[17], it has been conjectured that the
main difference between a fully chaotic deterministic
system and a non-chaotic system exhibiting diffusion,
as a consequence of quenched randomness is in the
different effects the periodic trajectories have on the
systems. An escape rate method[6,10] can be applied
to analyze these effects. This method consists on start-
ing with an ensemble ofW(0) trajectories initially lo-
calized in the regionRL between−L/2 andL/2 and
computing the numberW(t) of them which never left
RL until the timet . For a pure random walk process
one would expect an exponential decay

W(t) ∼ exp(−γ t), (10)

where the rateγ is proportional to the diffusion co-
efficientD through the relationγ ∝ D/L2. In this
sense the method is an alternative way to estimate the
diffusion coefficient from measurement ofγ . How-
ever possible deviations from(10)generally indicate a
non-diffusive behavior related to the presence of peri-
odic orbits. As clearly seen inFig. 6, on all the range
of sizesL we have considered, we do not observe
any substantial deviation from the exponential decay
that can be associated to periodic orbit effects. One
can wonder whether the diffusive behavior could be
merely due to a possible non-zero spatial entropy per
unit length of the quenched randomness. To unravel
the role of static randomness as possible source of en-
tropy and thus diffusion, following Ref.[17], we have
considered a system where the same configuration of
the disorder is repeated everyM cells (i.e. ξ (
)n =
ξ
(
+M)
n ), so the entropy for unit length is surely zero.

This point is crucial, because someone can argue that a

Fig. 6. Exponential decay with time of the fractionW(t)/W0

of walkers that, at timet , never left the region of length
L = 40,60,80, and 100, centered around the origin of the lattice
of cells. Model parameters area = 0.23, ε = 0.1 andN = 100.
The disorder configuration is replicated eachM = 20 cells. The
walker are initially (t = 0) placed inside the cell [0,1].

deterministic infinite system with spatial randomness
can be interpreted as an effective stochastic system,
but this is a “matter of taste”. Anyway, our system
with a spatially periodic randomness is deterministic
from any point of view.

Looking at the diffusion of an ensemble of walkers
we obtain that:

(a) There is weak average driftV , that vanishes ap-
proximately asV ∼ 1/M whenM goes to infinity.

(b) There is still a diffusive behavior, i.e.〈(xt −
Vt)2〉 ∼ 2Dt, with a coefficientD very close to
the value obtained by formula(8).

Let us note that this behavior is obtained by consid-
ering single realizations of the randomness: the value
of the drift changes with the realization, in such a
way that an average on the disorder would give a
null drift. The fact thatV ∼ 1/M can be easily in-
terpreted as a self-averaging property, for largeM.
On the other hand if we write〈(xt )2〉 = (Vt)2 + 2Dt,
we can define a crossover timeτc ∼ DM2, from pure
diffusive to a ballistic regime. WhenM is finite but
large enough the crossover time becomes very large.
Therefore, we can safely conclude that, even with a
vanishing (spatial) entropy density of randomness, at
least for sufficiently largeM, the system is able to
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effectively perform standard diffusion for a very long
time. However, we stress that looking at〈(xt − Vt)2〉
we do not observe any crossover.

4. Space–time billiards

As mentioned previously, in the one-dimensional
maps proposed in this paper, time plays the role of
the second dimension in the two-dimensional bil-
liard models (e.g., Lorentz and Ehrenfest models).
Here we show this explicitly by describing how the
one-dimensional time-dependent maps define billiards
in space–time. For convenience, we carry out the
construction for model(4) where the partition of the
unit cells is uniform. However, the same construction
can be done for model(3).

Let [ξn−1, ξn] be a micro-interval of a given unit
cell. Then, for any initial conditionx0 ∈ [ξn−1, ξn],
the velocity of the particle at timet is

htn = xt+1 − xt = λn + ε cos(αt), (11)

wherehtn is the height (including the time-dependent
perturbation) of the piecewise linear segment defining
the map according toEq. (4). As shown inFig. 7, in a
space–time diagram the “world-line” of this orbit is the

Fig. 7. Construction of space–time billiard from a piece-wise linear
with unit slope map.

Fig. 8. Space–time billiards without time dependence (ε = 0), and
with time dependence (ε �= 0).

straight line joining the points(xt , t) = (xt+1, t + 1)
with slopehtn. Accordingly, as shown inFig. 8, the
space–time can be decomposed into discrete boxes
[ξn−1, ξn] × [t, t + 1], and the world-line of succes-
sive iterates of the map appears as a zig-zag trajectory
joining different boxes. The rule of the billiard is that
a particle entering boxn will leave this box with speed
htn. That is, in going from boxm to box n a particle
suffers a space–time scattering eventδv = ht+1

n −htm,
whereδv = vt+1 − vt is the change in the particle ve-
locity. In the space–time diagram the scattering rule
is represented by drawing at each box a line segment
with slope given byhtn that according to(11) has a
random componentλn, and a time-periodic compo-
nent. According to this, the time-dependent, zero Lya-
punov exponent (slope one) map is equivalent to a
space–time billiard with scattering rulehtn. Note that
these models are simpler than the usual 2D billiards
(e.g., Lorentz gas) because the scattering rule is in-
dependent of the angle of incidence. Although this is
just a reformulation of the same model, the billiard
construction provides useful insights into the problem
and allows the connection with the two-dimensional
billiard problems. When the map is time-independent
(ε = 0) the scattering rule depends only onn (hpn =
h
q
n for any integersp andq) and as shown inFig. 8(a)

the billiard structure is simply a copy of the billiard
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at t = 0. In this case, despite the spatial randomness,
the lack of a time dependence leads to a highly struc-
tured space–time billiard in which periodic orbits are
ubiquitous. As a consequence, in this case there is no
diffusion, a result already mentioned before. On the
other hand, asFig. 8(b) shows, whenε �= 0 the bil-
liard exhibits space–time disorder which leads to the
possibility of diffusive behavior.

As discussed in Ref.[17] for polygonal two-dimen-
sional billiards, periodic orbits play an important role.
The existence of periodic orbits in the space–time bil-
liard is intimately connected with the frequencyα of
the time-periodic perturbation. If{xt } is a periodic or-
bit of periodM (xt+M = xt for any t), the billiard
must beq-periodic, that isht+qn = htn for anyt , where
M = mq andm is a positive integer. According to
Eq. (11)this will be the case provided

α = 2πν, (12)

with ν = p/q. Fig. 9shows two examples of periodic
orbits with ε = 0.2. In panel (a),α = (3/4)2π , and
the period of the billiard is the same as the period of
the orbit,q = M = 4. In panel (b),α = (2/5)2π ,
and the period of the orbit is twice period of the bil-
liard M = 2q = 10. Thus, for rationalν the billiard
shows a periodic structure in time, and periodic or-
bits are likely to exist leading to the suppression of
diffusion. On the other hand, whenν is an irrational

Fig. 9. Periodic orbits in a space–time billiard with rational per-
turbation frequency.

number the billiard structure never repeats exactly in
time and strictly speaking there are no periodic orbits.
Motivated by this, it is possible to relate the degree
of temporal disorder of the billiard to the degree of
irrationality of ν as determined, for example, by the
continued fraction approximation ofν. In this regard,
billiards with irrational frequenciesν which are easily
approximated by rationals are “less disordered” than
billiards with hard to approximate frequencies. To ex-
plore this ideasFig. 10shows the time evolution of the
variance for different values of the perturbation fre-
quency in the same random realization of model(4)
with N = 40 andε = 0.4. For the perturbation fre-
quencies,α = (p/q)2π , we took the continued frac-
tion expansion of the inverse golden mean

ν = 1

2
,

2

3
,

3

5
· · · Fn−1

Fn
· · · →

√
5 − 1

2
= γ−1, (13)

whereF0 = F1 = 1, andFn = Fn−1 + Fn−2. The
choice of the golden mean is motivated by the fact
that this number is the hardest to approximate with
rational. In the model the disorder configuration is re-
peated everyM cells, and for smallM the recurrence
time of an orbit (i.e. the time to return to the same
micro-interval, moduleM) decreases. Since we are in-
terested in the role of periodic orbits, here we consider
the limit caseM = 1. That is, in the simulations re-
ported inFig. 10, the disorder configuration in the unit
interval [0,1] was copied to all the cells [
, 
+1]. As
expected the figure shows the suppression of diffusion
for rational frequencies. However, more interesting is
the fact that there is a tendency for the onset of the sup-
pression of diffusion to increase asν approaches 1/γ .
This is related to the fact that for rationals with lower
denominators the time period of the billiard is small,
and the probability that the recurrence time of an orbit
coincides with a multiple of the period of the billiard
is high. The recurrence time is also related to the value
of N . WhenN is large, the probability for an initial
condition to return to the same micro-interval (mod-
uleM) is small, and periodic orbits are more scarce.
This explains why for large enoughN andM, dif-
fusion might not be suppressed even for rational fre-
quencies with large denominators. This suggests that,
for large enoughN andM, deviations from diffusion
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Fig. 10. Mean square displacement as function of time in model(4) for a sequence of values of the perturbation frequencyα approaching
the inverse golden mean 1/γ . The heights of map are uniformly distributed in [0,1] (δ = 0), see text.

are unlikely to be observed numerically in the case of
rational frequencies with large denominators.

5. Conclusions and remarks

From the above results we can conclude that two
basic ingredients are relevant for diffusion, (1) a finite
size instability mechanism: in the chaotic system this
is given by the Lyapunov instability, in the “stepwise”
system this effect stems from the jumps, (2) a mech-
anism to suppress periodic orbits and therefore to al-
low for a diffusion at large scales. In the presence of
“strong chaos” (i.e. when all the periodic orbits are un-
stable) point (2) is automatically guaranteed, thus the
periodic orbits formalism[6,7,9] can be fully applied
to compute the diffusion coefficient. In non-chaotic
systems, however, like the present one, the mechanism
(2) is the result of a combined effect of quenched ran-
domness and quasi-periodic forcing.

In summary, we have introduced and studied mod-
els exhibiting diffusion in the absence of any source
of chaotic behavior. The models represent the 1D
analogue of the non-chaotic Lorentz gas (i.e. with

polygonal obstacles) discussed by other authors
in connection with the debate around experimen-
tal evidences for a distinction between chaotic and
stochastic diffusion. Our results indicate that when
the chaotic instability condition (positive Lyapunov
exponent) is replaced by the presence of finite size
instability (non-positive Lyapunov exponent) we need
both an external quasi-periodic perturbation and dis-
order for preventing the system falling into either a
periodic/quasi-periodic evolution or a drift dominated
behavior.

We believe that this kind of behavior is rather gen-
eral, in the sense that chaos does not seem to be a
necessary condition for the validity of some statistical
features. This is in agreement with the recent results
of Ref.[23], where the applicability of the generalized
Gallavotti–Cohen fluctuation formula[30] has been
proven for non-chaotic systems too.
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