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n-tree approximation for the largest Lyapunov exponent of a coupled-map lattice
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Then-tree approximation scheme, introduced in the context of random directed polymers, is applied here to
the computation of the maximum Lyapunov exponent in a coupled-map lattice. We discuss both an exact
implementation for small tree depthand a numerical implementation for larger We find that the phase
transition predicted by the mean-field approach shifts towards larger values of the coupling parameter when the
depthn is increased. We conjecture that the transition eventually disapp&4:363-651X97)04310-9

PACS numbds): 05.45+b

I. INTRODUCTION An initial attempt to determine the effect of spatial cou-
pling has been made ifl], where the authors performed a
The development of analytical techniques to determinenean-field analysis, exploiting the analogy with the free-
Lyapunov exponents in extended systems is certainly an imenergy computation in directed polymers growing in random
portant issue in view of the relevant information provided bymedia. There it was found that the spatial coupling induces a
them. One cannot, in general, expect to find exact solutionghift in the value of the MLE from the quenched average
as the problem iS already non'triVial in the case Of IOW'(A:('nm» in the absence of Coup”ng to the annea'ed aver-
dimensional systems. Since most of the results published igge & =In(m)) above a critical coupling value.
the literature about Lyapunov exponents follow from nu- = this paper we apply the so-calledtree approximation

merical simulations, the development of effective perturba’scheme[z,?,] to obtain more refined analytical estimates of

tive” techniques is very welcome as they can also IOroV'dethe MLE and to test the convergence properties for increas-

information about interactions and correlations that are othi—ng depth of the tree. The growing evidence that many fea-
erwise undetectable.

. : : tures of CMLs dynamics are indeed present also in chains of
More numerical results are certainly available for y P

coupled-map latticeCMLSs) since the discreteness of both ?sckzlla'ltors agd ml parga][ d|ffce’(/|e[1t|al eqLE)atmnf Szg%eStS tha;
space and time variables allows simpler and faster simulac¢N'dues developed for S can be extended to suc

tions. The most common coupling scheme for a CML is ~ SyStems. _
The paper is arranged as follows. In Sec. Il we recall the
L= f(yh essential lines of then-tree approximation in directed-
| 171

polymer theory and reformulate the approach in the present
context. Section Ill is devoted to the numerical implementa-
t=ext 4+ (1—2e)x +ext (1) - : it e : -
Yi i-1 [ i+1- tion, while the small coupling limit is investigated in Sec. IV.
_ _ o Finally, in Sec. V we present some remarks about the prob-
The corresponding evolution equation in the tangent space igm of estimating the MLE in a coupled map lattice and
recall the open problems.

= fyDleg 1t (1-20)E+edl ],
from which one can see that even the computation of the Il. METHOD
maximum Lyapunov expone(MLE) in a CML requires the , ) ) .
simultaneous consideration of several issudsspace-time In this section we first recall the-tree approximation in

correlations of the local multipliensit= f' (y!), (ii) sign fluc- ~ the context of directed polymers, with reference td.a&1)-
tuations of the multipliers that induce partial cancellations indimensional structure. The approach is then explicitly formu-

the dynamics of the perturbatiaf), and(iii) correlations in Iat?_d tfor the d_e;erm:rg_tlontog thelll(_ygpunov expcl)nt?_nt.
tangent space induced by the spatial coupling. €t us consider all directed walks In a square fatlice com-

The third issue is definitely the first to be clarified as it posed of the displacements»]+s, wherej=(i.n) repre-

arises already in the presence of positbreorrelated multi- sents a generic S't(.e' Wh'lse{(_1’1)’(0’1).’&1’1)} ésefe,
pliers. It is precisely this problem that we shall address in th k? F'g'. 12 ar|1d atgllbute a random energm)'to eac S'te.'.
present paper, trying to determine the MLE in the randomf € ;tatlstlca problem amounts to computlng the pgrt!tlon
matrix approximation, i.e., assuming that all multipliers are unctionZ, (0) of all L-step walks departing from the origin,
independent, identically distributed, random processes. This

is the standard assumption made in the study of Anderson

!ocallz_atlo_n in disordered systems so that we can say that our 7,(0)= E exg — BE,,), 3)
investigation can be naturally extended to such a case. w
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FIG. 1. Schematic diagram of all paths starting from site 0 and

arriving at sitej in three steps.

where the sum runs over all aths,E,, is the sum of the

energies in the sites visited during the walk, gfds the
inverse temperature.
One can write a recursive relation fgy ,

zL+1<0>=exp[—ﬂe<0>]ES Z.(9), 4)

with the initial conditionZy(0)=1. The free energy per unit

length is nothing but the exponential growth rateZokith L,

F=—Ilim__.(InZ)/LB, where () represents the average

over independent disorder realizations.

The main difficulty preventing an exact solution of the
above problem is the correlation among the partition func-

tions appearing on the right-hand side of E4). Then-tree
approximation scheme starts from iterations of Eq.(4)

(which automatically accounts for all correlations uprto
steps,

Z(S),

zL+n<0>:Sl > ex;{—ﬁEi e(S)

4999

HL+n(X)=<H exp{—e_ﬁxMjZL(J)}>- C)

The above equation can be turned into a closed recursive
relation if theZ, (j) terms are assumed to be uncorrelated
with each other. This is precisely the core of théree ap-
proximation scheme, which yields

1
B

The initial conditionH ,=(exp{—e #}) has a sigmoid shape
interpolating the two fixed point8, (H=0) andP; (H=1)

of Eq. (10). Since P, is unstable, whileP, is stable, the
“front,” where H(x) is sensibly different from either 0 and
1, moves to the right. It can be easily seen that the front
velocity is nothing but the free energy of the polynj2t.

The velocity can be determined by approximating the
forefront asH | (x) ~1—exp(—yx). Substitution of this an-
satz into Eq(10) reveals that the front moves with a velocity
that depends ory,

Hon(0= 11 HL(X— InM; | (10)
j=-n

o )_{Gn(')’)i Y=< Ymin (11)
4 Gn(Ymin)s Y>> Ymin»
where
1 n
= ¥IB
Gn(7) ny'”|j_2n<”'l ) (12
and ymin is the v value whereG,, takes its minimum
dG
n(y) ~0. (13)
dy .

The value ofy is implicitly determined by the initial condi-
tion: By expandingHg(x) for large x, one realizes that
v=B. Therefore, if8<ymin, the free energy coincides with
the annealed average of the weigMs, while differenty

whereS==,,_0i_1Sn. By embodying all paths ending in averages are selected at lower temperatures. This implies the
the same sit¢, the above expression can be formally rewrit- existence of a thermodynamic transition occurring at

ten as

zL+n<0>=; M;Z.(j), (6)

where each multiplier

MJE% exp{—ﬁ}i: e(S)

()

¢~ Ymin-

The analogy between the evolution equati@nin tangent
space and the recursive relati@h) for the partition function
suggests that the whole procedure can be extended to the
computation of the MLE. In this context, the timglays the
role of the polymer lengti. andm} can be considered as a
guenched noise in a two-dimensioriaD) environment. The
growth rate ofZ (i.e., the free energyfinally becomes the
Lyapunov exponent.

The differences with respect to the previous cases are the

is obtained by summing the Boltzmann weights of all pathgPresence of the anisotropy factersand 1-2¢ and the ab-

w; starting at the origin and ending jraftern steps(see Fig.
1).

sence of a temperature. The first one is, in principle, only a
technical variation, which leads, however, to a strong “de-

It is now convenient to introduce the generating functiondeneracy” as we will show in the following. The tempera-

Ho(x)=(exp{—e™#Z.}). 8

By inserting Eq.(6) in the formal expression dfl, . ,, one
obtains

ture instead can be removed by settjpg 1; the role of the
relevant control parameter will be played by the coupling
strengthe parameter. With the above simple indications, we
find that then-tree approximatiom\,, of the Lyapunov ex-
ponent is
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G in)s in<l1
An:‘ n( Ymin) Ymin (14) 069 |

Gn(y=1), vmin=1.

The functionG,(y) has the form
0.65

Gn(y)= %In[ 2 < (E (1—28)kWjgn=kw)
Wi

A ®

Y X
Xl_i[ m,(WJ)) >], (15) o6l

where we recall that the;’s are the directed walks on the

0.57 t 0.005 0.010 0.015 0.020 A

lattice arriving at sitg aftern steps(the depth of the tree . . .
k(w;) is the number of steps not involving a change of po- 0.000 0.005 0.010 0.015 0.020
sition, andm;(w;) is the multiplier in theth time step of the €

pathw; . o

Equation(14) suggests the possible existence of a phase FIG. 2. n-tree approximations of the MLE for=1, . ... ,5(from
transition upon changing: If y,;,=1, the Lyapunov expo- top to bottom compared with the numerical resulashed curve
nent is given by the annealed average of the multipliers. Thdhese and all the other results in the paper have been obtained for a
main difficulty in the implementation of this approach is the dichotomic distribution of the local multipliersn{={1,3}, with
computation ofG,, and its minimization. In the limin—os, equal probabilities _A_\n e_nlargeme_nt of the region around the sup-
the approximation becomes exact: An interesting questiof°S€d Phase transition is shown in the inset.

concerns the convergence to the asymptotic value. Unfortu- L . .
nately, asn increases, the expression®f, quickly becomes nealed average, steadily increases, in agreement with the nu-

so complicated that it is practically impossible to handle themerlcal results that do not give any evidence for the exis-

analytical expression. For this reason, in the next section Wgence of the high-temperature phase.

shall address the question from the numerical point of view. AIth(_)ugh an exact implementation of t_hetr(_ae scheme IS
unfeasible already fan>5, one can consider it as a numeri-

cal algorithm. Indeed, one can imagine to iteratémes a
perturbation initially localized in the origin. The amplitude in
It is true that not only the analytical expression of thethe sitej represents an instance bf; and the average re-
MLE becomes very complicated asincreases, but also an quired in Eq.(15) can be computed by summing over inde-
“exact” numerical implementation is not an easy task. In- pendent realizations of the stochastic process.
deed, the average of disorder implies the computation of sev- Moreover, one can notice thatplays a similar role ta
eral multiple integrals and, even in the simple case of a uniin the standard multifractal analysis; the only difference is
form distribution of multipliers, the presence of a powein  that here, in addition to a locat average, a linear average
Eq. (15) makes the integrals immediately undoable. The onlyover different sites is also required. It is therefore important
case we have found where it is possible to combine an exa&® understand howy,;, behaves for increasing, i.e., to
solution of the integrals with a powerful numerical analysisclarify whether the actual value of the MLE does arise from
is that of a dichotomic distribution. Indeed, a generic mul-a specificy value.
tiple integral overK variables becomes a sum over aff 2 ~ The only drawback of the numerical implementation is
combinations of the variables, each properly weighted acthe need of a sufficient statistics, a constraint that becomes
cording to the probability of the two possible values of theincreasingly important for larger-values since an accurate
multiplier. From Fig. 1, one can see that the numieof  determination oﬂ\/IjV strongly depends on unprobable large
integrals to be performed is already equal to 7rfier3 and  deviations as usual in a multifractal analysis. Notwithstand-
j=—1, which in turn requires summing up 128 different ing this limitation, it has been possible to arrive rat 50,
terms. As a result, even in this simple case, it is not possibléwch beyond the limits for an exact implementation.
to go beyonth=5. The results fore =0.01 (reported in Fig. B confirm that
Since a global rescaling of the multipliers yields a trivial the approximate values of the MLE approach from above the
shift of the MLE, we can assume, without loss of generality,asymptotic valueA ., (denoted by the horizontal line in the
that m;(t)={1,b}. Moreover, for the sake of simplicity and figure). A numerical investigation of the behavior of
in order to maximize the effect of the fluctuatiofwghich are ~ A,— A, versusn suggests that the convergence is presum-
responsible for the deviation of the MLE from the single- ably slower than algebraic. The slow variation/of with n
map casgwe have assumed that 1 ahdhave the same is confirmed by the poor improvement obtained by introduc-

IIl. NUMERICAL RESULTS

probability 1/2. ing the refined estimates

The results fon=1, ... ,5b=3, and smalk values are
reported in Fig. 2, where a slow convergence towards the X _nAn—(n—5)An75 (16)
asymptotic value(numerically determined by iterating a n 5

chain of 1000 mapscan be observed. In the inset of the
same figure, one can also notice that the critcavalue, (see the squares in Fig),3vhere the choice of 5 is simply
above which the Lyapunov exponent corresponds to the ardictated by the spacing of the numerical results. Notice that
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FIG. 3. Results of tha-tree approximation fog = 0.01(bullets FIG. 4. G, vs y for n=20 (dashed ling n=30 (dot-dashed

and refined estimates as from E@6) (squares Triangles and  jing), andn=40 (full line) obtained from the numerical implemen-
diamonds refer to the results of the “naive” approximation de- tation of then-tree approximation witls = 0.05.

scribed at the end of Sec. Il and to the corresponding refinements,

respectively. The horizontal line represents the MLE as determinegdiC boundary conditions. At variance with the scheme un-
with the standard numerical procedure. derstood in Eq(15), all sites are now statistically equivalent,
. . . ... . . sothatwe can estimate the MLE directly from their growth
this procedure is very effective when the main finite-size 540 (o, petter, from the average growth rate, to reduce sta-
effect arises from some rapidly decaying initial deviation, as;gyica| fiyctuations The performance of this empirical ap-
it is the case of the Lyapunov exponent computed with the, oach can be judged from the results reported in Fig. 3,
standa(rjt(jj.qrthonormall_zanor:l procedlﬂn@: f th h where one can see that the convergence is now from below.
In addition to allowing the computation of the MLE, the y;qreqver, while the direct estimates are worse than the cor-
n-tree approximation yields an estimate of the optimal,  yesponding values obtained from thetree scheme, the op-
;/_agje. r?y compelmn? tge results for the various depths, Onf)osite is true for the improved estimates. We can interpret
inds that ymin slowly decreases. We cqnjegture thahin this result as an indication that the actual value of the MLE
eventually converges to 0. The conclusion is suggested by, 5 extended system follows from a delicate balance of
the analogy between EL5) and the behavior of the maxi- geyeral processes. A more effective reduction of finite-size
mal comoving Lyapunov exponemt(v) [S], which is de-  gfects can be presumably accomplished by introducing a
fined as the growth rate in the site-vt of a perturbation | gitferent definition of finite-time finite-space Lyapunov

initially localized in the origin. In a system with left-right exponent. Whether such a definition that applies to generic
symmetry,\.(v) reaches its maximal value for=0, where 1\ 14els exists is not obvious at all.

it coincides with the MLE. Therefore, for large enough, the
dominant contribution t&,(y) is given by the growth rates
around the origin, i.e., by their logarithmic average. Accord- IV. COUPLING SENSITIVITY

ingly, we expect thatyn, will eventually approach 0. One case that is worth investigating with the aid of the
Such a tendency is confirmed for alvalues that we have  _tree approximation is the small-coupling limit. In particu-
considered, even well inside the supposed high-temperatuigy it is interesting to study the scaling behavior of the MLE
phase wheré\,=G,(1). Onesuch example is illustrated in o gecreasing:. This problem already has been considered
Fig. 4, where we reporG,(7) for £=0.05 and different i, Ref.[1], with the help of a mean-field approach. Here we
depthsn. Notice that allG,(y) curves take the same value discuss the improvements arising from the implementation of
for y=1; this is a consequence of the very definition of {he n-tree scheme.
Gn(7): Independently ofn, Gn(1) coincides with the an- | this sectiong will be always so small that even in the
nealed average. For relatively small valuesnofthe mini-  jowest approximation(=1) ymin<1 and the MLE is given
mum of Gy, is attained forymi,>1 and the correct estimate py the low-temperature expression. In the one-tree approxi-
of the Lyapunov exponent is given by the annealed averagenation, the Lyapunov exponent is given by (e)

However, upon increasing, ymi, Steadily decreases until =G1(ymin()), WhereG, follows from Eq.(15) with n=1,
Ymin<1 (in the case illustrated in Fig. 4, this happens for

20<n<30). The conjectured convergence gf,;, to zero 1 1

implies the eventual disappearance of the phase transition. Gi(y)==In(m"+—In{(1-2¢)"+2&"}. a7
Additional light can be shed on thetree approximation Y Y

scheme shed by comparing it with a similar, though entirely . S

heuristic, approach. The structure®f( ) requires iterating ' ©' Smalle, the above expression simplifies to

an initially localized perturbation: It is therefore quite natural

to consider a different initial condition, uniformly spread

1 1
= Yy +— +2¢7).
over 2n sites, and to iterate it fon steps by assuming peri- G1(7) yln(m ) yln(l 2¢7) (18
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Since fore —0 one must recover the value of the uncoupled

case, ymin(¢) must go to zero in such a way that also
g"min(®) 0. Accordingly, one can further expand E4.7),
obtaining

¥

s rz &
Gl(y)=(lnm)+?y+27, (19

whereTl ,=((Inm)®)—(Inm)? is the variance of the local ex-

pansion rate. With some algebra, it is possible to show tha

the value ofy,,;, minimizing G, is given by

Ino

')’min(s):27y (20

whereo=|Ing| diverges fore — 0. On the one hand, formula
(20) confirms the correctness of the ansatg,(¢)—0 and
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thate”=1/o can be really considered a small parameter. On  fig 5 5 [see Eq.(25)] vs & for different values ofn. The
the other hand, we notice that the convergence to zero isy|id lines correspond to=1, . . . ,5(from top to bottor). Squares

extremely slow.
By substituting Eq.(20) into the expression fo6; and
retaining only the leading terms i), we obtain

1
4+ —

Ino
A1(0)2A0+F27 olno’

(21)

where Ag={Inm) is the Lyapunov exponent of the un-
coupled problem, the second term is responsible for the lea

ing correction, and the third smaller contribution is reportedT

for the sake of completeness.
The above result, already derived[it], has been recalled

here because it allows introducing all the key steps that are
necessary to deal with higher-order approximations. In the

following we illustrate the case=2 with some detail and

mention the further adjustments expected for larger depths of

the tree. The complete expression @&y(y) is already rather
complicated fom=2,

1 1
Ga(y)= Z_yln{fl( Y+ 2_7"1{282”1( Y)

+2e7(1-2¢e)"f5(y) +f3()}, (22

where
f1(y)=(m?),
fa(y)=((Mmi+my)7),
fa(y)=((e?my+(1-2¢)’my+£°mg)?),

while m,m;,m,,ms represent the multipliers to be averaged.
With the aid of the same approximations maderier1,
the above expression simplifies to

Y

Go(y)=(] I 23
z(7)=<nm>+77+7, (23

denote the results of the=40 approximation, while bullets corre-
spond to the outcome of direct numerical simulations.

By comparing Eqs(24) and(21), one can see that they differ
only in the last term of the right-hand side, which is smaller
by a factor 2 in the two-tree approximation. The same is true
(apart from the coefficient of the third tejrfor larger values

f n. Accordingly, this analysis seems to indicate that the
VILE grows as Ifing|/Ine, independently of the depth.
hese conclusions are indeed confirmed by the numerical
implementation of tha-tree scheme for several depths. This
can be noticed in Fig. 5, where the behavior of
2nE(An_AO)||n‘9| (25
versus lr is reported. The slow growth &, is consistent
with the expected ling| behavior. However, direct numeri-
cal simulations(full dots in Fig. 5 suggest that the MLE
grows as 1/la, with no doubly logarithmic correction. In our
opinion, the apparent contradiction can be solved by noticing
that the determination of the correct scaling behavior re-
quires, in principle, one to take first the limit—« (to esti-
mate correctly the MLE and then the limite—0. In the
above analysis, we have instead exchanged the two limits.
Since the determination @ ,(y) requires estimating an ex-
ponentially growing(with n) number of contributions, it is
reasonable to conjecture that increasingly smallalues
must be reached before the leading term really overtakes the
others. It is therefore conceivable that, before this asymptotic
regime sets in, a different scaling region appears that be-
comes wider and wider for increasimg The several limits
involved in this proces$we must not forget the role of)
make a rigorous confirmation of this conjecture a rather deli-
cate matter. Here we limit ourselves to recall that in two
coupled 1D and 2D maps a purely Klbehavior has been
proved to aris¢6]. However, we cannot exclude that in the
present case the scalirgregion is so small that it is has not

which in turn gives the expression for the Lyapunov expo-been reached by our numerical simulations; it will be pos-

nent

1

olno’

Ino

sible to give a definite answer only by developing a more
effective perturbative technique.

Finally, let us notice that the naive approach outlined in
Sec. lll falls short of identifying the leading |Ide| depen-
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dence, predicting only linear corrections én We suspect estimated by recalling that in one dimension, the probability
that this failure is due to the lack of an infinite time limit in distribution of h is exactly the same as for the linear

the corresponding definition of the Lyapunov exponent. Edwards-Wilkinson model, obtained by neglecting the non-
linearity [8]. The latter is the distribution of the standard

V. CONCLUSIONS AND PERSPECTIVES Brownian motion, i.e., the product of independent Gaussians
for the spatial derivativeb, [8]. Since the variance of each

_ In this paper we have implemented thdree approxima-  Gaussian is inversely proportional to the coefficient of the
tion for the computation of the MLE. The results have ré-| aplacian, it is seen that(hz) is independent of. There-
1 X .

vealed a slow convergence towards the asymptotic value. Wf%re, the KPZ equation provides for any coupling strength

believe that more than being an intrinsic limitation of the e same annealed average value, i.e., it even fails to find the
method, this is an indication of the complexity of the prob- |, temperature phase. This result indicates that one must go
lem. This feeling is indeed confirmed by the analogy with thebeyond the KPZ approximation of the tangent dynamics

Kardar—Par|S|_-ZhangKPZ) equation. As _already sh_own N (adding higher-order derivatives and further nonlinear t¢rms
[7],_ the Iogarlthmh=ln§_of the perturbation approximately it ihe o dependence of the MLE is to be recovered.
satisfies the KPZ equation The identification of effective schemes to fasten the con-
_ 2 vergence of finite-size estimates of the MLE remains an open
he=shoxt 2 () ™+ m(t), 26 pro%lem. Possible routes to be explored in the future FEjlre
where the subscripts denote derivatives with respect to eithéepresented by corrections to the KPZ equation or by suitable
time (t) or space X) variables(assumed now to be continu- Mmodifications of then-tree approximation.
ous and 5(t) is a noiselike term corresponding to the loga-
rithm of the local multiplier. Accordingly, the average value
of #» is nothing but the single-map Lyapunov exponent,
while the MLE of the lattice is obtained by adding the aver- We thank the Institute of Scientific Interchange in Torino,
age of the nonlinear term. Such a correction can be easilltaly, where this work was started.
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