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Scaling behavior in a nonlocal and nonlinear diffusion equation
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We present the results of analytical studies of a one-dimensional nonlocal and nonlinear diffusion equation
describing nonequilibrium processes ranging from aggregation phenomena to the cooperation of individuals.
On tuning the initial conditions, a dynamical transition with a universal scaling behavior is observed between
two different asymptotic~in time! solutions. The scaling behavior at the transition is also obtained in a
self-organized manner, independent of the initial conditions, on temporally evolving the diffusion equation
subjected to a mirror symmetry transformation.

PACS number~s!: 05.45.2a, 05.40.2a
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In this Rapid Communication, we present a study co
cerning a dynamical transition in a nonlocal and nonlin
diffusion equation. The equation is essentially one describ
biased diffusion@1# with the magnitude of the bias dete
mined by the instantaneous spatial distribution of the walk
undergoing diffusion. The nonlocal nature of our equation
of interest as a prototype of more complex and intrinsica
nonlocal processes, such as the growth of thin films in
presence of shadowing@2# and the sculpting of the drainag
basin of river networks due to erosional processes@3#. The
model exhibits a dynamical transition between tw
asymptotic states corresponding to the walkers moving
listically in one direction or the other. We study the scali
behavior at the transition for a class of initial conditions, a
find that the mean position of the walkers exhibits no
behavior and scales as the square root of the time. Strikin
the peculiar scaling behavior of the transition is reached
self-organized manner on modifying the equation by me
of a mirror transformation.

Our equation generalizes a simple model@4# for emer-
gence and evolution of cooperative behavior in groups
individuals, such as living beings or agents. This is an
portant topic in game theory, with fundamental applicatio
to social and biological sciences@5#. In a recent paper, Sig
mund and Nowak@4# showed that cooperation can arise ev
when a potential recipient has no chance of encountering
helper and directly return the help; this new mechanism
called ‘‘indirect reciprocity.’’ It relies on the altruistic behav
ior which increases the reputation of the donor in the co
munity and, in turn, individuals with high reputation a
more likely to be helped in the future. The reputation can
mathematically defined as an image-scorex associated with
each player. The image-scorex is known to other member
of the community and indicates both whether an individ
provides help and if she is worthy of being given help. S
mund and Nowak@4# considered a situation in whichx is an
integer number in@2`,`# and a potential donor and a re
cipient of an altruistic act have an interaction in which t
donor helps the recipient provided the recipient’s ima
scorex is positive. Such an altruistic act increases the ima
score of the donor by 1~the selfish act would have decreas
PRE 621063-651X/2000/62~5!/5879~4!/$15.00
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it by 1) and the image score of the recipient is unchang
The time evolution of the fractionPx of players with image
scorex is governed by the equation

Px~ t11!5
Px~ t !

2
1

F~ t !

2
Px21~ t !1

12F~ t !

2
Px11~ t !,

~1!

with F(t)5(x>0Px(t) representing the fraction of player
with a non-negative image score at timet.

If all players start with a non-negative~negative! image
score then they will always cooperate~defect! in the future.
Therefore, from such initial conditions, only two asympto
states emerge corresponding to ‘‘all cooperators’’ or ‘‘
defectors.’’ An interesting and nontrivial situation aris
when the initial distribution of image scores has nonze
weight on both sides of the origin. In fact, there exists
threshold,Fc , for the initial value ofF(t) such that only if
F05F(0) exceedsFc , the system evolves towards tot
cooperation, otherwise it flows towards a state filled w
defectors. The value ofFc clearly depends on the class o
distributions chosen as the initial condition.

In a scheme, in which the players become random walk
in the space of image scores, we propose the basic
tinuum equation forP(x,t), the probability that a walker
occupies the positionx at time t,

]P

]t
52v~ t !

]P

]x
1

1

4

]2P

]x2
, ~2!

where both the nonlinearity as well as the nonlocality a
introduced in the bias velocityv defined by

v~ t !5E
0

`

dx P~x,t !2
1

2
5F~ t !2

1

2
. ~3!

Equation~2! is derived from Eq.~1! to leading order in the
continuum limit of both time and image-score, the latter
terpreted as a spatial coordinate.

On settingv equal to zero~i.e., F51/2) in Eq. ~2!, one
recovers the standard unbiased diffusion equation@1#,
R5879 ©2000 The American Physical Society
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whereas one obtains simple biased diffusion, whenv is a
constant. In our equation,v is a direct measure of the imba
ance between the population of walkers in the right and l
and the drift bias promotes further aggregation. Equation~2!
describes the temporal evolution of the distribution funct
P(x,t) and leads to one of two outcomes in the large ti
limit. Depending on the initial distribution, one ends up
long times with the bias to the right or to the left winning,
that P becomes 1 either atx51` or at x52`. Our focus
is on studying the transition~on varying the initial condi-
tions! between these two limiting states, and we investig
the scaling behavior of the transient regime occurring bef
the system collapses onto the asymptotic states atx56`.

Defining the new variables

w~ t !5E
0

t

dt v~t!, y~ t !5x2w~ t !, ~4!

Eq. ~2! may be cast in the form of a standard diffusion equ
tion,

]P

]t
5

1

4

]2P

]y2
. ~5!

If one considers an initial Gaussian distribution cente
aroundx0 and with variances0, the formal solution of Eq.
~5! is given by

P~x,t !5N expH 2
@x2x02w~ t !#2

t12s0
2 J , ~6!

whereN51/Ap(t12s0
2) is the normalization factor.

With s050, P(x,t) is also the fundamental solution
which will be used to obtain the distribution at timet, start-
ing from more general initial conditionsP0(x), i.e.,

P~x,t !5E
2`

1` dy

Apt
P0~y!expH 2

@x2y2w~ t !#2

t J . ~7!

However, expression~7! is only a formal solution of Eq.~2!
becausew(t) is itself a function ofP(x,t) due to Eq.~3!.
Combining Eqs.~3! and ~4! one obtains a self-consisten
equation for the velocityv5ẇ,

ẇ5 1
2 E

2`

1`

dx P0~x!erfH x1w~ t !

At
J . ~8!

The transition on varying the initial conditions is betwe
two asymptotic~in time! states corresponding to aggregati
on the right or on the left and therefore one expects that
transition point would correspond to a situation with
asymptotic bias@i.e., v(`)50#. In this case, the asymptoti
distribution is perfectly balanced with respect to the orig
there is nothing to choose between left and right and
unbiased behavior ensues. In order to explore the effec
the asymmetry in the initial distribution, letP0(x)5P0

1(x)
1P0

2(x) where ‘‘1 ’’ and ‘‘ 2 ’’ indicate the even and odd
part of P0, respectively. ForP0

2(x)50, symmetry consider-
ations require that Eq.~8! admits only the solutionw(t)
t,

e
t

e
e

-

d

e

;
n
of

50, which implies that the velocity vanishes too. One c
establish as well that, ifw(t)50, then necessarilyP0(x)
must be odd.

On assuming that theP0
2 component is tiny with respec

to the even part, in a transient regimeuw(t)u remains small
for all t less than a crossover timeTr , thus a perturbative
approach may be implemented. To first order inP0

2 , we
have

ẇ15 1
2 E

2`

1`

dx P0
2~x!erf~x/At !

1
w1

Apt
E

2`

1`

dx P0
1~x!exp~2x2/t !. ~9!

The smaller the perturbationP0
2 , the longer is the time in

which the perturbative regime holds. For initial distributio
that are not too delocalized, erf(x/At);2x/Apt and
exp(2x2/t);1, leading to the linearized equation

ẇ15
1

Apt
~a21a1w1!, ~10!

where

a25E
2`

1`

dx P0
2~x!x; a15E

2`

1`

dx P0
1~x!.

a2 defines a measure of the asymmetry inP0, while a1

51 due to the normalization constraint.
This equation can be easily solved and yields

w1~ t !5a2~e2At/p21!. ~11!

One may define a typical lifetime of the transient regime
the time,Tr , during which the linearization approximatio
holds. From Eq.~10!, one finds thatTr scales as

Tr; ln2ua2u. ~12!

The time scale to decide on one of the two different beh
iors only diverges logarithmically as the asymmetry para
eter a2 of the initial conditions vanishes. The system do
not spend much time agonizing over which asymptotic st
to select.

For simple initial distributions the asymmetry parame
a2 turns out to be proportional to or coincides with the qua
tity F02Fc .

For instance, when considering the Gaussian initial c
dition of Eq. ~6!, we see thata2[x0 and it depends onF0
through the relation

F05
1

2
1

1

2
erfS x0

s0A2
D .

The conditionx050 corresponds toF05Fc51/2. When
F0,Fc (F0.Fc) the population of walkers evolves, a
large time, toward the state withF(t)50 @F(t)51#. Near
this point one can expand the error function, obtaininga2

5x0;(F02Fc).



ti

t
a

ien

d

o
of

ni

g

y
f

n-

-
r of

-

es

fu-
t

e

r
eri-
at a

li

be-

RAPID COMMUNICATIONS

PRE 62 R5881SCALING BEHAVIOR IN A NONLOCAL AND . . .
In this Gaussian case, one can easily compare the solu
w(t) of Eq. ~8! ~numerically integrated! with the perturbative
resultw1(t), for different values ofx0. Figure 1 shows tha
w(t) and w1(t) coincide within numerical errors up to
characteristic timeTr which grows withux0u as predicted by
Eq. ~12!

Tr; ln2uF02Fcu. ~13!

The numerical data justifies,a posteriori, the use of pertur-
bative theory to extract the scaling behavior of the trans
lifetime Tr .

From dimensional analysis on Eq.~2! one expects that, in
the transient regime, the typical velocity behaves likev(t)
;1/ATr in agreement with Eq.~10!, while the characteristic
length-scalej is expected to follow the diffusion law an
therefore

j;ATr; zlnuF02Fcuz. ~14!

We have shown that the above logarithmic divergence
Tr and j in the transient regime holds for other families
initial conditions. For example, considering

P0~x!5~12F0!d~x21!1F0d~x11!, ~15!

Fc51/2 is again the bifurcation point~unbiased, zero drift
situation!. The verification of the behavior~12! is shown in
Fig. 2 ~solid circles!.

Equation~8! can be extended to the case of arbitrary i
tial conditionsP0(x) with a fraction, f 0, of the walkers at
1`. Recalling the general solution~7! we have

ẇ5
f 0

2
1

12 f 0

2 E
2`

`

dx P0~x!erfH x1w~ t !

At
J ~16!

and

F05 f 01~12 f 0!E
0

`

dx P0~x!. ~17!

FIG. 1. Gaussian case: temporal behavior ofw1(t) ~dotted-
dashed line! and the numerical solution of Eq.~8! ~solid line! plot-
ted for s52 andx0520.1,21022,21024,21028. Tr is defined
as the time after which the solid and the corresponding dashed
differ in a noticeable manner.
on

t

f

-

Let us consider now an interesting lattice case@Eq. ~1!#,
with initial condition: P0(1`)5F0 and P0(x)5(1
2F0)dx,2z . This is equivalent to introducing an absorbin
boundary atx51` and F05 f 0. The bifurcation value of
F0 increases monotonically to a nonzero valueFc(z) for
positive integerz with Fc(z→`)51/2. The smallest value
of Fc(z) for the discrete Eq.~2! occurs whenz51 ~we
denote this as theS-N distribution! which is the case we
focus on in our numerical simulations.Fc(z51) is found to
be 0.261 970 531 164 . . . , a result that was noted earlier b
Sigmund and Nowak@4#. Figure 2 shows a verification o
Eq. ~12! for z51 ~open and closed triangles!.

At the bifurcation point, the average location of the ra
dom walkers~excluding the number fixed atx51`) be-
haves asymptotically with time as

^x~ t !&;AAt, ~18!

with A a constant depending onf 0. This result can be pre
dicted by an argument based on the asymptotic behavio
the continuum differential equation forw. Let us consider for
instance Eq.~16!, which admits two linear asymptotic solu
tions,w1(t);t/2 aboveFc , andw2(t);( f 021/2)t, below
Fc when f 0,1/2. Both behaviors correspond to regim
away from the bifurcation point. At the transition pointFc ,
however, the nonlinear drift exactly compensates the dif
sion in such a way thatẇ→0 asymptotically. This constrain
applied to Eq.~16! yields for the amplitude of Eq.~18!

erf~A!52 f 0 /~12 f 0!. ~19!

The result~18! then follows on noting that the the averag
position of the walkers is linearly related tow(t). We stress
that this scaling regime is different from Eq.~10! because it
holds strictly only atF05Fc .

The square-root behavior of^x(t)& crosses over to a linea
regime when the bias reaches a sufficient strength. Num
cally, there is indeed a sharp onset of the linear behavior
value of ^x& ~see Fig. 3!, which one may identify withj.

ne

FIG. 2. Divergence of transient timeTr as a function of the
deviation from the transition pointuF02Fcu. Triangles refer to the
S-N initial distribution ~see text!, when F0,Fc ~open! and F0

.Fc ~closed!. The bullets correspond to distribution~15! for Fc

.F0 ~the data have been shifted to fit into the same scale!. The
predicted square logarithmic divergence corresponds to linear
havior in the plot.
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Indeed one can show that Eq.~16! admits as possible
asymptotic solutionsw(t);t andw(t);At. The former re-
sult pertains to the asymptotic behavior outside the transi
regime, whereas the latter may be observed only atF
5Fc . The sublinear behavior of̂x(t)& is strikingly differ-
ent from from the conventional diffusion, in which the rm

FIG. 3. Temporal behavior of the average location of walk
~excluding the fractionF0 placed atx5`) for theS-N initial con-
figuration. The upper~lower! dashed curves refer to a set of initi
conditions withF0.Fc (F0,Fc). The solid line indicates the
best-fit for the envelope of the curves obtained through expres
~18!, with A520.337 and an additive constantx0520.847. The
figure vividly depicts the crossover of^x(t)& to a linear behavior,
which may be used to define the characteristic length-scalej. The
inset showŝx(t)& at larger times and the onset of the linear regim
v.

.

n

displacement grows as the square root of time@6,7#. Here, on
the other hand, the mean position of the walkers scales a
square root of time.

We now turn to study the effects of mirror symmetryx
→2x on the scaling behavior of our model. In Eq.~2! the
transformationx→2x is equivalent to a change in the sig
of the bias velocity.@The discrete Eq.~1! is not completely
invariant under mirror symmetry. In order to make it ful
symmetric, one has to redefine the quantityF(t)5P0/2
1(x.0Px(t). In the continuum limit, this difference doe
not affect the scaling or the eventual asymptotic behavi#
In this situation, the system spontaneously organizes in s
a way that the aggregation of walkers is disfavored. As
consequence, the asymptotic distribution approaches Eq~6!
with a fraction of the walkers at1` and^x(t)& is given by
Eq. ~18! without any tuning of the initial conditions. This i
the situation one would encounter with Eq.~2! when F0
5Fc andF(t) approaches 1/2 asymptotically~i.e., perfectly
balanced distribution!. In this asymptotic regime, the scalin
~18! of ^x(t)& still ought to hold as confirmed by simulation
performed on Eq.~1!.

We have carried out further detailed simulations th
complement our study. The temporal behavior of the b
velocity and the scaling of the characteristic lengthj, along
with the self-organization to the transition state, are all fou
to be in excellent accord with our predictions.

This work was supported by INFN, NASA, and The D
nors of the Petroleum Research Fund administered by
American Chemical Society.
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