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Scaling behavior in a nonlocal and nonlinear diffusion equation
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We present the results of analytical studies of a one-dimensional nonlocal and nonlinear diffusion equation
describing nonequilibrium processes ranging from aggregation phenomena to the cooperation of individuals.
On tuning the initial conditions, a dynamical transition with a universal scaling behavior is observed between
two different asymptotigin time) solutions. The scaling behavior at the transition is also obtained in a
self-organized manner, independent of the initial conditions, on temporally evolving the diffusion equation
subjected to a mirror symmetry transformation.

PACS numbds): 05.45—a, 05.40-a

In this Rapid Communication, we present a study con-t by 1) and the image score of the recipient is unchanged.
cerning a dynamical transition in a nonlocal and nonlinearThe time evolution of the fractioR, of players with image
diffusion equation. The equation is essentially one describingcorex is governed by the equation
biased diffusion[1] with the magnitude of the bias deter-
mined by the instantaneous spatial distribution of the walkers _ Px(t) @) 1-2@)

y the INSta SR Py(t+1) + Px-1(t)+ Py+a(t),
undergoing diffusion. The nonlocal nature of our equation is 2 2 2
of interest as a prototype of more complex and intrinsically (1)
nonlocal processes, such as the growth of thin films in the . . .
presence of shadowir|@] and the sculpting of the drainage W!th qD(t)ZEX?OPX(t.) representing the fraction of players
basin of river networks due to erosional procegSisThe  With @ non-negative image score at time o
model exhibits a dynamical transition between two If all players start with a non-negativ@egative image

asymptotic states corresponding to the walkers moving pafScore then they will allvv.a.ys coopgra(tdaefec) in the future. .

listically in one direction or the other. We study the Sca”ngTherefore, from such |n|t|alicond|t|9ns, only two asxmpt?tlc
behavior at the transition for a class of initial conditions, andStates em”erge gorrespgndlng to “all cooperators™ or all
find that the mean position of the walkers exhibits noveld€feCtors.” An interesting and nontrivial situation arises
behavior and scales as the square root of the time. Strikingly/Nen the initial distribution of image scores has nonzero
the peculiar scaling behavior of the transition is reached in eight on both sides of the origin. In fact, there exists a

self-organized manner on modifying the equation by mean reshold®, for the initial value of®(t) such that only if
of a mirror transformation. ®y=P(0) exceedsd., the system evolves towards total

Our equation generalizes a simple mo@) for emer- cooperation, otherwise it flows towards a state filled with

gence and evolution of cooperative behavior in groups ofl€féctors. The value ob. clearly depends on the class of

individuals, such as living beings or agents. This is an im-distributions chosen as the initial condition.

portant topic in game theory, with fundamental applications !N @ scheme, in which the players become random walkers
to social and biological sciencs]. In a recent paper, Sig- N the space of image scores, we propose the basic con-
mund and Nowak4] showed that cooperation can arise eventinuum equation forP(x,t), the probability that a walker
when a potential recipient has no chance of encountering hi2CCUpies the positior at timet,

helper and directly return the help; this new mechanism is
called “indirect reciprocity.” It relies on the altruistic behav- bl
ior which increases the reputation of the donor in the com- at
munity and, in turn, individuals with high reputation are

more likely to be helped in the future. The reputation can bevhere both the nonlinearity as well as the nonlocality are
mathematically defined as an image-scrrassociated with introduced in the bias velocity defined by

each player. The image-scoxds known to other members
of the community and indicates both whether an individual
provides help and if she is worthy of being given help. Sig-
mund and Nowak4] considered a situation in whichis an
integer number if —,] and a potential donor and a re- Equation(2) is derived from Eq(1) to leading order in the
cipient of an altruistic act have an interaction in which thecontinuum limit of both time and image-score, the latter in-
donor helps the recipient provided the recipient’s imageterpreted as a spatial coordinate.

scorex is positive. Such an altruistic act increases the image On settingv equal to zerdi.e., ®=1/2) in Eq.(2), one
score of the donor by {the selfish act would have decreasedrecovers the standard unbiased diffusion equatidf

P t(9F>+1(92P )
= v()& ey (2

o 1 1
v(t)=J’0 dx P(x,t)—§=d>(t)—§. (3)
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whereas one obtains simple biased diffusion, wheis a =0, which implies that the velocity vanishes too. One can
constant. In our equatiom, is a direct measure of the imbal- establish as well that, iv(t)=0, then necessarilyy(x)
ance between the population of walkers in the right and leftmust be odd.

and the drift bias promotes further aggregation. Equa®n On assuming that thB, component is tiny with respect
describes the temporal evolution of the distribution functionto the even part, in a transient regire(t)| remains small
P(x,t) and leads to one of two outcomes in the large timefor all t less than a crossover tinlg, thus a perturbative

limit. Depending on the initial distribution, one ends up atapproach may be implemented. To first orderAg , we
long times with the bias to the right or to the left winning, so have

that P becomes 1 either at= + or atx=—o. Our focus

is on studying the transitioon varying the initial condi- . + B

_ o : : wi=1| dx Py(x)erf(x/\t)
tions) between these two limiting states, and we investigate 172 0

the scaling behavior of the transient regime occurring before

the system collapses onto the asymptotic states=at .

Wy [t
Defining the new variables +\/_it dx Pg(x)exp(—x2/t). (9)
T —©
t
w(t)= jodr v(7), y(t)=x—w(t), (4) The smaller the perturbatid®, , the longer is the time in

which the perturbative regime holds. For initial distributions
that are not too delocalized, exf(\t)~2x/\«t and

Eq. (2) may be cast in the form of a standard diffusion e a—
a- (2) may I st au exp(—x?t)~1, leading to the linearized equation

tion,
P 1 5°P o
o7 Wi =—=(a_-+a,wy), (10
If one considers an initial Gaussian distribution centeredVNere
aroundxg and with variancerg, the formal solution of Eq. o o
(5) is given by a,=J7 dx Py (x)x; a+=J7 dx P§(x).
[X—Xo—W(t)] , .
PX,t)=Nexp ——————, (6) a_ defines a measure of the asymmetryRp, while a,
t+20y =1 due to the normalization constraint.

This equation can be easily solved and yields
whereN= l/\/ﬂ'(t+20'02) is the normalization factor.

With oy=0, P(x,t) is also the fundamental solution, wy(t)=a_(e?Um—1). (12)
which will be used to obtain the distribution at timestart-
ing from more general initial conditionBy(x), i.e., One may define a typical lifetime of the transient regime as
the time, T,, during which the linearization approximation
[x—y—w(t)]? holds. From Eq(10), one finds thall, scales as
P(x, t)—f F’o(y)e p[ f] (7
T,~In%|a_|. (12)

However, expressiof) is only a formal solution of Eq(2)
becausen(t) is itself a function ofP(x,t) due to Eq.(3).
Combining Eqgs.(3) and (4) one obtains a self-consistent

The time scale to decide on one of the two different behav-
iors only diverges logarithmically as the asymmetry param-
) etera_ of the initial conditions vanishes. The system does
equation for the velocity =w, not spend much time agonizing over which asymptotic state

to select.
+oo X+ w(t i initial distributi
:%J dx Po(x)erf[ \/{( )]. For simple initial distributions the asymmetry parameter
tity ®o— P...

(8) a_ turns out to be proportional to or coincides with the quan-

The transition on varying the initial conditions is between For instance, when considering the Gaussian initial con-
two asymptotid(in time) states corresponding to aggregationdition of Eq. (6), we see that_=x, and it depends o,
on the right or on the left and therefore one expects that thérough the relation
transition point would correspond to a situation with no
asymptotic biagi.e., v(«)=0]. In this case, the asymptotic 1 1 Xo
distribution is perfectly balanced with respect to the origin; Dy= erf( \/_>

. . . g0

there is nothing to choose between left and right and an
unbiased behavior ensues. In order to explore the effect ofhe conditionx,=0 corresponds teby=®.=1/2. When
the asymmetry in the initial d|str|but|on I®(X) =Py (X)  dy<d, (P,>D,) the population of walkers evolves, at
+Pg (x) where “+” and * —" indicate the even and odd |arge time, toward the state with(t)=0 [®(t)=1]. Near

part of Py, respectively. FoP, (x) =0, symmetry consider- this point one can expand the error function, obtaining
ations require that Eq8) admits only the solutiorw(t) =X~ (Po— D).
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FIG. 1. Gaussian case: temporal behaviorvgf(t) (dotted- ) ) ) )
dashed lingand the numerical solution of EB) (solid line) plot- FIG. 2. Divergence of transient tim€, as a function of the
ted for c=2 andx,=—0.1-102,—10 4 —10°8. T, is defined  deviation from the transition poirtby— @ |. Triangles refer to the

as the time after which the solid and the corresponding dashed ling’N initial distribution (see text, when ®o<®. (open and @,
differ in a noticeable manner. >, (closed. The bullets correspond to distributiq5) for @,
>®, (the data have been shifted to fit into the same $cdlee

In this Gaussian case, one can easily compare the soluticﬂ{eqia_ed square logarithmic divergence corresponds to linear be-
w(t) of Eq. (8) (numerically integratexwith the perturbative ~avior in the plot.
resultw,(t), for different values ok,. Figure 1 shows that
w(t) and w(t) coincide within numerical errors up to a
characteristic timd&, which grows with|x,| as predicted by
Eq. (12

Let us consider now an interesting lattice cégeq. (1)],
with initial condition: Pgy(+%)=®, and Py(x)=(1
—®g) ¢ —,. This is equivalent to introducing an absorbing
boundary atx=+» and ®,=f,. The bifurcation value of

d, increases monotonically to a nonzero valbg(z) for
T, ~In2|do— . 13 o Incre : y €
' |Po= el (13 positive integerz with @ (z—«)=1/2. The smallest value

The numerical data justifies, posteriorj the use of pertur- of ®(z) for the discrete Eq(2) occurs whenz=1 (we

bative theory to extract the scaling behavior of the transienflenote this as th&N distribution which is the case we
lifetime T, . focus on in our numerical simulation®..(z=1) is found to

From dimensional analysis on E@) one expects that, in b? 0'26; 97%531 .., aresult thathwas noteq _ear!ier by
the transient regime, the typical velocity behaves kie) ~ Si9mund and Nowaka]. Figure 2 shows a verification of

~ 1T, in agreement with Eq(10), while the characteristic =d-(12) for z=1 (open and closed triangles

: e At the bifurcation point, the average location of the ran-
length-scal ted to follow the diff I d . )
tﬁggr;efofgaef is expected to follow the diffusion law an dom walkers(excluding the number fixed at=+) be-

haves asymptotically with time as

E~\T,~|In|do—D|. (14 (x())~ ANk, (19)

We have shown that the above logarithmic divergence ofyith A a constant depending diy. This result can be pre-
T, and{ in the transient regime holds for other families of gicted by an argument based on the asymptotic behavior of

initial conditions. For example, considering the continuum differential equation far. Let us consider for
instance Eq(16), which admits two linear asymptotic solu-
Po(X)=(1=Pg) 8(x— 1)+ Pod(x+1), (19 tions,w. (t)~t/2 aboved., andw_(t)~(f,— 1/2)t, below

. _ . . . _ @ when fy<1/2. Both behaviors correspond to regimes
P.=1/2 is again the bifurcation poirunbiased, zero drift away from the bifurcation point. At the transition poit,,
S|tuat|0r). The verification of the behaVlC(ﬂ.Z) is shown in however, the nonlinear drift exactly Compensates the diffu-

Fig. 2 (solid circles. sion in such a way that— 0 asymptotically. This constraint

Equation(8) can be extended to the case of arbitrary ini- - ; :
tial conditionsPy(x) with a fraction, f,, of the walkers at applied to Eq(16) yields for the amplitude of Eq18)

+o0. Recalling the general solutidi?) we have erf(A)=—"fo/(1—fy). (19
fo 1—fo (= X+w(t) The result(18) then follows on noting that the the average
w=5+— f dx Py(x)erf N (16)  position of the walkers is linearly related ve(t). We stress
o that this scaling regime is different from E@{.0) because it
holds strictly only atby=®...
The square-root behavior %(t)) crosses over to a linear
regime when the bias reaches a sufficient strength. Numeri-
‘bo=fo+(1—fo)fxdx Po(X). (17) cally, there is indeed a sharp onset of the linear behavior at a
0 value of (x) (see Fig. 3, which one may identify with¢.

and
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0r T 2007 , , displacement grows as the square root of tj\&. Here, on
Pl the other hand, the mean position of the walkers scales as the
/ ] square root of time.
We now turn to study the effects of mirror symmetty
— —x on the scaling behavior of our model. In E®) the
transformatiorx— — x is equivalent to a change in the sign
of the bias velocity[The discrete Eq(1) is not completely
invariant under mirror symmetry. In order to make it fully
symmetric, one has to redefine the quantipft)=Py/2
+2,-0Py(t). In the continuum limit, this difference does
i SRR NN not affect the scaling or the eventual asymptotic behalvior.
—10 bt e In this situation, the system spontaneously organizes in such
0 100 20 30 0 S0 o a way that the aggregation of walkers is disfavored. As a
consequence, the asymptotic distribution approachesetq.
FIG. 3. Temporal behavior of the average location of walkerswith a fraction of the walkers at . and(x(t)) is given by
(excluding the fraction, placed atx=%) for the SN initial con-  Eq. (18) without any tuning of the initial conditions. This is
figuration. The uppeflower) dashed curves refer to a set of initial the situation one would encounter with E@®) when &,
conditions with®,>d_ (®,<d.). The solid line indicates the =&, and®(t) approaches 1/2 asymptoticalliye., perfectly
best-fit for the envelope of the curves obtained through expressiobalanced distribution In this asymptotic regime, the scaling
(18), with A= —0.337 and an additive constaxg=—0.847. The  (18) of (x(t)) still ought to hold as confirmed by simulations
figure vividly depicts the crossover ¢k(t)) to a linear behavior, performed on Eq(1).
which may be used to define the characteristic length-s&alhe We have carried out further detailed simulations that
inset showgx(t)) at larger times and the onset of the linear regime.complement our study. The temporal behavior of the bias
velocity and the scaling of the characteristic lengthalong
with the self-organization to the transition state, are all found
to be in excellent accord with our predictions.

<x(t)>

Indeed one can show that E@l6) admits as possible
asymptotic solutionsv(t)~t andw(t)~ yt. The former re-
sult pertains to the asymptotic behavior outside the transition

regime, whereas the latter may be observed onlydat This work was supported by INFN, NASA, and The Do-
=®,. The sublinear behavior df(t)) is strikingly differ-  nors of the Petroleum Research Fund administered by the
ent from from the conventional diffusion, in which the rms American Chemical Society.
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