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How a local active force modifies the structural
properties of polymers

Laura Natali,a Lorenzo Caprini *b and Fabio Cecconi c

We study the dynamics of a polymer, described as a variant of a Rouse chain, driven by an active

terminal monomer (head). The local active force induces a transition from a globule-like to an elongated

state, as revealed by the study of the end-to-end distance, the variance of which is analytically predicted

under suitable approximations. The change in the relaxation times of the Rouse-modes produced by the

local self-propulsion is consistent with the transition from globule to elongated conformations.

Moreover, also the bond–bond spatial correlation for the chain head are affected by the self-propulsion

and a gradient of over-stretched bonds along the chain is observed. We compare our numerical results

both with the phenomenological stiff-polymer theory and several analytical predictions in the Rouse-

chain approximation.

1 Introduction

Active matter includes a large class of physical and biological
entities ranging from microscopic to macroscopic length scales.
Active systems usually convert fuel energy from the environment
into directed motion using chemical reactions1 or propelling in a
fluid through flagella, cilia or more complex mechanisms.2

Although numerous studies have focused on spherical rigid or
rod-like microswimmers, many active systems, appears in poly-
meric and filamentous structures which often undergo stretching
and deformations. In particular, the cell cytoskeleton contains
many active filaments, like actins and microtubules.3,4 Recently,
microtubules have been studied in vitro and transported along a
glass substrate by ATP fueled motor proteins.5

Out of the biological realm, it is even possible to realize
synthetic active colloidal polymers,6 such as chains of colloids
uniformly coated with catalytic particles7 becoming active when
immersed in a solution of H2O2. The ‘‘activation’’ of Janus
particles can be even controlled by external fields, and, in
particular, the spontaneous formation of chains of particles
has been experimentally observed upon tuning the frequencies
of an AC electric field.8–10

The study of active or activated flexible and semi-flexible
polymers has received much attention in the last years, for both
biological interest and possible applications towards the design
of new materials with peculiar properties. Several authors,
via computer simulations, addressed not only the ‘‘activation’’

of polymers11–14 but also studied the behavior of polymer chains
immersed into an active bath.15–20 Sometimes, the activation is
modeled by imposing a self-propulsion force tangential to the
filament,21–25 while the common approach for the effect of an
active bath amounts to considering the monomer under indepen-
dent active forces.12,13,17,26 In any case, the interplay between active
forces and extended flexible structures gives rise to a rich phenom-
enology also including collective behaviors.27–33 For instance, a
freely moving active filament takes on peculiar dynamical con-
formations performing: rotational, straight translational,34,35

snake-like22,23 and even helical motion.36 In addition, in the limit
of large active forces, both semi-flexible and flexible polymers
swell12,13 while clamped filaments exhibit beating and rotational
motion under tangential forces.24,37,38 In some cases, compacti-
fication and shrinkage of structures occur at very strong active
forces,39,40 and at high densities swirls and spirals are induced by
the increase of the active force.32 Some authors implemented the
activity, generated by the release of energy due to ATP hydrolysis,
as a temperature increase observing phase-separations in binary
mixture of passive–active polymers.41,42

The studies mentioned above deal with global activated polymers.
However, there are biological examples in which the self-propulsion
is generated only in local regions of the active particle. For instance,
some elongated bacteria move thanks to cilia attached to specific
regions of their body, analogously, spermatozoa swim due to a single
flagellum protruding from the body. Other examples come from the
action of RNA polymerase on DNA or kinesin on microtubules,
which are generally described as molecular motors on polymer
substrates.43 Thus, for long and flexible systems, we need to go
beyond the collective activation or center of mass description,
because the interplay between deformability and self-propulsion
induces a richer phenomenology.
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Some authors considered polymers with a catalytic terminal
(head),44,45 where the chemical reactions occurring at the head
produce a local self-propulsion which increases the effective
diffusivity of the chain.

Motivated by these works, we study the activation of the
terminal monomer of a polymer, modeling the self-propulsion
in the framework of non-equilibrium stochastic processes. In
particular, we adopt a well-established model, known as Active
Ornstein–Uhlenbeck (AOUP) model46–51 to describe the self-
propulsion at a coarse-grained level, neglecting the microscopic
details of the active force. We describe the behavior of the
polymer in the absence of any confinement or external
potential to determine how a local active force affects the chain
conformations.

This paper is organized as follows. In Section 2, we introduce
the model describing the polymer in the presence of a local
active force, acting only on the last monomer, while, in Section 3,
we present numerical results. We focus, on the one hand, on the
study of the end-to-end distance and, on the other hand, on the
structural microscopic properties of the polymer, unveiling
the effect of the local active force. Finally, we summarize the results
and discuss some future perspectives in the conclusive section.

2 A free polymer with an active head

To model a polymeric structure, such as proteins or biological
filaments, we employ a variant of the Rouse-chain,52 assuming
that each monomer has the same structure and composition.
Each monomer is only connected to the nearest neighbors by
harmonic springs of strength k and rest length s 4 0. Since we
neglect the steric interactions among non-consecutive beads
the polymer is fully described by the simple potential:

U r1; . . . ; rNð Þ ¼ k

2

XN�1
n¼1

rnþ1 � rnj j � sð Þ2 (1)

and its dynamics is ruled by N coupled Langevin equations for
the positions and velocities of each monomer, rn, and vn,
respectively:

:xn = vn (2a)

_vn ¼ �
vn

t0
� @U
@rn
þ

ffiffiffiffiffiffiffiffi
2Dt

p

t0
xn þ dn;Nfa; (2b)

where t0 is the inertial relaxation time of each monomer. xn is a
white noise vector whose uncorrelated components have zero
averages and unit variances, while Dt is the diffusion coefficient
due to the solvent. The last term, dn,Nfa, represents the active
force, due, for instance, to ATP-hydrolysis or other chemical
reactions occurring at a catalytic site. Since we assume that the
reaction takes place on one terminal only, we denote such a
monomer as ‘‘catalytic head’’.

To describe the fluctuations of the active force, we employ
the Ornstein–Uhlenbeck process (AOUP model)

t_fa ¼ �fa þ
ffiffiffiffiffiffiffiffiffi
2Da

p
Z; (3)

being Z a white noise vector with zero averages and unit
variances. The two-time activity–activity correlation of fa decays
exponentially, with a correlation time, t, that roughly deter-
mines the time-window after which the active force completely
resets its value. We remark that the AOUP model constitutes a
simplification of the Active Brownian Particle model (ABP)53–56

which is known to explain the well-known phenomenology of
spherical self-propelled particles.47,57–60 The connection between
AOUP and ABP has been shown by several authors.61–63 In

eqn (3), the parameter
ffiffiffiffiffiffiffiffiffiffiffi
Da=t

p
has a particular relevance

because it sets the strength of the self-propulsion. In other
terms, a single particle performs a persistent motion in the
direction of fa for a time t o t, while for t 4 t a diffusive-like
behavior is recovered. When t is the smallest time scale in the
system, the active force can be simply recast into a Brownian
motion fa �

ffiffiffiffiffiffiffiffiffi
2Da

p
Z, where fa is the faster degree of freedom

whose time-derivative could be set to zero. We expect that in
such a case the head does not display any persistence and the
role of the active force leads just to the increase of the effective
diffusion. In addition, in order to enhance the effect of the self-
propulsion, we focus on a regime where the velocity of the
monomers relaxes faster than fa, meaning that the inertial time
t0 is smaller than t.

The dynamics of the polymer center of mass, rc ¼
P
n

rn=N

and vc ¼
P
n

vn=N, could be simply obtained by summing up

eqn (2) for all the monomers:

:rc = vc (4a)

_vc ¼ �
vc

t0
þ fa

N
þ

ffiffiffiffiffiffiffiffi
2Dt

p

t0
ffiffiffiffi
N
p x; (4b)

where x is a new white noise vector whose uncorrelated com-
ponents have unit variance and zero average. The center of mass
behaves as a free active particle, where the amplitude of the
effective bath scales as 1

� ffiffiffiffi
N
p

and the active force is decreased
by a factor N. The linearity of eqn (4a) and (4b) allows us to find
the joint probability distribution function of the velocity and the
active force of the center of mass:

p vc; fað Þ / G fað Þ exp �
beff
2

vc � Cfað Þ2
� �

: (5)

where G(fa) is a Gaussian function centered in zero and the
coefficients beff, C both depend on t, t0, Da and Dt, see Appendix C.
This analysis shows that, given an fa, vc assumes a typical average
value hvcip fa, thus in a time window smaller than t, the polymer
is driven by the active force whose value is extracted by a Gaussian
distribution.

The possibility of the active force to drag the polymer can be
easily estimated by comparing the rescaled variance of fa with
the variance of the thermal bath, in eqn (4b). The active force
on the head to be effective needs to overwhelm the thermal
agitation of the passive polymer, thus

Da

tN2
� Dt

Nt02
: (6)
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This condition follows from the exact formula of the mean
square displacement, MSD(t), of the polymer center of mass
derived in Appendix C,

MSDðtÞ ¼ 6
Dt

N
þDat02

N2

� �
tþ 6

Dat02

N2
t e�t=t � 1
� 	

: (7)

The linear term dominates in the long-time limit, therefore the
active force is able to affect the diffusive dynamics of the center
of mass only if Da/N C Dt/t0

2. Instead, for small times, the
active force produces a ballistic contribution in the MSD(t) as it
can be deduced by expanding the exponential in powers of t/t
up to the second order. Even for small times, this term is
relevant with respect to the diffusive one if the condition
Da/t/N2

c Dt/N/t0
2 holds. Throughout the rest of the paper,

we assume that both conditions are satisfied: the first increasing
the center of mass diffusivity and the second leading to a ballistic
time regime.

3 Effect of a local active force on a free
polymer

Understanding the polymer dynamics beyond eqn (4a) and (4b)
requires numerical integration of eqn (2). To simulate the
dynamics, we employ a stochastic Leapfrog algorithm64 and
focus on some typical observables able to unveil the interplay
between the active force and the polymer deformations. Setting
a large value of Da/t to satisfy the condition (6), we explore a
range of small and large t compared to the relaxation times of
the Rouse modes of the passive chain52

tp ¼
1

4kt0 sin
2 pp
2N

� 	: (8)

In Fig. 1, we plot three snapshots of the conformations of a
polymer with N = 30 monomers at different values of t. Each
panel corresponds to Da/t = 102, at which the polymer center of
mass is transported by the active force. In panel (a), when t is small,

the polymer behaves as a passive system, being fa �
ffiffiffiffiffiffiffiffiffi
2Da

p
Z. In this

case, indeed, the active force only superimposes an additional
Brownian motion to the dynamics of the head. Therefore, the
polymer swells a bit, however maintaining the well-known coiled
structure of a passive Rouse-chain polymer.52

Increasing t, the head starts to pull some of the monomers
which protrude from the coil along the direction pointed by the
active force, in such a way that an elongated portion of the
chain coexists with the remaining coiled portion. In this case,
the head has enough time to carry the center of mass and the
polymer displays a persistence dynamics in one direction which
is slowed down by the ‘‘passive’’ globule.

A further increase of t, panel (c), leads the polymer to be
fully elongated in a rod-like conformation which is carried by
the active head. The dynamics of the polymer reveals a time-
persistence along the random direction pointed by the active
force. When the head changes direction (roughly after time Bt)
the rest of the monomers follows the head, turning with a
typical time delay depending on the distance from the head.

To characterize the ‘‘global’’ effect of a local active force on
the polymer dynamics, we will monitor the distribution of the
end-to-end distance focusing on its moments. Then, we will
also explore the ‘‘local’’ effect by quantifying the degree of the
stretching produced along the chain by the active head. Finally,
we will focus on the velocity of the head, revealing a bump in its
variance with the increase of the persistence time.

3.1 Macroscopic properties of the head-active polymer

To quantify the degree of elongation taken by the polymer, we
consider the end-to-end distance

R = |rN � r1|, (9)

and its distribution

P(R) = hd(R � |rN � r1|)i,

at different values of t and for fixed Da/t = 102. The end-to-end
distance, like the gyration radius, is an important observable in
polymer physics, providing an estimate of polymer sizes. Its
distribution is experimentally accessible by FRET spectroscopy,65,66

moreover, the end-to-end distance is involved in the mechanism of
polymer looping and cyclization.67

Panel (a) of Fig. 2 plots P(R) from numerical simulations at
fixed Da/t = 102 but different values of t in the interval (0, 2� 102),
corresponding to the range of small persistence. For comparison,
we show also the passive case (Da = 0) that, in the limit N c 1, is
simply described by the well known Gaussian-like shape

PðRÞ / R2 exp �3
2

R2

R2h i

� �
; (10)

where hR2i is the second moment of the distribution. Expression
(10) follows as a simple consequence of the central limit theorem.
In the low-activity regime, the distribution remains Gaussian-like
but with a variance increasing with t, indicating that, in this
regime, the active force is only able to induce a renormalization
of the diffusion coefficient. Panel (b) of Fig. 2 reports the P(R) in
the large persistence regime with t ranging within (5 � 102, 104).

Fig. 1 Conformations for three different values of t = 5� 10�1, 5� 10, 5�
104, from the left to the right. Each monomer is represented as a sphere
centered in ri and the grey links among beads are just a guide for the eyes.
The head of the polymer is the red monomer, whose active force is drawn
as a red vector, while the passive monomers are colored blue. The
remaining parameters are Da/t = 102, s = 5, k = 10, T = 1 and t0 = 0.1.
Simulations are obtained using a time-step B10�4 and each configuration
is evolved, at least, for a final time B102t.
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Starting from t E 5 � 102 strong non-Gaussian effects appear in
the shape of P(R) and eqn (10) is no longer a reasonable
approximation. Specifically, the peak shifts towards larger values
of R, the longest tail occurs at small R and accordingly the
skewness of the distribution changes sign. A further increase of
t narrows the distribution and makes it more peaked around
R = (N � 1)s, corresponding to the end-to-end distance of the
entirely elongated chain. Interestingly, the main peak for t 4 103

occurs for R 4 (N � 1)s indicating that the chain is not only
elongated but also over-stretched. In this stretched regime, P(R)
weakly depends on t and its increase produces very small changes
in the distribution until a delta-like shape is achieved at very high t.

The persistence of the active force confers to the chain a
certain spatial persistence starting from the active head. This
suggests fitting the numerical distributions via the formula

PðRÞ / 4pR2

L2 �R2
exp � 9L3

‘p L2 �R2ð Þ


 �
; (11)

that was derived for stiff polymers.68 Where cp is the effective
persistence length of the chain and L is the maximal contour
length that includes possible overstretching. The rather good
fitting in all the regimes shows that the local active force
induces the polymer to behave as if it had a certain degree of
stiffness. In the limit of small t, eqn (11) recovers the Gaussian-
like behavior that is consistent with the globular shape of the
polymer (Fig. 2(a)), while reproduces the shape of P(R) at large
t (Fig. 2(b)).

We use the observable hR2i as an indicator of the crossover
from the compact to the elongated structures, visualized in
Fig. 1. In particular, Fig. 3 shows the monotonic increase of
hR2i as a function of t. The phenomenological theory of stiff
polymers, eqn (11), predicts for hR2i the expression:68

hR2ilp
= 2cpL + 2cp

2(e�L/cp � 1). (12)

As expected, eqn (12) fairly agrees with data, as Fig. 3 shows,
where cp is obtained from the numerical fit of relation (11).

To attempt a theoretical prediction on hR2i, going beyond a
phenomenological theory, we make the approximation sC 0 in
the potential (1) transforming the polymer into a Rouse-
chain.52 The expression of hR2i obtained for the Rouse chain
using the normal mode decomposition is (see Appendix C),

R2
� 


¼ 3Dt

t0k
ðN � 1Þ

þ 6Dat02

N2

XN�1
ðp;qÞ¼1

cðpÞcðqÞGðpÞGðqÞ
gp þ gq

1

1þ gpta

" #
;

(13)

where c(p) and G(p) are dimensionless coefficients depending
only on the index p and on N:

GðpÞ ¼ �4 sin pp
2

� 	
sin

pp
2N
ðN � 1Þ

h i
(14)

Fig. 2 Probability distribution of the end-to-end distance, P(R), for different values of t. Points are obtained via numerical simulations while continuous
lines from eqn (11). Data are separated into two panels for presentation reasons: panel (a) refers to small values of t while panel (b) refers to large values
of t. The remaining parameters are Da/t = 102, s = 5, k = 10, Dt = 0.1 and t0 = 0.1. Simulations are obtained using a time-step B10�4 and each
configuration is evolved, at least, for a final time B102t.

Fig. 3 hR2i for different values of t (red pentagons) compared with
eqn (13) (black line) and the prediction, eqn (12) (light blue diamonds).
The remaining parameters are Da/t = 102, s = 5, k = 10, Dt = 0.1 and
t0 = 0.1. Simulations are obtained using a time-step B10�4 and each
configuration is evolved, at least, for a final time B102t.
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cðpÞ ¼ cos
pp
2N
ð2N � 1Þ

h i
; (15)

and gp = 1/tp (eqn (8)) has the dimension of an inverse time.
Eqn (13) contains two contributions, the first one, entirely
due to the thermal agitation of the solvent, is constant and
controlled by the ratio Dt/kt0. The second one is due to the
active force and is controlled by the ratio Dat0/k/(1 + ktt0). It is
straightforward to see that in the limit t - 0 the term Dat0 p tt0

plays the role of an effective temperature, in agreement with our
previous discussion. Moreover, for t = 0, this term vanishes thus the
well-known equilibrium result is recovered. In particular, being the
ratio Da/t fixed, the small-t limit implies that the active force gives
only a contribution of order O(t) to hR2i. We remark that the active
term in eqn (13) shows a non-trivial dependence on each mode. In
Fig. 3, we compare the hR2i from simulations (dots) computed at
different values of t with the prediction (13) rescaled by the factor s2

since the Rouse chain turns to be more compact than the model (1).
Despite the approximation, the prediction fairly agrees with data,
both for small and large values of t.

3.2 How the active force affects the relaxation times of the
modes

The Rouse-chain approximation allows us to study analytically
the influence of the local active force on the chain relaxation.
Indeed, the time correlation of the generic Rouse-mode,
Cpp(t,s), can be computed explicitly and reads

Cppðt; sÞ ¼ fTh
e�gpjt�sj

2gp
þ 3Dat02

N2
c2ðpÞ

gpte
�jt�sj=t � e�gp jt�sj

gp gpt
� �2�1h i : (16)

The derivation of eqn (16) is reported in Appendix C. The first
term represents the passive contribution of thermal agitation in
the absence of any active source of motion. In that case, the
p-mode relaxation time is simply 1/gp.

The active force gives rise to the second term in eqn (16),
which is the sum of two exponentials. The second exponential
survives even in the equilibrium limit t - 0 but trivially
determines just a renormalization of the auto-correlation
amplitude without affecting the correlation time. Instead, in
the limit of t c 1/gp, very interesting consequences emerge as
the relaxation is dominated by

Cppðt; sÞ �
3t02Dac

2ðpÞ
N2

te�jt�sj=t

gpt
� �2�1h i; (17)

therefore, all the modes decay in the same manner.
In elongated conformations t c 1/gp for every p, meaning

that t is the only relevant time in the polymer dynamics.
Instead, in the full or partial coiled conformations, we have
1/gp 4 t, at least for the lowest p, and the active force is able to
affect only the dynamics of the faster modes.

The analysis of these sections suggests that even a local
active force on the terminal monomer is able to determine
important consequences on the dynamics of the entire polymer,
making possible drastic global rearrangements of its conformations.

In the next section, we investigate the role of the active force
at a single monomer level, finding even strong local distortions
in the inter-monomer distances.

3.3 Local effects of the self-propulsion on polymer structures

To understand how the deformation induced by the active force
propagates along the chain, for different values of t, we plot in
Fig. 4(a) the average distance between consecutive monomers,
dk = h|rk+1 � rk|i, as a function of the monomer site k.

In the regime of small active-force persistence, we find
dk C s, in analogy with passive polymers in solution; the bond
fluctuations are weakly affected by the active force. When t
increases, the average distance between consecutive monomers
is no longer constant because there is a transmission of the
active-force from the head backward to the tail. Therefore,
the bonds near the head, N, result stretched, dk Z s, and the
stretching degree decays to s for the farther monomers.

A further increase of t is responsible for a larger stretching
of the chain till to reach an almost linear profile

dk C s + bk

for t C 5 � 103. Large active forces on the head overstretch the
polymer and induce a bond deformation which increases
approaching the head. In particular, we note that the average
distance between the head and the first passive monomer can
be estimated by dmax ¼ sþ

ffiffiffiffiffiffiffiffiffi
3Da

p
t
�
k, thus b C dmax/(N � 1).

Such a distance can be roughly obtained by replacing fa with its
standard deviation, an assumption which is meaningful as long
as t is large.

In conclusion, we can say that the forcing effects of fa propagates
backward from the monomer N along the chain establishing a
gradient of bond deformation. We remark that this picture is
qualitatively reproduced even in the Rouse-chain approximation,
as explicitly shown in Appendix C.

Fig. 4 Average distance between neighboring monomers, rk/s = h|rk+1� rk|i/s,
as a function of the monomer index k for different values of t, as shown in the
legend. The dot black line represents the theoretical prediction for the distance
between the head and N � 1-th monomer, i.e. dmax/s. The remaining
parameters are Da/t = 102, s = 5, k = 10, Dt = 0.1 and t0 = 0.1. Simulations
are obtained using a time-step B10�4 and each configuration is evolved,
at least, for a final time B102t.
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It is interesting to observe that the conformation of Fig. 1(b)
suggests a phenomenology similar to the trumpet formation in
polymers pulled by a constant force69,70 which is characterized
by a scaling law in the tension propagation. The analogy with
the trumpet regime is however difficult to establish on a
quantitative basis since the moderate size of our chains does
not allow this scaling to be verified.

We, also study the bond–bond spatial correlation along the
contour length of the chain, referred to the terminal monomer
N, defined as

CN(k) = h(rN � rN�1)�(rk+1 � rk)i. (18)

where the average is computed over stationary chain conformations.
Fig. 5(a) plots C(k) vs. k, for different values of t, revealing a
monotonic increase moving towards the terminal N. The growth
of C(k) is roughly exponential, with a typical length increasing
with t. To confirm the qualitative scenario of stiff polymers, we
compare the value of lp extracted from the fit of P(R) (eqn (11))
with the correlation length associated to CN(k) and extracted
from the best exponential fit of each curve in Fig. 5(a). The plot
in Fig. 5(b) shows the consistency of the two observables, both
growing monotonically with t. This agreement verifies the
applicability of the stiff-polymers approach to our active chain.

In Fig. 6(a), we study the modulus of the velocity probability
distribution of the head, p(|vN|), showing two typical shapes for
a small and a large value of t. In both cases, the distributions
are Gaussian-like:

P vNj jð Þ / vNj j2exp �
vNj j2

2 vN2h i

 !
; (19)

with different variances, hvN
2i, whose dependence on t is reported

in Fig. 6(b). The Gaussianity is obvious in the regime of small t, in
particular when the active force can be roughly considered as an
additional Brownian noise. In this regime, a first growth of
t determines an enlargement of the variance of the distribution,
as shown in panel (b). In particular, the variances are given by

hvN
2i = 3Dt/t0 + 3Dat0. We note also that keeping fixed Da/t implies

that Da p t, which explains the initial linear growth with t in
Fig. 6(b), until a maximal value is reached. The expression 3Dt/t0 +
3Dat0 fails for t Z O(1) where the persistence of the motion
prevents the interpretation of the active force as another source of
diffusion. In this regime, the variance of the distribution
decreases again, until a plateau hvN

2i = 3Dt/t0 is reached meaning
that the active force does not affect the distribution of |vN|. This
value of the plateau T is not so surprising since t - N

corresponds to the limit of a constant driving force, which is
not expected to influence the fluctuations of |vN|.

Such a study has revealed a non-monotonous behavior in the
variance of the distribution (roughly its effective temperature)
which is in agreement with the recent observation:71 even for an
interacting system of spherical particles, the increase of t induces
at first the warming of the system, while a further increase leads
to its cooling.

4 Conclusions

In this work, we studied the transport of a Rouse-like polymer
driven by a local active force localized in the terminal monomer

Fig. 5 Panel (a): Bond–bond spatial correlation along the contour length of the polymer, CN(k) (defined by eqn (18)), as a function of k, shown for
different values of t. Panel (b): lp as a function of t, calculated from the fit (blue triangles) of the stiff polymer (eqn (11)) and the best exponential fit of CN(k),
as explained in the text. The remaining parameters are Da/t = 102, s = 5, k = 10, Dt = 0.1 and t0 = 0.1. Simulations are obtained using a time-step B10�4

and each configuration is evolved, at least, for a final time B102t.

Fig. 6 Panel (a): Probability distribution of the head velocity, P(|vN|) for
two different values of t at Da/t = 102. Panel (b): Variance of the distribution
of vN as a function of t for two different values of Da/t, as shown in the
legend. The remaining parameters are s = 5, k = 10, Dt = 0.1 and t0 = 0.1.
Simulations are obtained using a time-step B10�4 and each configuration
is evolved, at least, for a final time B102t.
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(active head) to characterize the effects of the activity on the
chain conformations. Upon increasing the persistence of the
self-propulsion, we observed a transition from globular to open
conformations, revealing the presence of a regime where random-
coil and partially elongated conformations coexist. This transition
is well-described by the statistics of the end-to-end distance, in
particular its distribution and the second moment, whose numer-
ical analysis is supported by theoretical predictions provided by
stiff-polymer theory and Rouse-chain calculations. Moreover, we
investigated the local properties of the chain focusing both on
bond stretching and bond–bond correlation along the contour
length, in fair agreement with the phenomenological stiff-polymer
theory. We find that the active force acting on the head induces a
gradient of bond deformation in regimes of strong persistence,
deeply affecting the ‘‘microscopic’’ structural properties of the
chain. Our results could be easily generalized to the case of more
complex potentials going beyond the simple linearity of the
Rouse-chain. Different shapes of the potential lead to the same
phenomenology even if the bond stretching could be consistently
reduced choosing a stiffer attraction between monomers.

Our study is a contribution towards the comprehension of
the complex interplay between shape-deformability and local
self-propulsion in extended systems. Generalizing this study to
more complex and deformable geometries could represent
a very promising point to go beyond the approximation of
self-propelled rigid bodies.
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Appendix A: strength and persistence
time of fa

In this paper, we employ the AOUP model to reproduce the self-
propulsion in three dimensions. This is modeled as a time-
dependent force evolving by three independent O.U. processes,
i.e. by eqn (3).

As already explained in the text, t is the persistence time of
the dynamics determining also the correlation time of the auto-
correlation of fa, which reads:

faðtÞ � faðsÞh i ¼ 3
Da

t
exp � t� sj j

t

� �
:

Additionally, since the steady state solution of eqn (3) (i.e. the
marginal probability distribution of fa) is:

p fað Þ / exp �Da

t
faj j2

6

 !
;

it is straightforward to conclude that the square root variance of
the active force, which is proportional to Da/t, determines the

strength of the self-propulsion force, being faj jh i ¼
ffiffiffiffiffiffiffiffiffiffiffi
Da=t

p
.

Appendix B: velocity distribution of the
center of mass

The dynamics of the center of mass, eqn (4), and of the self-
propulsion, eqn (4), can be analyzed by deriving the associated
Fokker–Planck equation governing the evolution of the prob-
ability distribution f (xc,vc,fa,t),

@t f ¼
rvc

t0
� vc f �

t0
N
fa f

� 	
þ Dt

Nt02
rvc

2f

� vc � rxc f þrfa �
fa

t
f

� �
þDa

t2
rfa

2f

(20)

where r and r2 indicate the gradient and the Laplacian
operator, with respect to the variables in the subscript. These
equation is diffusive in space, but admits a steady-state dis-
tribution, p(vc,fa), in velocity and self-propulsion. The linearity
of the process implies that p(vc,fa) is a multivariate Gaussian

p vc; fað Þ / G fað Þ exp �
beff
2

vc �
C

N
fa

� �2
" #

;

G fað Þ / exp � 1þ G4

ð1þDÞ2
t
t0

1

1

1

G
þD
þ t
t0

G3

ð1þDÞ2

0
BBBBBB@

1
CCCCCCA

t
Da

fa
2

2N

2
6666664

3
7777775
;

where the coefficients reads:

beff ¼
1

t0Da

1

1

G
þ D
þ t
t0

G3

ð1þ DÞ2

0
B@

1
CA;

C ¼ G2

1þ D
1

1

1

G
þ D
þ t
t0

G3

1þ Dð Þ2
;

being G = 1 + t/t0 and D = DtN/(t0
2Da).

Appendix C: Rouse-mode analysis of
correlations

Rouse model, whose potential energy is eqn (1) with s = 0, can
be analytically solved by a decompositions in Rouse-modes

rnðtÞ ¼ X0ðtÞ þ 2
XN�1
p¼1

XpðtÞ cos
pp
N

n� 1

2

� �� �
(21)

where each mode, defined as

XpðtÞ ¼
1

N

XN
n¼1

rnðtÞ cos
pp
N

n� 1

2

� �� �
;
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is independent of the others and evolves, in the stationary
regime, according to

XpðtÞ ¼ t0e�gpt
ðt
�1

ds egps FpðsÞ þ ApðsÞ
� �

; (22)

with Fp and Ap the mode components of the Brownian and
active force, respectively. Instead, gp is given by

gp ¼ 4kt0 sin
2 pp
2N

� 	
;

being k the stiffness of the chain and t0 the relaxation time of
the solvent.

A central quantity of our approach is the stationary time-
correlation between the modes for p 4 0 and q 4 0, i.e.

Cpq(t � s) = hXp(t)Xq(s)i,

that can be evaluated by using eqn (22),

XpðtÞ � XqðsÞ
� 


¼ t02e� gptþgqð Þs
ðt
�1

du

ðs
�1

dvegpuþgqv
0

� FpðuÞ � FqðvÞ
� 


þ ApðuÞ � AqðvÞ
� 
� �

:

The correlations of the Fourier components of the thermal and
active noises can be easily derived from the direct correlation of
such noises considered in eqn (2),

FpðsÞ � Fqðs0Þ
� 


¼ 3Dt

Nt02
dðpþ qÞ þ dðp� qÞ½ �dðs0 � sÞ (23)

ApðsÞ � Aqðs0Þ
� 


¼ 3Da

N2t
cðpÞcðqÞ exp � s0 � sj j=tð Þ: (24)

Thus Cpq(t � s) is expressed by the sum of two terms

Cpqðt� sÞ ¼ fThdp;q
e�gpjt�sj

2gp
þ fActcðpÞcðqÞSpqðt� sÞ;

where

cðpÞ ¼ cos
pp
2N
ð2N � 1Þ

h i
¼ ð�1Þp cos pp

2N

h i
:

and the two constants are defined as

fTh ¼
3Dt

N
; fAct ¼

3Dat02

N2
:

The last term in Cpq(t � s) refers to the active force and contains
the integral

Spqðt� sÞ ¼ 1

t

ðt
�1

du

ðu
�1

duegpðu�tÞþgqðv�sÞe�ju�vj=t

which can be solved providing the result

Spqðt� sÞ ¼

te�jt�sj=t

gqtþ 1
� �

gpt� 1
� �� 2e�gpjt�sj

gp þ gq
� �

gp2t2 � 1
� � t4 s

te�jt�sj=t

gptþ 1
� �

gqt� 1
� �� 2e�gqjt�sj

gp þ gq
� �

gq2t2 � 1
� � to s

8>>>>><
>>>>>:

:

(25)

When p = q 4 0, we are left with the mode–mode autocorrela-
tion which simplifies to

Cppðt; sÞ ¼ fTh
e�gpjt�sj

2gp
þ fActc

2ðpÞ
gpte

�jt�sj=t � e�gpjt�sj

gp gpt
� �2�1h i :

In the following, we will need the correlation at the same time,
t = s, a quantity that, in the stationary regime, becomes
independent of time and reads

Cpqð0Þ ¼ fTh
dp;q
2gp
þ fActcðpÞcðqÞSpqð0Þ; (26)

with the obvious notation [see eqn (25)]

Spqð0Þ ¼
1

gp þ gq

1

gptþ 1
þ 1

gqtþ 1

" #
:

C.1 Center of mass behaviour

The center of mass, corresponding to the mode p = 0, and given by

X0ðtÞ ¼
1

N

XN
n¼1

rnðtÞ

evolves in time from the initial condition X0(0) as

X0ðtÞ ¼ X0ð0Þ þ t0

ðt
0

ds FpðsÞ þ ApðsÞ
� �

: (27)

Therefore, its mean square displacement (MSD) will behave as

X0ðtÞ � X0ð0Þ½ �2
D E

¼ t02
ðt
0

ds

ðt
0

ds0 F0ðsÞ � F0 s0ð Þh i þ A0ðsÞ � A0 s0ð Þh i½ �:

(28)

The two-time correlations involved are given by eqn (23) and (24)
taken for p = q = 0

F0ðsÞ � F0ðs0Þh i ¼ 6Dt

Nt02
d s� s0ð Þ

A0ðsÞ � A0 s0ð Þh i ¼ 3Da

N2t
exp � s� s0j j

t

� �
;

Thus, eqn (28) turns into

MSDðtÞ ¼ 6Dt

N
tþ t02

3Da

N2t

ðt
0

ds

ðt
0

ds0e� s�s0j j=t:

In particular, performing the integrals, we get the time-dependent
expression for the MSD:

MSDðtÞ ¼ 6
Dt

N
þDat02

N2

� �
tþ 6

Dat02

N2
t e�t=t � 1
� 	

:

Expanding in power of t/t we can estimate the relevance of the
active force for small t. In particular, we get

MSDðtÞ � 6
Dt

N
tþ 3

Dat02

N2

t2

t
:

Comparing the amplitudes of the two terms, we have a necessary
condition to establish the relevance of the active force to the center
of mass motion of the polymer even at early stages.
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The exact expression for the MSD(t), eqn (7), is supported by
a numerical comparison via two protocols: (i) constant t varying
the ratio Da/t, (ii) varying t keeping fixed Da/t. In both cases, the
active force increases monotonically the diffusivity and the
agreement between the two sets of data is fairly good as
revealed by Fig. 7(a) and (b), respectively.

C.2 End-to-end distance

In the active Rouse-model approximation, we can compute
analytically the end-to-end distance, R(t) = rN � r1, of the Rouse
polymer, which reads:

RðtÞ ¼ 2
XN�1
p¼1

XpðtÞ cos
pp
2N
ð2N � 1Þ

h i
� cos

pp
2N

h i� 	
:

This equation can be written formally as the series

RðtÞ ¼
XN�1
p¼1

GðpÞXpðtÞ;

where

GðpÞ ¼ ð�1Þp � 1½ � cos pp
2N

� 	
:

Therefore, its variance can be expressed in terms of the
stationary correlation of the modes at the same time

R2ðtÞ
� 


¼
XN�1
ðp;qÞ¼1

GðpÞGðqÞ XpðtÞ � XqðtÞ
� 


; (29)

where hXp(t)�Xq(t)i is nothing but eqn (26). Thus we obtain the
mean square end-to-end distance, i.e. the second moment of
P(R):

R2ð1Þ
� 


¼ fTh
XN�1
p¼1

G2ðpÞ
2gp

þ fAct

XN�1
ðp;qÞ¼1

cðpÞcðqÞGðpÞGðqÞ
gp þ gq

1

1þ gpt
þ 1

1þ gqt

" #
:

The symmetry in p, q implies that the expression can be recast
into

R2
� 


¼ fTh
XN�1
p¼1

G2ðpÞ
2gp

þ 2fAct

XN�1
ðp;qÞ¼1

cðpÞcðqÞGðpÞGðqÞ
gp þ gq

1

1þ gpta

" #
:

It can be shown that for a Rouse-chain the following sum-rules
hold true

XN�1
p¼1

G2ðpÞ
2gp

¼ NðN � 1Þ
t0k

XN�1
p¼1

G2ðpÞ ¼ 4N:

Thus, the final expression for the mean square end-to-end
distance reads

R2
� 


¼ 3Dt

k
ðN � 1Þ

þ 6Dat02

N2

XN�1
ðp;qÞ¼1

cðpÞcðqÞGðpÞGðqÞ
gp þ gq

1

1þ gpt

" #
;

which coincides with the result of the main text.

C.3 Fluctuation of the bond deformation

With the same strategy applied to derive the end-to-end dis-
tance, we can compute the fluctuation of the bond deforma-
tion, drn = rn+1 � rn, induced by the active force along the Rouse
chain, i.e.

drn ¼ 2
XN�1
p¼1

XpðtÞ cos
pp
N

nþ 1

2

� �� �
� cos

pp
N

n� 1

2

� �� �� �
:

In a more explicit form, it can be expressed as

drn ¼ �4
XN�1
p¼1

XpðtÞ sin
pp
2N

� 	
sin

pp
N
n

� 	
:

Fig. 7 MSD(t) for different values of the active force parameters. In panel (a) we adopt the protocol (i), namely varying Da/t at fixed t = 50, while
we employ the protocol (ii) in panel (b), i.e. varying t keeping fixed Da/t = 500. Data are obtained from simulations, while solid lines from eqn (7).
The remaining parameters are s = 5, k = 10, Dt = 0.1 and t0 = 0.1. Simulations are obtained using a time-step B10�4 and each configuration is evolved,
at least, for a final time B102t.
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For the sake of shortness, it is convenient to set Gn( p) =
4 sin(pp/2N) sin(qpn/N). Squaring and averaging, we obtain

drnð Þ2
D E

¼
X
pq

XpðtÞXqðtÞ
� 


GnðpÞGnðqÞ:

Since the bond fluctuation depends on the correlation at the
same time, it can be rewritten in terms of eqn (26)

drnð Þ2
D E

¼ fTh
XN�1
p¼1

GnðpÞ
2gp

þ fAct

XN�1
ðp;qÞ¼1

cðpÞcðqÞSpqð0ÞGnðpÞGnðqÞ:

After some simple algebraic manipulations, and using the
definition of c(p), Gn(p) and gp, we obtain the long expression

drnð Þ2
D E

¼ 3Dt

kt0
þ 4fAct

XN�1
ðp;qÞ¼1

ð�1ÞpþqSpqð0Þ

� sin
pp
N

� 	
sin

qp
N

� 	
sin

pp
N
n

� 	
sin

qp
N
n

� 	
:

(30)

Finally, we can estimate rnþ1 � rnj jh i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
drnð Þ2

D Er
. As shown in

Fig. 8, this expression reproduces qualitatively the behavior
reported in Fig. 4 despite the employment of the Rouse-
approximation. We remark that eqn (30) decays to a value
smaller than s for monomers far from the head at variance
with Fig. 4. This is not surprising since, in the Rouse approxi-
mation, s does not play any role and, thus, even the passive
polymer assumes a more compact configuration.
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