
29 May 1995 

Physics Letters A 201 (1995) 326-332 

PHYSICS LETTERS A 

Approximation of chaotic systems in terms of Markovian processes 

F. Cecconi, A. Vulpiani * 
Dipartimento di Fisica, Universitd “La Sapienza ‘0 Piazzale A. Moro 2. 00185 Rome, Italy 

Received 3 October 1994; revised manuscript received 30 March 1995; accepted for publication 31 March 1995 

Communicated by A.P. Fordy 

Abstract 

We mimic the deterministic chaos appearing in low dimensional systems in terms of a product of suitable random matrices 
by considering Markov trials. From the high order Markovian processes it is possible to obtain a good approximation for the 
Lyapunov exponent and the decay rate of the correlation functions. 

1. Introduction 

The fact that experimental or numerical measure- 
ments of the state of a physical system cannot be de- 
termined with infinite accuracy and the sensitive de- 
pendence on initial conditions in chaotic systems [ I], 
implies the possibility and necessity to introduce prob- 
abilistic methods in the study of chaotic dynamical 
systems. The idea of using stochastic processes to de- 
scribe chaotic behaviour is rather old. Moreover, many 
authors have studied the effects of a noisy term on 
chaotic dynamics [ 21. 

We shall discuss in this paper how a treatment of 
a chaotic dynamical system in terms of a Markov 
process allows one to describe some features of the 
chaotic behaviour (namely Lyapunov exponents and 
correlation decay rate). 

Let us consider a nonlinear deterministic evolution 
law, 

k(t) = F(x(t)) 

or in the discrete time case, 

(1) 

1 Corresponding author. 

x(t + 1) = G(x(t)). (2) 

The sensitive dependence on initial conditions can be 
quantitatively measured by a set of numbers called 
Lyapunov exponents [3]. The maximum Lyapunov 
exponent (MLE) of a trajectory is defined as 

A = ,llim_ flog [[A’wll 

where A’ is the linear evolution operator of tangent 
vectors, and w is a generic tangent vector. The inverse 
of the MLE gives the characteristic time scale in which 
forecasts are still efficient. 

For the discrete time systems that we consider, A’ 
is a product of matrices, 

t 
A’ = nA(s), (4) 

where the A(s) are the Jacobian matrices of the trans- 
formation (2), 

A,,(s) _ =,(x(s)) 
IJ - 

aXj ’ 
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So the evaluation of Lyapunov exponents for deter- 
ministic maps requires products of the Jacobian ma- 
trices computed at different times. 

The similarities between the behaviour of a strongly 
chaotic dynamical system and the behaviour of a 
stochastic process, suggest using a random process to 
mimic some aspects of the chaotic dynamics. For ex- 
ample in the computation of the MLE one can try to 
replace the product of matrices A(s) with a product 
of matrices extracted by a suitable probabilistic law; 
basically the randomness of A(s) mimics the chaotic- 
ity of the system. Let us stress that this approximation 
is rather crude but not trivial at all. 

In strong chaos cases it is possible to take products 
of independent matrices to reproduce values of the 
MLE in good agreement with those directly calculated 
by the real dynamics of the system. Chirikov [4] has 
used this approximation for the MLE of the standard 
map, when the nonlinear parameter K is large enough. 
Benettin [ 51 has found the scaling laws of the MLE 
in terms of the perturbation parameter for billiard sys- 
tems. Paladin et al. [6] have shown that products of 
independent RM provide a satisfactory result for the 
whole Lyapunov spectrum in symplectic systems. 

In all these examples strong chaoticity makes the 
effects of correlations irrelevant, but generally these 
correlations do not decay very fast, so a more de- 
tailed approach is needed. In order to include correla- 
tions effects, it is convenient to introduce Markovian 
products of the RM. Crisanti et al. 191, by taking a 
one-step Markovian RM to estimate the MLE for the 
Lozi map, have shown that it is possible to obtain a 
good improvement compared to the independent RM 
approximation. 

In this paper we discuss a generalization of this 
method by considering higher order Markovian pro- 
cesses [ 81 in which the memory is extended to the k 
last trials. In Section 2 we discuss the general Marko- 
vian RM approximation and how it is possible to es- 
timate relevant quantities from a k-order Markovian 
process. 

In Section 3 we show the application of the method 
to the concrete cases of the Lozi and Henon maps. 

Section 4 is devoted to the approximation of cor- 
relation function decay directly from the Markovian 
transition matrix of the process used to mimic the 
chaotical behaviour of the system. 

Section 5 contains discussions and conclusions. 

2. Markovian approach in the RM approximation 

In the Markovian RM approximation the tangent 
matrices A ( s) in the product (4) are extracted accord- 
ing to a Markovian process. 

A Markovian stochastic process with discrete states 
is completely characterized by the transition matrix 
whose elements Pi,j represent the probability to ob- 
serve a transition from the state i to the state j. Marko- 
vian processes of order k are a straightforward exten- 
sion in which the probability to have a trial at time 
t depends on the last t - k trials only. So a k-order 
Markovian process is characterized by 

P{UlUk, . . ..u.} = p{g, uk, . . . . a,} 

P{ak, . . . . cl} ’ 

which represents the probability of a transition from 
the sequence (cri, . . . . (+k), to the state U. By intro- 
ducing the space of all sequences of length k (Y = 
(al, . . . . (+k) it is possible to treat these processes as 
one-step Markovian processes. In particular if we de- 
fine LY = (al,..., fl.k) and p = (~2, . . ..u) one can 
rearrange the transition probabilities in matrix form, 
Pz: like in the one-step case. 

&e estimation of the MLE in the k-order Marko- 
vian RM approximation is obtained by replacing the 
deterministic product of tangent matrices with a prod- 
uct of matrices having the same form of tangent ma- 
trices but extracted according to the k-order Marko- 
vian rule. To perform these products the knowledge 
of the whole set of transition probabilities is needed. 
Generally explicit expressions for these quantities are 
not accessible so their computation must be numeri- 
cally done, by observing the deterministic dynamics 
of the system. Of course the proposed method is not 
useful from a practical point of view but it can be con- 
ceptually relevant to understand the important role of 
correlations. 

From the generalized transition matrix, associ- 
ated to the dynamical system, we can obtain further 
information. For example we can compute the Shan- 
non entropy [ lo] of the k-order Markovian process 
which can be considered an approximation of the 
Kolmogorov-Sinai (K-S) entropy of the dynamical 
system, 

h(k) = -~p;“‘p$$gp$$, (7) 
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Fig. 1. (a) MLE of the Lozi map (horizontal line) and its Markovian approximations A(k) (o) versus k for a = 1.62. (b) Mtiovian 
RM approximation for the Lozi map of order k = 0 (dash-dotted line), k = 1 (dashed line), k = 2 (0) and k = 3 ( l ) compared with the 
numerically computed MLE (solid lime) at various values of the parameter a. 

where {p,’ k), pi k, , . . . , pj k, } are the probabilities of the 3.1. The L.mi map 

states {q, . . . . a,} and they are related to the transition 
matrix Pi: by the relation 

(8) 

By the number N(k) of all the strings of length k that 
appear in a typical symbolic sequence generated by 
the dynamics, one has a k-order estimation of the topo- 
logical entropy [ I] of the system through the quantity 

N(k + 1) 
h,,(k) =log N(k) . (9) 

Finally the formal similarity between the correlation 
functions of a Markov process and of a chaotic dynam- 
ical system, suggests that Markovian correlation de- 
cay (related to the second eigenvalues of the stochas- 
tic matrix) is a good approximation, as the memory 
degree k increases, of the decay of the dynamical sys- 
tem correlation functions. 

3. ltvo applications 

Let us now apply the previous general considera- 
tions to two concrete cases: the L.ozi and Henon sys- 
tems. 

The Lozi map [ 11,121 is a transformation of the 
plane on itself defined by the equations 

x(t + 1) = -alx(r) 1 + y(r) + 1, (10) 

y(t + 1) = bx(t). (11) 

In the parameter region 1.5 < a < 1.7 and b = 0.5, the 
map shows a chaotic behaviour, i.e. a strange attractor 
and a positive maximum Lyapunov exponent. The map 
( 11) is a rather natural candidate for the approach 
discussed in Section 3, since the tangent map is defined 
by only two matrices, 

(12) 

where A+ occurs when x 2 0, and A- when x < 0 . 
Since the matrices are not commuting, it is not easy 
to apply an analytical treatment, so the product (4) 
must be numerically performed. 

The k-order transition probabilities (6) for A- and 
A+ are numerically estimated by the frequencies of 
the sequences of length k of these matrices. This is 
equivalent to introducing the natural binary encoding 
of the system trajectories by sequences of symbols + 
(x(r) 2 0) and - (x(t) < 0). 

Then we carry out the product of matrices ( 12) ac- 
cording to the k-order Markovian stochastic dynamics 
defined by the transition probabilities obtained. 
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Fig. 2. Shannon entropy of the Markovian process used to estimate 
the MLE for the Lozi map, of orders: k = 1 (o), k = 4 (Cl), 
k = 7 (o), k = 10 ( l ), compared to the numerically computed 
MLE (solid line). 

For k = 0 the method reproduces the independent 
RM approximation and for k = 1 we obtain the results 
of Crisanti et al. [9]. By increasing the memory of 
the Markov process used a better approximation is 
achieved (see Figs. la and lb). 

In addition the knowledge of the k-order transition 
matrix allows a k-order evaluation of the metric and 
topological entropy (7), (9) (see Figs. 2 and 3 re- 
spectively) . 

3.2. The H&on map 

The random matrix approximation for the Henon 

map [ 13,141, 

x(t+ 1) = -ax(t)2 +y(t) + 1, (13) 

Y(t + 1) = bx(t), (14) 

is more delicate compared to the Lozi case. In fact the 
linearized tangent map defined by the matrices 

(15) 

is a continuous function of the coordinate x. Never- 
theless the treatment performed for the Lozi map can 
be repeated introducing a suitable discretization of the 
tangent map. We have taken a simple partition of the 
H&on attractor by dividing it in r elements, 

Bi = {(X,Y) E R’)Xi < X < Xi+l}, (16) 

0.0 2 
1.5 1.55 1.6 1.65 1.7 

a 

Fig. 3. Topological entropy estimation for the Lozi map (IQ (9) ) 
for k = 1 (dash-dotted line), k = 7 (0). k = 10 (*) and the 
generalized Lyapunov exponent computed at q = 1 (solid line), 
as functions of the parameter 0. 

where the set {xi) realizes a uniform partition, in r 
elements, of the segment [ - 1.34,1.34] on the x axis; 
we assign the constant tangent matrix 

(17) 

to each element of the partition, where Xi indicates 
the center of the interval [Xi, xj+i 1. Typically we use 
r = 10 and r = 20 elements. With this set of matrices 
we perform the independent and the one-step Marko- 
vian approximation for the MLE. As in the Lozi map 
case, the determination of the transition probabilities 
for matrices ( 17) must be numerically done. The re- 
sults in Fig. 4 show that trivial refinements of the par- 
tition (i.e. changing r from 10 to 20) do not give an 
effective improvement in the independent RM approx- 
imation. 

Let us note that even for the Henon map using a 
trivial partition (x < 0, x > 0) but a rather large value 
of k one has a reasonable estimation of the MLE from 
h(k) . In Fig. 5 we can observe that the convergence 
of h(k) to the MLE is rather good, apart from some 
values of a. 

4. Correlation decay 

The k-order transition matrix p:: of the process 
used to perform the RM approximation should repre- 
sent a rough approximation of the Perron-Frobenius 
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Fig. 4. Numerical computation of the MLE for the Hknon map (solid line), its independent RM approximation (0) and one-step Markoviaa 
approximation (0); the partition ( 16) is taken with r = 10 elements (a) and with r = 20 elements (b). 
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Fig. 5. Entropy estimation (Eq. (7) ) of the Htnon map for: k = 4 
(~),k=7(*)andk=lO(o),comparedtothepositivepartof 
the MLE (fat solid line). 

(P-F) operator [ 151 as the analogy between proper- 
ties of this operator and the transition matrix suggests. 
Since the P-F operator rules the correlation function 
behaviour [ 16,171, the matrix PA2 should contain in- 
formation concerning correlation functions of the sys- 
tem. To be more explicit, one expects that the asymp- 
totic decay rates of the correlation functions for a 
Markovian stochastic process and for a “generic” dy- 
namical system have the same form, 

where in the former case VI represents the second 
eigenvalue of the transition matrix, in the latter the 
second eigenvalue of the P-F operator (in a dynamical 
system the P-F operator assumes the role of transition 
matrix). 

According to these considerations, we expect that 
the matrix P:; provides at least the correlation func- 

tion decay log 1 VI(~) I. 
We can evaluate the correlation function of coordi- 

nate x using standard algorithms, 

T-7 

Cx(T) = &c [x(s) -X][x(s+7) -551. (19) 
Fl 

For large r the slope of the linear asymptotic behaviour 
of log IC (7) 1 provides the decay coefficient y. 

We have compared this decay rate with log l~l(‘) 1 
obtained directly from the second eigenvalue of the 
matrix PJ; ; typical results for some values of the 
parameter a are shown in Figs. 6a and 6b for the Lozi 
system and in Figs. 7a and 7b for the Henon system. 

5. Remarks and conclusions 

We have investigated the random matrix approx- 
imation for two typical low dimensional dynamical 
systems, i.e. the Lozi and the H&on maps, in which 
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Fig. 6. (a) Lozi map: decay coefficient -y (solid line) and its approximations (log IV(~) I) for: k = 4 (dotted line) k = 7 (dashed line) 
and k = 10 (0) versus parameter a (b) Lozi map: approximation of decay coefficient -y (horizontal line) with the second eigenvalue 
of the matrix P,,p (m) for a = 1.62 
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Fig. 7. (a) Henon map: decay coefficient -y (fat solid line) and its approximations (log ( dk) I) for: k = 7 (dotted line), k = 8 (dash-dotted 
line), k = 9 (0) and k = 10 (0) at various values of the parameter a . (b) Henon map: approximation of the decay coefficient -y 
(horizontal line) with the second eigenvalue of the matrix P,,p (0) for a = 1.35. 

the simple independent RM approximation does not 
work since it neglects correlations. We have that the 

“correct” RM approach should be of Markovian type. 

Since the transitionprobabilitiesare not a priori known 
the method is not useful for practical purposes. Nev- 

ertheless it shows in a simple way that for the sys- 

tems considered a Markovian approach is needed to 
reproduce good results. The application to the H&on 
map shows that the order of the Markovian process 
used (i.e. the memory) is more relevant than the struc- 

ture of the partition. In other words taking processes 
with greater memory is more convenient than refin- 
ing discretization. Another interesting outcome of this 
Markovian analysis is the information contained in the 

transition matrix about the metric and topological en- 
tropies and correlation function decay of the system. 

The method described in this paper can be used also 
for the analysis of experimental signals if it is possible 

to identify a criterion which allows one to introduce 
a symbolic encoding of the signals in a natural way. 
Under this condition the method could be more pow- 
erful than the standard embedding technique [ 11. For 

example Shimada [ 191 computed with high accuracy 
the K-S entropy of the Lorenz model by studying the 
strings of symbols { - 1 , 1) generated by the dynam- 
ics. Since the trajectory revolves around two instable 
fixed points C+ and C-, he used the following crite- 
rion: the symbol +l is associated to each circulation 
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around C+ and - 1 to each circulation around C_. 
From this time series of symbols f 1 and the mean cir- 
culation time it is possible to extract the correct value 
of the K-S entropy of the Lorenz system. 

We conclude noting that generally the convergence 
for the K-S entropy is faster than the convergence for 
the decay coefficient. This is a clear indication that 
the K-S entropy h is not the unique indicator of the 
“complexity” of a sequence. Let us mention [ 20,211 
that the past-future mutual information C defined as 

WV 

contains important information on the structure of the 
sequence and, even for Markov processes, has not a 
simple relation with h. 

We thank M. Falcioni for a careful reading of the 
manuscript. 
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