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Abstract. Two deterministic models for Brownian motion are investigated by
means of numerical simulations and kinetic theory arguments. The first model
consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter
hard disks acting as a thermal bath. The second is the same except for the
shape of the particles, which is now square. The basic difference of these two
systems lies in the interaction: hard core elastic collisions make the dynamics of
the disks chaotic whereas that of squares is not. Remarkably, this difference is
not reflected in the transport properties of the two systems: simulations show
that the diffusion coefficients, velocity correlations and response functions of the
heavy impurity are in agreement with kinetic theory for both the chaotic and the
non-chaotic model. The relaxation to equilibrium, however, is very sensitive to
the kind of interaction. These observations are used to reconsider and discuss
some issues connected to chaos, statistical mechanics and diffusion.
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1. Introduction

A century after the seminal contributions of Einstein [1] and Smoluchowski [2], Brownian
motion (BM) and diffusion phenomena remain active subjects of research. Statistical
mechanics, since its foundation, has been operating an elegant synthesis between the
microscopic dynamical laws and the macroscopic properties of a system. In this context,
Brownian motion is a paradigmatic example of this modus operandi.

In the statistical mechanics framework, the minimal condition needed by microscopic
dynamics for macroscopic diffusion can be identified in the presence of a mechanism
leading to velocity decorrelation—memory loss. In the effort of interpreting BM and non-
equilibrium transport in the light of modern dynamical systems theory, it thus comes
rather natural to identify in the chaotic character of microscopic dynamics the main
candidate for explaining macroscopic transport. The instabilities of chaotic evolutions
typically produce irregular trajectories resembling Brownian motions and supply a simple
mechanism for memory loss. Indeed large scale diffusion has been found in simple low
dimensional chaotic systems [3]–[5]. This picture received theoretical support from the
existence, in some systems, of remarkable quantitative relations between macroscopic
transport coefficients—such as diffusivity, thermal and electrical conductivity—and
microscopic chaos indicators—such as the Lyapunov exponents and the Kolmogorov–Sinai
entropy; see e.g. [6]–[10].

On the other hand, non-chaotic models generating diffusion have been proposed [11]–
[14] raising some doubts as regards the actual role of chaos for diffusion. However, these
models, representing possibly the most elementary examples of diffusion without chaos,
seem to be rather artificial: they involve few degrees of freedom, and often the presence
of quenched randomness is needed together with the fine-tuning of some parameters, e.g.,
for the suppression of periodic orbits [14]. Their relevance to statistical mechanics is thus
not obvious. It is worth remarking that questions about the relevance of chaos have been
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recently raised also in the (related) context of thermal conduction problems [15], where
non-chaotic models for heat transport were proposed and investigated [16]–[19].

It should be observed that the above systems are non-chaotic in the sense that the
Lyapunov spectrum is non-positive. However, there are well known examples of Lyapunov
stable systems that display non-trivial behaviors [11, 14], [16]–[20]. In the presence
of dynamical randomness without the sensitivity to initial conditions, as in quantum
mechanics, an alternative definition of ‘chaos’ or ‘randomness’ has been proposed in terms
of the positivity of the Kolmogorov–Sinai entropy [21]. In classical systems with a finite
number of degrees of freedom, as consequence of Pesin’s formula, the two definitions
coincide. However, the proposal of [21] is an interesting open possibility for quantum and
classical systems in the limit of infinite number of degrees of freedom.

It is far from trivial to establish the role of chaos in macroscopic transport properties.
The problem is actually more general as chaos (in the above wider definition) had often
been invoked to justify the whole statistical mechanics apparatus [9, 10] and to explain
the irreversibility of macroscopic processes [22]. Such a viewpoint coexists with the ‘more
traditional’ approach of Boltzmann, which stresses the role of the many degrees of freedom
and is mathematically supported by the results of Khinchin [23], Mazur and van der
Linden [24] (see also Bricmont [25] and references therein).

This paper aims to discuss the role of chaos in the context of diffusion; thus we
compare chaotic and non-chaotic many degrees of freedom systems, providing two distinct
deterministic models for BM. Both models consist of a rarefied gas of hard particles
surrounding a larger and heavier particle, in the following referred to as a colloidal particle
(or colloid for brevity), impurity or test particle. As an effect of the large number of
collisions, the deterministic motion of such an impurity behaves as a BM at long times
(i.e. much longer than the collision time) provided its mass is much larger than that of
the lighter gas particles. The latter condition ensures a scale separation between the gas
and impurity dynamics. The asymptotic convergence to a BM was proved for an infinite
one-dimensional system of hard core particles [26] and, later, in three dimensions [27].

The first model consists of N hard disks surrounding a larger and heavier disk as
sketched in figure 1 (left). Particle interactions occur via binary elastic, hard core collisions
which, due to the convex shape of the disk, lead to chaotic trajectories (i.e. exponential
separation among initially close trajectories). In the following, this hard disk model will
be denoted by the acronym HD.

The second model, illustrated in figure 1 (right), consists of a gas of N hard (non-
rotating) parallel squares (HPS) surrounding a larger and heavier square particle. In this
case, binary hard core elastic collisions are not central and conserve the initial parallel
orientation of the squares. Unlike for HD, the resulting dynamics is non-chaotic. This
model is not new; the case of a HPS gas with identical particles (without the impurity)
has been studied in terms of both molecular dynamics and kinetic theory by Frisch and co-
workers [28]–[31]. It constitutes an interesting statistical mechanics system characterized
by the presence of an infinite number of integrals of motion, preventing the system from
being ergodic. Remarkably, in spite of such a pathology, the HPS gas gives rise to, e.g.,
phase transitions and transport properties as in the HD gas which, in contrast, possesses
ergodic and mixing properties.

The colloid can be seen as a test particle for probing the transport properties of both
HPS and HD. Notwithstanding the intrinsic difference in their dynamics, chaotic for HD

doi:10.1088/1742-5468/2007/12/P12001 3

http://dx.doi.org/10.1088/1742-5468/2007/12/P12001


J.S
tat.M

ech.
(2007)

P
12001

Transport properties of chaotic and non-chaotic many particle systems

Figure 1. Schematic illustration of two models used to discuss the mechanical
diffusion: (left) hard disks and (right) hard parallel (non-rotating) squares. The
colloidal particle is displayed in red.

and non-chaotic for HPS, their macroscopic diffusion properties are remarkably similar, as
confirmed by the analysis of the velocity–velocity correlations, connected to diffusion via
the Green–Kubo formula [32, 33]. Measurements of the response function of the velocity
of the colloid and of gas particles to small perturbations confirm that the non-chaotic
nature of HPS does not influence either the diffusion or the validity of the fluctuation
dissipation theorem (FDT).

To discriminate the behavior of HPS from the HD model one has to look at the
relaxation to equilibrium, when the initial state is very far from it. For square particles
relaxation properties crucially depend on the presence of the impurity, which induces a
sort of ‘effective interaction’ among the gas particles and allows the system to equilibrate
to the Maxwell–Boltzmann distribution. Since collisions simply reshuffle the velocity
components among the particles, preserving the initial velocity distribution, relaxation
to the Maxwell–Boltzmann distribution without the colloidal particle is not possible. In
spite of such a constraint, self-diffusion and other statistical mechanics behaviors can still
be found [28]–[31] (see also section 3). In the presence of the colloid, a signature of such a
pathology survives: the relaxation time Tr strongly depends on the mass of the impurity,
whilst in HD it is independent of it. Moreover, ergodicity is not fully recovered, the
exchanges between the x and y components of the velocity being forbidden.

The paper is organized as follows. Section 2 introduces the two models. In
section 3, the numerical results for the diffusion coefficient, self-diffusion and velocity
auto-correlation function are presented. In section 4, the relaxation properties of HPS
and HD close to and far from equilibrium are analyzed. Section 5 concludes the paper
with a discussion of the relation among chaos, statistical mechanics and diffusion based
on our results. In the appendix, a kinetic theory derivation of the diffusion constants for
both models is presented in the very dilute limit.

2. Deterministic many particle models for diffusion

In the spirit of Smoluchovski’s approach [2], it is natural to introduce a mechanical model
for BM based on the dynamics of a macroscopically small but microscopically large heavy
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impurity colliding with many lighter particles. The large mass and size with respect to
the gas particles allows for a separation of time scales so that the velocity of such an
impurity is expected to follow a Langevin equation. The collisions with the gas provide
both the friction and the stochastic kicking to the colloid [34]. Here, we focus on two
different models in two dimensions.

2.1. Hard disks model (HD)

We consider N hard disks of radius r and mass m plus an impurity consisting of another
disk of radius R > r and mass M > m, as in figure 1 (left). All particles are in a square
box of side L, with periodic boundary conditions. Crucial parameters are the number
density ρ = N/L2 and the volume fraction ψ = Nπr2/L2. In the following, we shall
always consider very dilute systems (ψ � 1) so that the properties of the system will be
akin to those of a rarefied gas.

The kinetic energy coincides with the total energy H

H =

N∑

j=1

p2
j

2m
+

P 2

2M
≡

N+1∑

j=1

p2
j

2mj
, (1)

and is conserved. In the second equality of equation (1) we adopt the convention that
i = N + 1 indicates the colloid, i.e. pN+1 = P and mN+1 = M while mi = m for
i = 1, . . . , N . Similarly, for the coordinates, we use either qi = (xi, yi) (i = 1, . . . , N)
for the gas particles and Q = (X, Y ) for the mass impurity, or qj for j = 1, . . . , N + 1
with qN+1 = Q. Of course, if r = R and m = M , equation (1) reduces to a system of
N +1 identical hard disks, which has been thoroughly investigated via accurate computer
simulations [35] and theoretically in terms of the kinetic theory of gases (see e.g. [9, 36]
and references therein) in a variety of regimes.

Each particle moves with constant velocity until it collides with another particle, an
event at which the velocities are updated according to the elastic collisions rule

p′
i = pi +

2mimj

mi + mj
(gij · êij)êij and p′

j = pj −
2mimj

mi + mj
(gij · êij)êij , (2)

where post-collision quantities are primed, and gij = pi/mi − pj/mj = vi − vj is the
precollisional relative velocity. The unitary vector êij , oriented as i → j, connects the
centers of the two disks at contact.

The model (1) simplifies for two asymptotics: for M/m → 0, it approaches the
Lorentz-gas model [37], and the impurity is much faster than the (now heavier) gas
particles which can be treated as immobile obstacles; for R/r → ∞, the Rayleigh-flight
model is recovered if the N small disks are very dilute so that most collisions involve the
impurity. In these two limits, kinetic theory allows for analytical approximation of the
maximum Lyapunov exponent in terms of the system parameters [38].

Here, being interested in Brownian motion, we consider situations in which R � r and
M � m. In such a limit, thanks to the large time scale separation between the impurity
and gas particles motions, it is reasonable to assume that each velocity component V of
the colloid follows a Langevin equation (we set kB = 1)

dV

dt
= −γV +

√
2γ

T

M
η, (3)
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where T is the gas temperature, and η(t) a zero-mean Gaussian process with correlation
〈η(t)η(t′)〉 = δ(t − t′). Of course, equation (3) describes the effective dynamics of
the impurity for times much larger than the average time of collision with the gas
particles [26, 27, 34]. The friction constant γ sets the decay of velocity–velocity correlation
function

CV (t) = 〈V (t)V (0)〉 = 〈V 2〉e−γt =
T

M
e−γt, (4)

where brackets indicate time or ensemble averages. By standard kinetic theory
computation (see equation (A.2) where also corrections in r/R and m/M are taken into
account) one has

γ = 2
√

2π
ρR

√
mT

M
. (5)

Now, thanks to the Green–Kubo relation, linking the auto-correlation function to the
diffusion coefficient D

D =

∫ ∞

0

〈V (t)V (0)〉 dt =
〈V 2〉

γ
=

T

Mγ
, (6)

it is straightforward to derive the diffusion constant of the colloidal particle

Dc = lim
t→∞

1

2t
〈[X(t) − X(0)]2〉 =

1

2
√

2π

1

ρR

√
T

m
. (7)

Notice that Dc is proportional to
√

T and not to T as in liquids. This comes from the
fact that for liquids the friction is temperature independent, while for rarefied gases it is
proportional to the square root of the temperature.

Another interesting quantity, well defined both in the presence and the absence of
the impurity, is the self-diffusion coefficient Dg of a tagged gas particle. This is an
important transport coefficient associated with the gas density field evolution. Previous
investigations of hard disk and sphere models studied in details such a quantity as well as
other transport coefficients (e.g., viscosity) while varying the parameters of the problem.
In the dilute limit, the particle self-diffusion coefficient takes the form [9]

Dg = lim
t→∞

1

2t
〈[x(t) − x(0)]2〉 =

1

4
√

π

1

ρr

√
T

m
, (8)

where x indicates the x component of the position of a tagged gas particle. At high
volume fractions, corrections to the formula must be considered. Although the expression
is formally similar to (7), only the prefactors change, the Langevin description (3) does
not apply in this case due to the absence of time scale separation. One has to take care
to work in conditions in which the coefficient (8) is insensitive to the presence of the
impurity, so that it can be considered as a small perturbation.

Before passing to the other model, it is important to give a warning. In two
dimensions, as here, it has long been known [39, 40] that the gas velocity auto-correlation
function develops small, slowly decaying tails. In principle, this may lead to an ill defined
diffusion coefficient. However, when ψ → 0 this problem becomes relevant only for
enormously long times [41]. Therefore, disregarding this issue is justified from the practical
point of view and we will ignore it in the following.
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2.2. Hard parallel squares (HPS)

We now consider a different model of hard core particles in which the N gas disks are
replaced by N squares of side 2r and mass m plus a square colloid of side 2R (R > r) and
mass M > m, contained in a box of size L × L with periodic boundary conditions.

At the initial time, the sides of all squares are parallel (see figure 1 (right)), and such
parallelism is conserved (no rotation) by the elastic, hard core collisions, which are now not
central and amount to equal angle reflection against parallel sides. The Hamiltonian (1)
is still describing the system, and the collision rule (2) is replaced by

p′
i = pi +

2mimj

mi + mj
(gij · n̂ij)n̂ij and p′

j = pj −
2mimj

mi + mj
(gij · n̂ij)n̂ij , (9)

where gij is the relative velocity, and the unitary vector n̂ij is directed as the normal to
the colliding sides, that is, along either the x or the y axis. At variance with the HD one,
the HPS model is not a mechanical system as its evolution does not follow Newtonian
dynamics, because of the constraint keeping the parallelism among the square sides. Since
the collision rules (9) are linear, the evolution law for the tangent vector coincides with
that of the system and the Lyapunov exponents are all equal to zero. Therefore, unlike
in the case of disks, the system is non-chaotic, although the presence of the corners may
induce non-linear instabilities, producing a defocusing for non-infinitesimal displacement
among two trajectories.

In the absence of the impurity the system considered reduces to N identical parallel
squares, which was studied by Frisch and co-workers [28]–[31] for its peculiar properties.
This system is indeed interesting in several respects. First of all, due the rules of
interaction (9), colliding particle pairs simply exchange their velocities along the direction
of impact: similarly to the 1D hard rods case, a collision event corresponds to a relabeling
of particles, though in the 2D case, as here, the relabeling is only for one component
of the velocity. This implies that all velocity moments are conserved separately for
the two components. It thus follows that a velocity probability distribution function
(pdf), which is initially factorized P (vx, vy; t = 0) = p(vx)p(vy), is preserved by the
time evolution. In other words, unlike for HD, the system is non-ergodic and the pdf
of the velocities cannot relax to the Maxwell–Boltzmann distribution. However, if the
initial distribution is not factorized, it will factorize P (vx, vy; t → ∞) = f(vx)g(vy) with
g(vx) =

∫
dvyP (vx, vy; t = 0) and g(vy) =

∫
dvxP (vx, vy; t = 0). Indeed the relabelings

induced by the collisions decorrelate the x and y components.
In spite of these pathologies, simulations [28] and kinetic theory computations [29]

show that this non-ergodic system possesses many properties akin to those of the HD case,
which instead is typically considered to be ergodic and mixing. For instance, transport
properties are well defined and in the dilute limit. The self-diffusion coefficient for an
initial Maxwell–Boltzmann distribution can be computed [28]:

Dg =

√
π

16

1

ρr

√
T

m
. (10)

Moreover, phase transitions similar to those found in HD can be observed for suitable
values of the volume fraction ψ = N4r2/L2 [29].

When the impurity is present the situation changes. Due to the mass difference
(m 
= M), many conserved quantities are destroyed and collisions can change the velocities
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pdf: relaxation to a Maxwell–Boltzmann distribution is now possible. Essentially the
impurity allows for an ‘effective interaction’ as e.g. in [42]. However, ergodicity is not
fully recovered: it is clear that, due to the collision rule, no mixing between the velocities
along x and y is possible, meaning that Ex =

∑N+1
i=1 p2

xi/2mi and Ey =
∑N+1

i=1 p2
yi/2mi

are separately conserved. We shall always work in isotropic conditions, i.e. with an initial
velocity pdf such that Ex = Ey.

In such a condition, an equilibrium distribution being well defined, we can still
consider the limits R � r and M � m and study the BM of the impurity. From kinetic
theory (see equation (A.5) in the appendix), one can compute the friction coefficient

γ = 8

√
2

π

√
mρR

√
T

M
, (11)

and therefore the diffusion constant

Dc =

√
π

8
√

2

1

ρR

√
T

m
. (12)

Comparing the above expression with (7) reveals that the only difference lies in a numerical
prefactor which takes into account the different geometries of the particles.

3. Transport properties

Let us now investigate, by means of numerical simulations, the transport properties
(diffusion of the impurity and self-diffusion of tagged gas particles) in HD and HPS models
both in the presence and in the absence of the impurity.

Before discussing the results, we briefly summarize the numerical methods employed.
For both HPS and HD, we used an event driven algorithm with the minimum image
convention [35]. All simulations refer to the rarefied case. After several tests we fixed
ρ = N/L2 = 10 and the solid fraction ψ ≈ O(10−3), so that we can neglect all known
corrections to the transport coefficients [36]. The diffusion constants are then measured
in terms of the mean square displacement in the x and y directions for both the colloid
and tagged gas particles; see equations (7) and (8). Working in isotropic conditions, the
horizontal and vertical diffusion coefficients are equal, allowing us to average over the two
components for increasing statistics. Averages have been computed over N time windows
in a long run. The diffusion constant Dc is thus obtained by looking at

〈[ΔQ(t)]2〉 =
1

N

N∑

k=1

[Q(t + tk) − Q(tk)]
2 ≈ 2Dct, (13)

where Q = X, Y represents any of the components of the particle position, and 0 ≤ t ≤
(tk+1 − tk). The length of the window tk+1 − tk is chosen long enough for observing a
diffusive regime over about two decades. For the self-diffusion we proceeded similarly, but
working on the gas particle positions, qi = xi, yi. As all gas particles are equivalent, we
average over them:

〈[Δq(t)]2〉 =
1

NN

N∑

k=1

N∑

i=1

[qi(t + tk) − qi(tk)]
2 ≈ 2Dgt, (14)
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(a) (b)

Figure 2. (a) Mean square displacement for the colloid 〈[ΔQ(t)]2〉 (red) and
tagged gas particles 〈[Δq(t)]2〉 (blue) versus time for HD. The straight lines show
the expectations (7) and (8), respectively. The temperature is set to T = 50. (b)
Velocity auto-correlation for colloid CV (t) (red) and gas particles Cv(t) (blue)
measured in the same simulation as (a). The straight line has a slope given by
the friction constant (5). Inset: normalized diffusion constants RDc and rDg

versus T . Solid and dotted lines correspond to the expectation (7) and (8) with
the finite sample size corrections included [43, 44]. N = 300 gas particles of
radius r = 0.005 and mass m = 1 have been used, with number density ρ = 10,
for the impurity R = 10r and M = 20m. Averages are performed over N = 1000
time windows. Simulations on a shorter time scale with N = 1000 particles
give the same result within statistical errors. Notice that the self-diffusion is by
definition the result of a further averaging over the number of gas particles; thus
its statistics is much more improved than Dc implying lower statistical errors.

where, with abuse of notation, the same brackets as in (13) are used though in (14) the
averaging over all particles is also performed. HD and HPS simulations differ only for the
collision rules. While computing the average displacements we also computed the velocity
auto-correlation functions for both the colloid and gas particles CV (t) and Cv(t). The
averages have been performed, as for the displacements, over different time windows and,
for the gas, also over all particles.

We work with a single impurity with R = 10r and M = 20m (tests with different sizes
and masses have been performed). Due to the necessity of averaging over many, typically
N = 103, time windows we employ a not too large number of gas particles (N = 300;
tests with N = 1000 have been done). Using this relatively low number of particles and
the mass ratio M/m = 20 requires us to take into account finite size corrections4. Indeed
the constraints of energy and momentum conservation (the latter ensured by the periodic
boundary conditions) are known to cause a breakdown of the energy equipartition for
simulations with non-equal mass particles [43, 44].

We are now ready to discuss the results. Let us start from figure 2(a) where we show
the data for the diffusion and velocity correlation of the impurity and tagged gas particles
in the case of hard disks. Although the diffusive properties of HD have been thoroughly

4 In practice, the temperature of the impurity will be smaller by a factor 1 − M/MT than that of the gas (with
MT =

∑
i=1,N+1 mi). Other corrections by terms m/M and r/R should be included as well; see the appendix.
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(a) (b)

Figure 3. The same as figure 2 but for HPS. The size of the particles has been
chosen so as to have the same area of the disks.

studied in the literature, they serve for comparison with HPS, presented below. As one can
see, the diffusive scaling extends over about two decades allowing for a good estimation
of the diffusion coefficients, which are in agreement with the expectation (7) and (8);
see also the inset in figure 2(b). The auto-correlation functions CV and Cv (shown in
figure 2(b)) display an exponential decay. For the colloid the decay time is in agreement
with the friction constant (5), making the approximation of the colloid evolution in terms
of a Langevin equation meaningful.

We now consider the case of N parallel squares with a mass impurity. As discussed in
the previous section, the presence of the colloid allows for the existence of an equilibrium
state characterized by the Maxwell–Boltzmann distribution for the particle velocities.
However, unlike the HD, the system is non-chaotic. Moreover, ergodicity is broken
and there is no mixing between the horizontal and vertical components. As figure 3(a)
clearly shows, the transport properties of HPS are well defined, and the colloidal particle
and tagged gas particles diffuse with coefficients as given by equation (12) and (10),
respectively; see also the inset in figure 3(b). Moreover, the system loses memory as both
the velocity auto-correlation function of the impurity and gas particles decay exponentially
(figure 3(b)). At first sight, the agreement of the self-diffusion constant with (10) may
appear strange. Indeed, the formula derived by Frisch and collaborators [28] refers to
a gas of identical particles, where no equilibration occurs. However, equation (12) was
obtained assuming a Gaussian distribution for the velocities, here always realized thanks
to the presence of the impurity which allows for a Maxwell–Boltzmann distribution.

We consider now the model in which no impurity is present, previously studied
by Frisch and collaborators [29, 30]. As stressed above, in such a case HD and HPS
(i.e. chaotic and non-chaotic particle systems) are conceptually very different: while HD
remains a well defined statistical mechanics system with relaxation to an equilibrium state
independent from the initial conditions, HPS never reaches equilibrium; the initial velocity
distribution remains unchanged with time. Nevertheless both systems display well defined
transport properties.

By computing Dg for HD in the same conditions as for figure 2(a) we checked
whether the value of Dg agrees with its measurement done in the presence of the colloid.
We actually found a perfect agreement, within errors, between the two measurements
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Figure 4. (a) 〈Δq2(t)〉 versus t for a gas of N = 300 hard parallel squares with size
as in figure 3 and with a Gaussian velocity distribution at temperature T = 50
and number density ρ = 10. Inset: the velocity auto-correlation function. With
N = 1000 we obtained indistinguishable results.

(not shown). This confirms a posteriori that the colloid can be considered a small
perturbation for the gas without important consequences for the transport properties
of the HD gas. More interesting is to investigate the case of squares.

In figure 4, we show Dg for a gas of equal hard squares with Gaussian initial
distribution having the same temperature as in the simulations with the impurity: the
diffusive behavior is again a robust well defined property. It is worth underlining the
following points. First, a diffusive behavior is observed also in the absence of relaxation to
a statistically steady state. Second, the value of Dg matches the theoretical value obtained
by Frisch [28] and is in perfect agreement, within error bars, with the equivalent quantity
obtained in the presence of the impurity. Third, the velocity–velocity correlation function,
shown in the inset, decorrelates exponentially with a good degree of approximation.

The presence of diffusive behavior in non-chaotic systems is not new. Models
consisting of non-interacting particles have already been considered in [12, 13]. However,
such models, though interesting from a dynamical system point of view, consist of
independent particles and thus are somewhat far from a statistical mechanics perspective.
The HPS system here investigated is non-chaotic but having many degrees of freedom in
interaction it constitutes a valuable statistical mechanical system.

We conclude this section by stressing that, although the presence of the colloid changes
conceptually the properties of the system, transport properties in the presence or absence
of the impurity are quantitatively the same, provided the Gaussian distribution is chosen.
This means that, at least for transport properties, the colloid can be considered as a small
perturbation to the system, but for a non-generic state.

4. Relaxation properties

The analysis of the relaxation processes associated with spontaneous or induced statistical
fluctuations represents the classical approach for probing the macrostates explored by a
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system. For instance, fluctuation dissipation theorems (FDT) [33], relating the behavior of
spontaneous fluctuations at equilibrium to the average response of a system to infinitesimal
perturbations, establish a connection between equilibrium (correlation functions) and
non-equilibrium (response functions) quantities. We carried out a set of simulations to
determine the relaxation properties of the system both close to the equilibrium state,
characterized by a Maxwell–Boltzmann distribution, and far from it (e.g., starting from a
uniform distribution) to probe the possible influence of chaos on the statistical properties.

4.1. Close to equilibrium

To gain information about transport properties by studying the relaxation to equilibrium
it is useful to introduce the response function to small impulsive perturbations applied to
a component V of the velocity of the impurity. This can be obtained, e.g., by applying a
force f(t) = Fδ(t) which acts only at t = 0 with F � 1. The result of f(t) is to cause an
instantaneous (very small) variation of the velocity V (0) → V (0)+ δV0, with δV0 = F/M .
One can thus define the average response function as RV (t) = 〈δV (t)〉e/δV0, where 〈[. . .]〉e
denotes an ensemble average at fixed time in the presence of an impulsive perturbation.
The response RV (t) bears important information on the transport properties of the system
being. Indeed, if the velocity distribution is Gaussian the classical FDT relation [33] tells
us that RV (t) coincides with the normalized velocity correlation function

RV (t) =
CV (t)

CV (0)
. (15)

This can be seen as the differential form of the Einstein relation connecting the asymptotic
speed of the particle to the mobility under the effect of an infinitesimally small force. In
the following, we present the measurement of the response function RV (t), which will be
compared with the correlation CV (t) to test whether FDT holds. Similarly, we analyze
also the response function of a tagged gas particle RV (t) when the impurity is absent.

In order to numerically compute the response function, we adopted the following
protocol. Consider a system HPS or HD in the presence of the colloidal particle and let it
evolve until the equilibrium state is reached. At this time, that we call t = 0, the velocity
of the colloidal particle is perturbed by a small amount V (0) → V (0) + δV0. In principle,
the perturbation should be infinitesimal (i.e. δV0 → 0). This is however unfeasible in
practical computations. We then considered three different perturbation values defined as
fractions of the root mean square velocity δV0 = α

√
T/M with α = 0.02, 0.05 and α = 0.1.

In this way, comparing the different numerical experiments, we can test a posteriori the
validity of the linear response theory. This small perturbation on the velocity is expected
to be re-adsorbed, meaning that the velocity of the impurity should, after a while, assume
values drawn from the equilibrium distribution. The procedure is thus repeated many
(typically 104–105) times. The time history of the colloidal particle V (t) is followed in
each experiment so as to obtain its average evolution 〈V (t)〉e, from which the response
function RV (t) can be defined as

RV (t) =
〈V (t)〉e

δV0
. (16)

Note that we used that 〈V (0)〉e = 0.
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(a) (b)

Figure 5. (a) RV (t) versus t measured for δV0 = α
√

T/M with α = 0.02, 0.05, 0.1
as in the legend and CV (t)/CV (0) (solid line) computed in the same conditions.
The parameters are as in figure 2 with T = 50. Note the good collapse, within
statistical errors, of the response functions for α = 0.02 and α = 0.05 and the cor-
relation function. Deviations can be appreciated for α = 0.1 (presumably for such
a value of the perturbation, one exits the linear response regime). (b) The same as
(a) but for HPS system with parameters as in figure 3, the agreement between the
decay of the correlation and the response function is also in this case very good.
For both (a) and (b), the three curves have different lengths because decreasing
the initial perturbation value the signal is spoiled by noise at earlier times.

Equation (16) has been verified in our simulations for both HPS and HD, and the
comparison between the numerical results is shown in figure 5. One should notice first that
for both HD and HPS the responses measured for different perturbations superimpose,
meaning that we are in the linear response regime. Moreover, the fair superposition of
the exponential decays of CV (t) and RV (t), up to statistical errors, constitutes numerical
evidence for both systems obeying the FDT relation.

The conclusion that can be drawn is that whenever the chaotic HD and the non-
chaotic HPS are prepared in an equilibrium state compatible with the thermodynamic
parameters T and ρ, the behavior of RV (t) does not reveal any difference between the two
systems.

The above procedure can be applied to a tagged particle so as to define the response for
gas particles Rv(t) which is connected to the correlation function Cv(t). We perform such
a measurement for the systems of HD and HPS without the impurity. As the perturbation
is very small the measurement is still meaningful though the system is not equilibrating.

Figure 6 shows the average response functions for a tagged particle in both HD
and HPS, together with the comparison with the correlation functions. There is a fair
agreement between Rv(t) and Cv(t)/Cv(0) for both HD and HPS models. Of course, in
the case of the HPS the validity of a FDT relation cannot be ascribed to the presence of
chaos. Clearly it can only come from the presence of many degrees of freedom and should
have a probabilistic origin.

4.2. Far from equilibrium

We consider now the case of relaxation when the system is prepared in a state far from
equilibrium, for which the difference between the two models becomes evident. This can
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(a) (b)

Figure 6. The same as figure 5(a) showing the FDT relation for the HD (a)
and HPS (b) gas particles (in the absence of the impurity). For HPS the initial
distribution of the gas velocities was chosen Gaussian with temperature T = 50
so as to allow comparison with the correlation function as measured in figure 4.

be understood from the outset by recalling that HPS systems with identical squares cannot
relax due to the collision rules that merely relabel the velocity components. Unlike HPS,
hard disk collisions, also thanks to chaos, mix the velocity components at each impact
and allow for a fast relaxation to a Maxwell–Boltzmann distribution.

When the colloid is introduced, relaxation to equilibrium becomes possible also in
HPS because impacts against the impurity break the relabeling process and provide a
mechanism for the transfer of energy (at least, separately for the x or y components
which do not mix); this is similar to the problem of the adiabatic piston considered in [42].
However, since only collisions with the impurity contribute to the relaxation process of
the gas, the time scale for reaching the equilibrium state crucially depends on its mass M
and size R. This contrasts with the HD model, for which the time scale of relaxation is
essentially unaffected by the characteristics and/or the presence of the colloid.

In our simulations, we prepare the HD or HPS gas in a state with a spatially
homogeneous distribution of particles and flat velocity distribution, i.e. P (vx, vy) =
g(vx)g(vy) with g(v) = 1/(2v0) for |v| < v0 and zero elsewhere. The value of v0 is fixed by
imposing the temperature T of the system, i.e. v2

0/6 =
∫

dvg(v)v2 = T/m. The colloidal
particle is initialized with random velocity extracted from the same distribution. The
system is then let evolve under the event driven dynamics, and the velocity pdf monitored
by computing

K(t) =
vx(t)4

3vx(t)2
2 =

vy(t)4

3vy(t)2
2 .

The symbol [. . .] indicates the average at a given time t over the gas particles, i.e. v2
x =

1/N
∑N

i=1 v2
xi. At t = 0, K = K0 = 3/5 while for t → ∞ the Gaussian result K = K∞ = 1

should hold, as the system is relaxed. To have a smooth behavior we average K(t) over
many independent runs. We thus obtain 〈K(t)〉e which is shown in figure 7(a) for HD and
is well described by the fitting function

〈K(t)〉e = K∞ + (K0 − K∞)e−t/Tr , (17)
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(a) (b)

Figure 7. (a) 〈K(t)〉e versus time for HD with different impurity mass values
including M = m (i.e. absence of the colloid). All curves collapse confirming
that in the case of disks the relaxation time is independent of the presence of the
colloid. The black curve represents the fit (17). (b) Relaxation time Tr versus M
needed for HPS to relax from a uniform to the Gaussian equilibrium distribution
at T = 50. Other parameters are fixed as in figure 3. The dotted straight
line suggests compatibility with a linear behavior at large mass ratios. The red
horizontal line indicates Tr for the HD, which is put here for comparison and to
show the independence of the relaxation process of the presence of the colloid as
already evidenced in (a).

where the fitting parameter Tr provides an estimate of the time of relaxation to equilibrium
of the system. The brackets 〈[· · ·]〉e denote averages over the realizations.

The perfect collapse of the curves 〈K(t)〉e for the HD system (figure 7(a)) obtained
for four values of the ratio M including the case M = m = 1 (i.e. without the impurity)
clearly indicates that the relaxation process of the disks is independent of the colloid.
Unlike HD, for HPS the mass M of the impurity is crucial in determining the relaxation.
This is shown in figure 7(b), where we report the behavior of Tr, fitted by using (17), as
a function of M . As one can see, Tr diverges for M → m (identical squares) and M → ∞
(immobile impurity which again does not allow for the exchange of energy, leading to the
impossibility of relaxation). Notice that asymptotically Tr seems to grow linearly with M .

This result, although obvious when considering the different natures of the collisional
processes occurring in the two systems, confirms that the relaxation to the equilibrium
of HPS is much slower than that for HD and crucially depends on the impurity
characteristics.

5. Final remarks

From the results presented in this paper we obtain good indications that a non-chaotic
system with many degrees of freedom, consisting of a gas of hard squares, provides a
suitable model for Brownian motion which is equivalent, at least at a simulation level, to
the corresponding chaotic model, where squares are replaced by disks.

A deep understanding the role of chaos for Brownian motion and for transport
properties is a very important issue deserving further comments. With reference to
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previous works, we now discuss this issue by stressing how the presence/absence of
ergodicity, mixing and chaos in the microscopic dynamics (may) influence the statistical
mechanics of macroscopic systems.

Let us start with a few remarks on equilibrium statistical mechanics, where the
problem of connecting (micro)dynamics and (macro)statistical features lies at the origin
of Boltzmann’s ergodic hypothesis. First, it is worth noticing that ergodicity, in its strict
mathematical formulation, is an extremely demanding property. Second, in spite of its
theoretical importance, it is not completely satisfactory from a physical point of view
as it involves global asymptotic limits, rarely encountered in practice. However, for
the foundation of statistical mechanics, a widespread consensus exists on the key role
played by the huge number of degrees of freedom involved in a macroscopic system
rather than ergodicity. This point of view received mathematical support from the
works by Khinchin [23], Mazur and van der Linden [24], and others. They proved
that statistical mechanics works independently of ergodicity thanks to the existence of
meaningful physical observables (the so-called sum functions) which are nearly constant
on the energy surface, apart from regions of vanishing measure. Support for this picture
comes from the results of Frisch and co-workers [28]–[31], who found robust statistical
phenomena in a trivially non-ergodic system. Nevertheless, Khinchin’s statements cannot
be the ultimate grounding of statistical mechanics because not all physically important
observables belong to the class of the sum functions.

Since chaos grants the validity of some ‘statistical laws’ even in few degrees of freedom
systems, one could be tempted to invoke it as the sufficient ingredient for building a robust
statistical mechanical approach grounded on Hamiltonian systems. However, for this to
be true, chaos in the microscopic dynamics should be ‘strong’ enough. Indeed, results5 of
extended simulations in high dimensional systems [46]–[48] have shown that chaos may
be not enough to ensure the validity of the equilibrium statistical mechanics.

Let us now discuss this issue in the non-equilibrium statistical mechanics context,
where the analogue of ergodicity is the mixing condition. As before, this condition is very
demanding, being related to the Γ space (the set of positions and momenta of system
particles), while the study of macroscopic systems usually focuses on physical observable
involving some projection procedures, amounting to neglect (or averaging of) the effects of
a large number of degrees of freedom in favor of a few relevant variables. For instance, in
the case of elementary transport properties the observables that matters refer to properties
of single particles: the mean square particle displacement, the correlation function and the
response function either of the colloidal particle or of the single gas particle. Therefore,
one can wonder about the microscopic conditions ensuring a ‘good’ statistical behavior
for the above quantities.

We can start by considering few degrees of freedom systems, where also simple deter-
ministic chaotic models may exhibit transport properties similar to those of more realistic
systems. Paradigmatic examples are chaotic billiards and the Lorentz gas, where particle
trajectories are chaotic as a consequence of the convexity of the obstacles. Numerical
and theoretical works have shown that, in these systems (under appropriate hypotheses

5 In chaotic high dimensional systems one may have a sort of ‘localized chaos’ without a globally irregular
dynamics. This phenomenon is in some way the high dimensional analogue of the presence of chaos in bounded
regions with the absence of large scale diffusion observed in low dimensional symplectic systems in situations
below the resonance overlap [45].
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such as hyperbolicity etc), the transport coefficients can be quantitatively related to chaos
indicators [6, 7]. This would suggest that chaos is tightly related to transport. However,
several examples of non-chaotic deterministic systems, such as a bouncing particle in a
two-dimensional billiard with polygonal randomly distributed obstacles, possess robust
transport properties [12]–[14], [16, 18]. For these non-chaotic models, it has been pro-
posed that a sort of non-linear instability mechanism is required to observe diffusion [14].
The existence of non-chaotic models able to display diffusion raises some doubt on the
possibility of making strong statements on the role of chaos for transport. It is however
important to stress that in all these models the particles do not interact, and therefore,
at least from a statistical mechanics point of view, they are rather artificial.

More interesting is thus to consider many degrees of freedom systems, such a those
investigated in this work. In this case the existence of quantitative relationships among
chaos indicators and transport coefficients is, to the best of our knowledge, less clear (see
for example [49, 50]). Nevertheless, chaos has been proved to be relevant in the establishing
of some non-equilibrium properties [51]. Moreover, it is fair to say that diffusion of
particles is rather common in chaotic many body particle systems. On the other hand, the
non-chaotic model here investigated together with the previous results obtained by Frisch
and co-workers [28]–[30] indicate that transport properties for both impurity and gas
particles agree with the prediction of kinetic theory and are indistinguishable from those of
the (mixing) hard disk model. Therefore chaos, at least in the sense of positive Lyapunov
exponents, cannot be invoked to explain the observed statistical behaviors. Nevertheless,
as for low dimensional models [14], also in HPS a non-infinitesimal mechanism of instability
can be induced by the presence of singular corners of the squares, and these likely play a
role in the diffusive behavior.

We interpret these findings in the framework developed by Khinchin: the ‘good
transport’ properties observed in the non-mixing system result from the large number
of particles and not from chaos. This is clearly evident for the correlation and response
functions for the hard squares when, e.g., all particle are identical and the collision
dynamics reduces to a mere relabeling. In such a case the exponential relaxation of
Cv(t) and Rv(t) is just a probabilistic consequence of the exponential distribution of the
time interval between two consecutive collisions. We stress that here diffusive properties
are the outcome of the action of many degrees of freedom, and not of non-linear instability
mechanisms as in low dimensional chaotic and non-chaotic models. Of course, as discussed
in section 4.2, chaos may favor the equilibration of the system.

As a last remark we note that the Gallavotti–Cohen [52] fluctuation theorem seems
to apply to non-chaotic models, at least in finite time intervals, as shown by Benettin et al
[53] who investigated a non-equilibrium version of the Ehrenfest wind–tree model, which
is non-chaotic. In such a system, although the maximum Lyapunov exponent is zero, the
presence of long irregular transients introduces an ‘effective randomness’.

In conclusion, we think that it is very difficult to decipher the signature of chaos in
transport phenomena observed in many particle systems because, as shown in this paper,
it can be overwhelmed by the emergence of an ‘effective dynamical randomness’ due to the
combination of: (a) the coarse-graining procedure, (b) finite scale instability and (c) the
presence of a huge number of degrees of freedom. The characterization of this ‘effective
randomness’ requires renouncing asymptotic limits (arbitrarily long time and arbitrary
resolution) in favor of a finite time and/or finite resolution analysis [11, 12, 54, 55].
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Figure A.1. Cartoon of the geometric construction used to compute the rate
of collisions between HD and HPS colloidal particles characterized by (M,R,V ),
and gas particles characterized by (m, r,v). The equivalent problem considers the
colloid at rest, but with increased size R + r, and pointlike gas particles moving
at the relative velocity v−V . The collision rate amounts to counting the number
of gas particles contained in the collisional cylinder.
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Appendix. Computation of the diffusion coefficient

In this appendix, we detail the computation of the diffusion coefficient for the colloidal
particle in a uniform and rarefied HD and HPS gas, following elementary kinetic theory.
The basic idea is to estimate the average drag force exerted by the gas particles which
collide with the impurity, by calculating the average momentum exchanged in the
collisions.

Consider a rarefied HD gas at equilibrium, and focus on the collision of the colloidal
disk characterized by its mass M , radius R and precollisional velocity V for gas particles
which are characterized by m, r, v, respectively. According to equation (2), the impulse
transferred in the collision is

MΔV = M(V ′ − V ) =
2mM

m + M
g,

g = v − V being the precollisional relative velocity. The rate of such collisions can be
obtained by considering the equivalent problem of a colloid, at rest, with radius r + R,
and hit by a flux of pointlike particles moving at relative velocity g. The rate is then
determined by counting the number of pointlike particles hitting the unit surface per unit
time for a given orientation e. This number corresponds to the particles contained in the
collisional cylinder of infinitesimal base (R+r) dθ and height ρ|g ·e|Θ(−e ·g)δt, as shown
in figure A.1. The unitary step function Θ(s) selects the condition, g · e < 0, for having
a collision.
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Accordingly, the mean impulsive force in the normal direction e = {cos(θ), sin(θ)}
selected by the θ angle that e forms with vector V (taken as the x axis direction) is
〈

M
δVn

δt

〉
=

2mM

m + M
ρ(R + r)

∫ 2π

0

dθ

∫
dv P (v)Θ(−e · g)|g · e|(g · e)e, (A.1)

where the average over the equilibrium distribution of the gas velocities P (v) =
m/(2πT ) exp[−m|v|2/(2T )] is meant. It is convenient to make the change of variable
(vx, vy) → (gx, gy) and then perform the approximation P (v) 
 P (g)[1 − m/Tg · V ],
justified in the limit M � m. After this manipulation, the integral (A.1) becomes
〈

M
δVn

δt

〉

 − 4m2M

T (m + M)
ρ(R + r)

∫ 2π

0

dθ

∫
dg P (g)Θ(−e · g)(g · e)2(g · V ) e.

This expression, recast in the form MV̇ = −γMV , allows one to make explicit the
friction coefficient γ. Passing to polar coordinates, gx = g cos(α), gy = g sin(α), simplifies
the integral (α being the angle between g and V , whose direction coincides with the
x axis). Indicating by φ the angle between e and g, we end up with

∫ 2π

0

dθ

∫ ∞

0

dgP (g)g4

∫ 2π

0

dα| cos(φ)| cos(φ)Θ[− cos(φ)]V cos(α) cos(θ),

where the angles α, θ, φ are related by θ − α = π − φ. The integration over g yields
3/(2π)

√
π/2(m/T )−3/2, and that over the angles gives the value 4π/3. We then obtain

the friction coefficient

γ = 2
√

2π
ρR

√
mT

M

(
1 + r/R

1 + m/M

)
, (A.2)

where the last factor takes into account finite size and mass corrections. By using
equation (6) the diffusion constant is obtained as

Dc =
T

Mγ
=

1

2
√

2π

1

ρR

√
T

m

(
1 + m/M

1 + r/R

)
. (A.3)

The same computation can be repeated for HPS, the only difference lying in the
geometry of the problem (figure A.1). Thanks to the symmetry, it is convenient to
decompose the average impulse transferred from the gas to the colloidal particle in the x
and y components (along the directions (1, 0), or (0, 1)). For example, in the x direction
we have〈

M
δV x

δt

〉

 − 4m2M

T (m + M)
ρ(R + r)Vx

∑

nx=±1

∫
dgx P (gx)Θ(−gxnx)(gxnx)

2|gx|.

Notice that the sum over nx = ±1 stems from the two identical contributions to the
exchanged momentum given by the left and right collisions occurring on the opposite
sides of the square. The integral can be solved in Cartesian coordinates, and considering
that the constraint imposed by Θ[−gxnx] amounts to a factor 2. We thus obtain

〈
M

δV x

δt

〉
= − 8m2M

T (m + M)
ρ(R + r)Vx

∫ ∞

0

dgxP (gx)g
3
x.
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The integration gives the value
√

2/π(m/T )3/2 yielding the final results for the friction
coefficient

γ = 8

√
2

π

√
mρR

√
T

M

(
1 + r/R

1 + m/M

)
, (A.4)

and thus the diffusion coefficient reads

Dc =

√
π

8
√

2

1

ρR

√
T

m

(
1 + m/M

1 + r/R

)
. (A.5)
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[27] Dürr D, Goldstein S and Lebowitz J L, A mechanical model of Brownian motion, 1981 Commun. Math.
Phys. 78 507

[28] Szu H H, Bdzil J, Carlier C and Frisch H L, Molecular-dynamics verification of a final velocity distribution
of a nonergodic system of hard parallel squares, 1974 Phys. Rev. A 9 1359

[29] Frisch H L, Roth J, Krawchuk B D and Sofinski P, Molecular dynamics of nonergodic hard parallel squares
with a Maxwellian velocity distribution, 1980 Phys. Rev. A 22 740

[30] Carlier C and Frisch H L, Molecular dynamics of hard parallel squares, 1972 Phys. Rev. A 6 1153
Carlier C and Frisch H L, Molecular-dynamics study of clustering in hard parallel squares, 1973 Phys. Rev.

A 7 348
[31] Rudd W G and Frisch H L, The equation of state of parallel hard squares, 1971 J. Comput. Phys. 7 394
[32] Kubo R, Brownian motion and nonequilibrium statistical mechanics, 1986 Science 233 330
[33] Kubo R, Toda M and Hashitsume N, 1985 Statistical Physics vol 2 (Berlin: Springer)
[34] Grassia P, Dissipation, fluctuations and conservation laws, 2001 Am. J. Phys. 69 113
[35] Allen M P and Tildesley D J, 1993 Computer Simulation of Liquids (Oxford: Clarendon)
[36] Garcia-Rojo R, Luding S and Brey J J, Transport coefficients for dense hard-disk systems, 2006 Phys. Rev.

E 74 061305
[37] Lorentz H A, The motion of electrons in metallic bodies, 1905 Proc. Amst. Acad. 7 438

Lorentz H A, The motion of electrons in metallic bodies, 1905 Proc. Amst. Acad. 7 585
Lorentz H A, The motion of electrons in metallic bodies, 1905 Proc. Amst. Acad. 7 684

[38] van Beijeren H, Dorfman J R, Cohen E G D, Posch H A and Dellago C, Lyapunov exponents from kinetic
theory for a dilute, field-driven Lorentz gas, 1996 Phys. Rev. Lett. 77 1974

[39] Alder B J and Wainwright T E, Decay of the velocity autocorrelation function, 1967 Phys. Rev. Lett. 18 988
[40] Dorfman J R and Cohen E G D, Velocity correlation functions in two and three dimensions, 1970 Phys.

Rev. Lett. 25 1257
[41] Perondi L F and Binder P M, Mean-squared displacement of a hard-core tracer in a periodic lattice, 1993

Phys. Rev. B 48 4136
[42] Chernov N and Lebowitz J L, Dynamics of a massive piston in an ideal gas: oscillatory motion and

approach to equilibrium, 2002 J. Stat. Phys. 109 507
[43] Ackland G J, Equipartition and ergodicity in closed one-dimensional systems of hard spheres with different

masses, 1993 Phys. Rev. E 47 3268
[44] Shirts R B, Burt S R and Johnson A M, Periodic boundary condition induced breakdown of the equipartition

principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics
simulation, 2006 J. Chem. Phys. 125 164102

[45] Chirikov B V, Universal instability of many-dimensional oscillator systems, 1979 Phys. Rep. 52 263
[46] Livi R, Pettini M, Ruffo S and Vulpiani A, Chaotic behaviour in nonlinear Hamiltonian systems and

equilibrium statistical mechanics, 1987 J. Stat. Phys. 48 539
[47] Benettin G, Galgani L and Giorgilli A, Boltzmann ultraviolet cutoff and Nekhoroshev theorem on Arnold

diffusion, 1984 Nature 311 444
[48] Alabiso C, Casartelli M and Marenzoni P, Thermodynamic limit beyond the stochasticity threshold in

nonlinear chains, 1993 Phys. Lett. A 183 305
[49] Barnett D M, Tajima T, Nishihara K, Ueshima Y and Furukawa H, Lyapunov exponent of a many body

system and its transport coefficients, 1996 Phys. Rev. Lett. 76 1812
[50] Torcini A, Dellago C and Posch H A, Comment on Lyapunov exponent of a many body system and its

transport coefficients, 1999 Phys. Rev. Lett. 83 2676
[51] Evans D J, Cohen E G D and Morriss G P, Viscosity of a simple fluid from its maximal Lyapunov

exponents, 1990 Phys. Rev. A 42 5990
Sarman S, Evans D J and Morriss G P, Conjugate-pairing rule and thermal-transport coefficients, 1992

Phys. Rev. A 45 2233
[52] Gallavotti G and Cohen E G D, Dynamical ensembles in nonequilibrium statistical mechanics, 1995 Phys.

Rev. Lett. 74 2694
[53] Lepri S, Rondoni L and Benettin G, The Gallavotti Cohen fluctuation theorem for a nonchaotic model ,

2000 J. Stat. Phys. 99 857
[54] Gaspard P and Wang X J, Noise, chaos and (ε, τ )-entropy per unit time, 1993 Phys. Rep. 235 291
[55] Boffetta G, Cencini M, Falcioni M and Vulpiani A, Predictability: a way to characterize complexity , 2002

Phys. Rep. 356 367

doi:10.1088/1742-5468/2007/12/P12001 21

http://dx.doi.org/10.1007/BF00536757
http://dx.doi.org/10.1007/BF02046762
http://dx.doi.org/10.1103/PhysRevA.9.1359
http://dx.doi.org/10.1103/PhysRevA.22.740
http://dx.doi.org/10.1103/PhysRevA.6.1153
http://dx.doi.org/10.1103/PhysRevA.7.348
http://dx.doi.org/10.1016/0021-9991(71)90100-8
http://dx.doi.org/10.1126/science.233.4761.330
http://dx.doi.org/10.1119/1.1289211
http://dx.doi.org/10.1103/PhysRevE.74.061305
http://dx.doi.org/10.1103/PhysRevLett.77.1974
http://dx.doi.org/10.1103/PhysRevLett.18.988
http://dx.doi.org/10.1103/PhysRevLett.25.1257
http://dx.doi.org/10.1103/PhysRevB.48.4136
http://dx.doi.org/10.1023/A:1020450228657
http://dx.doi.org/10.1103/PhysRevE.47.3268
http://dx.doi.org/10.1063/1.2359432
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1007/BF01019687
http://dx.doi.org/10.1038/311444a0
http://dx.doi.org/10.1016/0375-9601(93)90461-8
http://dx.doi.org/10.1103/PhysRevLett.76.1812
http://dx.doi.org/10.1103/PhysRevLett.83.2676
http://dx.doi.org/10.1103/PhysRevA.42.5990
http://dx.doi.org/10.1103/PhysRevA.45.2233
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1023/A:1018695529398
http://dx.doi.org/10.1016/0370-1573(93)90012-3
http://dx.doi.org/10.1016/S0370-1573(01)00025-4
http://dx.doi.org/10.1088/1742-5468/2007/12/P12001

	1. Introduction
	2. Deterministic many particle models for diffusion
	2.1. Hard disks model (HD)
	2.2. Hard parallel squares (HPS)

	3. Transport properties
	4. Relaxation properties
	4.1. Close to equilibrium
	4.2. Far from equilibrium

	5. Final remarks
	Acknowledgments
	Appendix. Computation of the diffusion coefficient
	References

