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Abstract
We discuss the recent attempts to generalize dynamical density functional (DDF) theory to
situations where the momentum and energy transport, not necessarily associated with mass
diffusion, play a role. We consider an assembly of particles described by inertial dynamics and
subjected to the influence of a heat-bath. By means of a time multiple timescale analysis we
derive the evolution equation for the noise-averaged density field. Remarkably, for large values
of the friction parameter and/or the mass of the particles we obtain the same governing equation
of DDF, and in addition we are able to compute higher-order corrections.

Introduction

A massive effort has been devoted, in recent years, to the
study of non-uniform systems at thermodynamic equilibrium
and firm theoretical approaches have been established. Among
these, density functional theory (DFT) [1] is perhaps the most
versatile. In contrast, we do not have a similar control over
the behavior of systems in generic non-equilibrium situations.
However, if the damped character of the dynamics makes
the density the only relevant field, dynamical extensions of
DFT have been introduced and tested successfully, as for the
important case of colloidal suspensions.

In the more general case, one needs to fully account for the
momentum and energy transport in addition to the dynamics
of the density field. The natural bottom-up approach is to
consider the evolution of both positions and momenta of the
particles and derive the governing equation for the phase-space
distribution, conveying the information about the microscopic
nature of the fluid. In this work we consider a system
of interacting particles subjected to thermostatted inertial
dynamics and derive the governing time-dependent equation
for the one-body density [2]. We show that, after a suitable
truncation of the Bogoliubov–Born–Green–Kirkwood–Yvon
hierarchy and a multiple timescale analysis, we obtain a

self-consistent equation involving only the one-body density
distribution [3]. Among the advantages of the present
approach over the standard time-dependent density functional
method are: (a) the possibility to treat assemblies of inelastic
particles [4], i.e. systems with interactions which do not
conserve the energy, (b) the ability to deal with non-isothermal
systems and (c) a better description of systems in the presence
of time-dependent potentials. As an application of the method,
we illustrate some results concerning the inhomogeneous
properties of inelastic hard rods in the presence of an external
potential. The present theory has also been extended to
arbitrary dimensions [5] and represents a route to derive
transport coefficients.

1. Theory

We consider an assembly of N particles moving in a d-
dimensional region with positions xi and velocities ui (i =
1, N). The particles have the same mass, m, experience
an external force fe(x) and interact through a pair potential
U(|x − x′|). The model also assumes that the particles are
subjected to a viscous drag force proportional to their velocity
plus a random stochastic forcing, arising from a heat-bath. The
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equations of motion are

dxn = undt (1)

m dun =
[

fe(xn) −
∑

m( �=n)

∇rn U(|xn − xm|) − mγ un

]
dt

+ dWn(t) (2)

where dWn(t) = ξ n(t) dt is the increment of the Wiener
process and ξ n(t) is a Gaussian white noise with properties

〈ξ i
n(t)〉 = 0

〈ξ i
n(t)ξ

j
m(s)〉 = 2γ mkBT δmnδ

i jδ(t − s)
(3)

where T is the ‘heat-bath temperature’ and 〈·〉 indicates the
average over a statistical ensemble of noise realizations [6].

By a standard procedure of stochastic calculus [7, 8]
we rewrite the description based on the trajectories into a
description based on the N-body phase-space distribution,
f (N)({x, v}, t):(

∂

∂ t
+

∑
n

[
vn · ∇xn + fe(xn)

m
·∇vn

− γ

[
∇vn · vn + kBT

m
∇vn · ∇vn

]])
f (N)({x, v}, t)

= 1

m

∑
n

∑
m( �=n)

∇xn U(|xn − xm |) ·∇vn f (N)({x, v}, t). (4)

In practice, only the information contained in the first two
reduced distribution functions, f (1) and f (2), obtained from
f (N) by integrating over the phase-space coordinates of (N−1)

and (N −2) particles, respectively, is relevant to our study. The
equation for f (1) is

∂

∂ t
f (1)(x, v, t) +

[
v ·∇x + fe(x)

m
· ∇v

]
f (1)(x, v, t)

= γ

[
∇v · v + kBT

m
∇v ·∇v

]
LFP f (1)(x, v, t) + k(x, v, t)

(5)

where the left-hand side of equation (5) contains the free
streaming of the particles, while the right-hand side accounts
for the interaction with the heat-bath and among particles [9].
The interaction term k(x, v, t), in the case of continuous
potentials, is

k(x, v, t) = 1

m
∇v

∫
dx′

∫
dv′ f (2)(x, v, x′, v′, t)

× ∇xU(|x − x′|) (6)

and depends on the two-particle distribution function,
f (2)(x, v, x′, v′, t), so that an approximate closure is required
in order to truncate the hierarchy. We first approximate
the doublet distribution function as f (2)(x, x′, v, v′, τ ) =
f (1)(x, v, τ ) f (1)(x′, v′, τ )g2(x, x′|ρ) in which the pair corre-
lation g2 is a function only of the particle positions, but not
of their velocities. It is assumed that g2 is a non-local equi-
librium functional of the profile ρ(x, t) and depends on time
only through the density, and has the same form as in a non-
uniform equilibrium state whose density is ρ(x, t). With this
approximation we find

k(x, v, τ ) = −Fmol(x, τ ) ·∇v f (1)(x, v, τ ) (7)

where, using ρ(x, τ )σ d = ∫
dvP(x, v, τ ), we have introduced

the molecular field:

Fmol(x, τ ) = −
∫

dx′ρ(x′, τ )g2(x, x′|ρ)∇xU(|x − x′|). (8)

For particles with hard-core interactions the term
∇xU(|x − x′|) is ill-defined and the mean-field treatment is not
appropriate, since the force has an impulsive character. Due to
the hard-core interaction the velocities change instantaneously
and their value after the impact, denoted with a prime, is
related to the one before the impact (unprimed) by the linear
transformation:

v′
1 = v1 − (v12 · σ̂ )σ̂

v′
2 = v2 + (v12 · σ̂ )σ̂

(9)

where v12 = v1 − v2 and σ̂ is the unit vector directed
from particle 1 to particle 2. The revised Enskog theory
(RET) [10, 11] provides a closed approximate expression
for the collision term as a function of the single-particle
distribution function:

k(x1, v1, t) = σ d−1
∫

dv2

∫
dσ̂	(σ̂ · v12)(σ̂ · v12)

× {g2(x1, x1 − σ̂ |ρ) f (1)(x1, v′
1, τ ) f (1)(x1 − σ̂ , v′

2, τ )

− g2(x1, x1 + σ̂ |ρ) f (1)(x1, v1, τ ) f (1)(x1 + σ̂ , v2, τ )}
(10)

where the primes on the velocities denote scattered values
determined from equation (9). It is important to recognize that
pairs of atoms are assumed to be uncorrelated immediately
prior to collision but are correlated after they collide,
i.e. collision itself generates correlations.

It is convenient to switch to non-dimensional variables
which are obtained by measuring the velocities in units of
the thermal velocity vT = √

kBT/m and lengths in units
of σ , i.e. V ≡ v

vT
and X ≡ x

σ
. The remaining variables

can be non-dimensionalized according to the transformations
τ ≡ t vT

σ
, 
 ≡ γ σ

vT
, F(X) ≡ σ

mv2
T
fe(x). Finally, the distribution

function and the collision term are rescaled according
to the transformations: P(X, V, τ ) ≡ σ dvd

T f (1)(x, v, t)
and K (X, V, τ ) ≡ σ d+1vd−1

T k(x, v, t), where d is the
dimensionality of the embedding space.

For the sake of simplicity, hereafter we shall specialize
to one dimension where the notation becomes much simpler.
Equation (5) can be cast in the following non-dimensional
form:
1




∂ P(X, V , τ )

∂τ
=

[
LFP − 1



V

∂

∂ X
− 1



F(X, τ )

∂

∂V

]

× P(X, V , τ ) + 1



K (X, V , τ ) (11)

having introduced for the sake of brevity the ‘Fokker–Planck’
operator LFP whose eigenfunctions Hμ(V ) have the property

LFP Hμ(V ) ≡ ∂

∂V

[
∂

∂V
+ V

]
Hμ(V ) = −μHμ(V ), (12)

for μ = 0, 1, . . . , and have the explicit representation

Hμ(V ) ≡ 1√
2π

(−1)μ
∂μ

∂V μ
exp

(
−1

2
V 2

)
. (13)

2
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It is also convenient to look for solutions of equation (12)
where the position and velocity dependence of the distribution
function can be separated by projecting onto the basis of the
eigenfunctions Hμ(V ). To this purpose we define raising and
lowering operators, a±Hμ(V ) = Hμ±1(V ), respectively, with
the properties

V Hμ(V ) = (a+ + μa−)Hμ(V ), (14)

and expand over the basis set Hν(V ), both the phase-space
distribution

P(X, V , τ ) =
∑

ν


ν(X, τ )Hν(V ) (15)

and the collision term

K (X, V , τ ) =
∑

ν

Cν(X, τ )Hν(V ). (16)

As shown in our previous work, the coefficients Cν(X, τ )

have simple expressions in terms of the moments 
ν(X, τ )

with coefficients which are non-local functionals of the
density distribution. Substituting equations (15) and (16) in
equation (11) and using the orthogonality of the basis set
Hν(V ), we obtain a system of coupled equations for the
moments 
ν(X, τ ) which can be written in compact form as

[
∂

∂τ
+ 
ν

]

ν(X, τ ) + (ν + 1)

∂
ν+1(X, τ )

∂ X

+
[

∂

∂ X
− F(X)

]

ν−1(X, τ ) − Cν(X, τ ) = 0 (17)

with 
−1 = 0. We identify the moment 
0(X, τ ) =∫
dV P(X, V , τ ) with the number density, ρ(X, τ ), 
1(X, τ ) =∫
dV V P(X, V , τ ) with the momentum density J (X, τ )

or particle current, and 
2(X, τ ) + 
0(X, τ )/2 =
1/2

∫
dV V 2 P(X, V , τ ) with the kinetic energy density.

Before trying to solve the full problem, it is somehow
instructive to consider the exact solutions of equation (11) for
a system of free particles (F = 0 and K = 0). These can be
written in terms of the infinite series of modes, μ = 0, 1, . . . ,

with the generic form [3]

P(μ)(X, V , τ ) = exp(−μ
τ) exp

[
−a+




∂

∂ X

]

×
(

1 + a−



∂

∂ X

)μ

Hμ(V )φ(μ)(X, τ ). (18)

The function φ(μ)(X, τ ), which fully defines the mode
P̃(μ)(X, V , τ ), represents any solution of the diffusion
equation

∂

∂τ
φ(μ)(X, τ ) = 1




∂2

∂ X2
φ(μ)(X, τ ). (19)

Clearly, the solutions with μ > 0 decay fast and the
only relevant contribution to the phase-space distribution is
represented by the μ = 0 mode. The dominant contribution to
this mode is a density fluctuation (the first term), followed by a

current fluctuation (the term of order 
−1) and so on according
to the structure

P(0)(X, V , τ ) = H0(V )φ(0)(X, τ ) − H1(V )




∂φ(0)(X, τ )

∂ X

+ H2(V )

2!
2

∂2φ(0)(X, τ )

∂ X2
+ · · · . (20)

All terms are slaved by the first and their shapes are given
by the successive derivatives of φ(0)(X, τ ) with respect to X .
Indeed, the amplitudes of the H1(V ) and H2(V ) components
are completely determined from knowledge of φ(0)(X, τ ).
Such a complexity reduction occurs because the density is the
only conserved field in our thermostatted model [12].

2. Multiple timescale method

As is clear from the previous illustrative discussion, what really
matters is the evolution of the density field which occurs slowly
by diffusion. In turn, such a field generates a momentum
current, an energy current and so on through the spatial
derivatives of increasing order. In the case of non-interacting
particles, these currents do not affect the evolution of the
density, whereas they induce a feedback in the interacting case.
In the fully interacting case, the problem of deriving from
equation (5) the correct form of the governing equation for
the density can be solved by means of the multiple timescale
analysis [13, 14]. In a nutshell, the method makes use
of the presence of two distinct timescales. The first scale
is fast and corresponds to the time interval necessary for
the velocities to relax to configurations consistent with their
thermal equilibrium value. The second timescale is much
longer and corresponds to the time necessary for the positions
of the particles to assume their equilibrium configurations. We
omit here the lengthy analytical derivation, which has already
been presented elsewhere [3], and write only the final result:

∂ρ

∂τ
(X, τ ) = 1



∂X {[JDFT(X, τ ) + δ J (X, τ )}. (21)

constituting a closed expression for the density ρ(X, τ ). As
shown below, the density field fully characterizes the state of
the system and slaves the remaining hydrodynamic fields. The
leading term of order 
−1 can be written as

JDFT(X, τ ) = −ρ(X, τ )∂X

[
δF rod[ρ]
δρ(X, τ )

+ Vext(X)

]
, (22)

where F rod[ρ] is the hard-rod density functional of the
instantaneous ensemble averaged density ρ(X, τ ) and the label
DFT indicates that this contribution to the particle current is
identical to the contribution predicted by DDFT.

The second term in the rhs of order 
−2 is

δ J (X, τ ) = 2√
π


ρ(X, τ )[g2(X, X + 1)JDFT(X + 1, τ )

+ g2(X, X − 1)JDFT(X − 1, τ )]
− 2√

π
JDFT(X, τ )[g2(X, X + 1)ρ(X + 1, τ )

+ g2(X, X − 1)ρ(X − 1, τ )] (23)

3
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and is a correction to the DDFT result accounting for the
departures of the velocity distribution from the Maxwellian
shape, which are not considered in DDFT approaches. The
current is a functional of the scaled density ρ(X, τ ), so that
equation (21) is self-consistent and can be solved numerically
by iteration. It is important to say that, to establish this
equation, we have not used the character of the free energy
or other equilibrium considerations, but only the form of the
pair correlation function which enters the RET closure. We
believe that this result is remarkable because it establishes
that the present kinetic derivation leads to the same DDFT
equation if the inverse friction expansion is truncated at the
lowest order. On the other hand, when higher-order corrections
are included we were unable to prove an H-theorem stating that
there exists a Lyapunov functional of the dynamics which is a
non-increasing function of time.

3. Granular systems

Granular gases, i.e. assemblies of particles experiencing
mutual energy non-conserving collisions, are often represented
by means of inelastic hard spheres [15]. Inelastic hard spheres
in one dimension (hard rods) obey the following collision rule,
whenever the separation of two particles, say i and i +1, equals
the hard-rod length σ :

v′
1 = v1 + 1 + α

2α
(v2 − v1)

v′
2 = v2 − 1 + α

2α
(v2 − v1).

(24)

where the precollisional velocities are indicated with primed
symbols and the postcollisional velocities are unprimed. The
collision manifestly conserves the total momentum of the pair,
but not the total kinetic energy. The granular gas is therefore
bound to cool and eventually come to rest, since its kinetic
temperature, proportional to the average kinetic energy per
particle, decreases as collisions take place, unless a sufficient
amount of energy is injected into the system to balance the
inelastic losses. A simple way to achieve a steady state
regime is to couple the inelastic particles to an energy source
idealized as a heat-bath. Such an assumption renders the
model somehow simpler and allows us to use the same methods
employed to study colloidal systems, but with a collision kernel
modified by inelasticity. We give here only the final result of
the analytical treatment, leading to the equation for the density
analogous to equation (21). The new feature which comes
about is the presence of a new contribution to the particle
current:

δ J ′(X, τ ) = −∂X
(1 − α2)

2
√

π

ρ(X, τ )[g2(X, X + 1)ρ(X + 1, τ )

+ g2(X, X − 1)ρ(X − 1, τ )] (25)

that vanishes in the limit α → 0 and for uniform density
distribution, and describes the tendency of the particles to form
locally dense aggregates due to their inelasticity [4].

Not too surprisingly, in the light of the previous analysis
of colloidal systems, this is an equation involving the density
field alone, but the presence of extra collisional terms signals

the coupling between density fluctuations and temperature
fluctuations. The latter in turn are slaved by the density
fluctuations so that the equation is self-consistent.

In the limit τ → ∞ we can determine the granular
temperature profile:

T (X) = 1 − (1 − α2)

2

√

π
[g2(X, X + 1)ρ(X + 1)

+ g2(X, X − 1)ρ(X − 1)] (26)

where we suppressed the time argument and the functions of
the single spatial argument have to be understood as their
asymptotic limiting values when τ → ∞. The constant
1 in the rhs represents (in our reduced units) the heat-bath
temperature, whereas the second term is the shift in the local
temperature induced by collisions. In fact, it amounts to the
product of three factors: the kinetic energy dissipated, the
collision rate ωE (Enskog collision frequency) and the typical
time γ −1 of the heat-bath. The average Enskog frequency at
each side of the particle located at X is

ωE(X ± 1)

γ
= 2



√

π
g2(X, X ± 1)ρ(X ± 1) (27)

and in the case of a uniform system it reduces to the bulk
Enskog frequency ωE = 2vTρσg2/

√
π , where vT is the

thermal velocity of the gas.
We turn now our attention to the pressure profile �(X, τ ),

which can be separated into a kinetic and a collisional
contribution:

�(X) = �kin(X) + �coll(X). (28)

The first term is the so-called kinetic pressure, arising from the
momentum transfer associated with the particle motion:

�kin(X) = T (X)ρ(X). (29)

In the same limit, taking into account the collisional pressure,
i.e. the contribution stemming from the momentum transfer
through collisions acting even in the absence of mass transport,
one finds the equation of state in the uniform non-equilibrium
steady state in the form

� = Tρ

(
1 + (1 + α)

2

ρ

1 − ρ

)
. (30)

Expressing the temperature as a function of the density (from
equation (26))

T = 1 − 1 − α2



√

π
g2ρ (31)

we see that equation (30) describes the lowering of the pressure
due to the collisional reduction of the temperature and becomes
the familiar hard-rod pressure equation for α = 1.

4. Systems with non-uniform temperature

Thermal gradients, besides causing a heat flow, can induce
a mass flow in systems such as colloids. The phenomenon
is termed thermodiffusion, thermophoresis or the Ludwig–
Soret effect [16, 17] and is relevant because it represents

4
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a tool to manipulate and concentrate molecules in solution.
Thermophoresis, in fact, typically enhances the concentration
in colder regions.

Nevertheless, in spite of its technological interest, not
many studies provide a derivation of the governing equation
for the concentration field in the presence of a temperature
gradient externally imposed (see, however, [18]). A problem
arises when one considers the γ → ∞ limit: the resulting
stochastic equation contains a multiplicative noise term (the
temperature is space-dependent). This in turn means that the
associated FPE depends on the particular prescription used to
derive it, i.e. one encounters the so-called Ito–Stratonovich
dilemma. To solve it, Matsuo and Sasa [19] recently obtained
the Smoluchowski [20] equation from a perturbation expansion
in powers of the inverse friction. Two important aspects arise
from their work: first, the underdamped dynamics is free from
the Ito–Stratonovich dilemma and, second, their perturbation
scheme is unbounded in time and one needs a renormalization
treatment to make it convergent.

Even in this case the multiple timescale method has been
employed to derive the Smoluchowski equation for a system
of Brownian particles in a temperature gradient derived from
the Kramers’ equation [21]. Following the line of reasoning
of Marconi and Tarazona [3], one could write the following
governing equation:

∂ρ(x, t)

∂ t
= ∇

{
∇D(x)ρ(x, t)

+ 1

mγ
ρ(x, t)∇

[
δFni[ρ]
δρ(x, t)

+ Vext(x)

]}
, (32)

where D(x) = kBT (x)/mγ and Fni is the excess over the
ideal gas contribution to the free energy. The second term
renormalizes the effective diffusion constant of the particles
and may become important at higher concentrations.

5. Final remarks

We have considered the non-equilibrium dynamics of a
colloidal system of mass m subjected to a uniform heat-
bath. The evolution depends on the non-dimensional frictional
parameter 
−1, proportional to the time span occurring for the
velocity distribution to reach its equilibrium value, and the
packing fraction. This evolution is described by a Kramers’
equation for the phase-space distribution supplemented by a
collision term, treated within the revised Enskog theory. Since
the momentum degrees of freedom equilibrate much faster
than the positional degrees of freedom, it is reasonable to
look for a description which contains only the latter variables.
By employing a multiple timescale analysis we obtained
a modified Smoluchowski–Enskog equation for the density
field and found that the collision term gives a non-local
coupling between density, momentum and energy fluctuations.
However, the density field slaves the remaining fields. To
lowest order in 
−1 the present method yields the same
evolution equation for the density as the one obtained within
the DDF approach. The present derivation does not require the
existence of any equilibrium density functional, but is based
on kinetic theory arguments. Therefore, it can be applied to

generic non-equilibrium systems, where the RET closure is
physically sound. However, by containing as a key ingredient
the same equilibrium pair correlation as the DDF, the matching
between the two methods is not too surprising.

As discussed by Archer and Evans [22] if the thermal
equilibration occurs mainly via the solvent the deviations from
the DDF should be negligible. Nevertheless, for atomic fluids
the harshly repulsive potential might concur appreciably to
the relaxation process and lead to significant effects which
are beyond the limits of the DDF approach. In this respect,
notice that the proposal made by Archer [23] for a DDF
approximation for the fully inertial case was based on the direct
use of the molecular field equation (8). Our analysis here
shows the importance of going beyond that approximation even
at the first correction from the fully damped limit, since the
hard-core repulsions create a strong correlation between the
relative velocities of the colliding particles.

Besides reproducing known results the present deriva-
tion provides systematic corrections to the DDF equation ac-
counting for the deviation of the velocity distribution from the
Maxwellian. Hence, it can describe situations very far from
thermodynamic equilibrium or even situations where a steady
non-equilibrium state exists.

The present method quite naturally lends itself to the
following future applications and extensions: (a) systems of
particles experiencing inelastic collisions, such as granular
gases, where free energy functional approaches are not
applicable and the RET closure provides a valid alternative,
(b) systems having a non-uniform temperature profile where
the standard isothermal DDF approach cannot be applied and
(c) inclusion of higher-order corrections in the inverse friction
expansion 
−1 accounting for currents associated with higher
moments of the velocity distribution.
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