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Abstract
We revisit the diffusion properties and the mean drift induced by an external field of a random walk
process in a class of branched structures, as the comb lattice and the linear chains of plaquettes. A simple
treatment based on scaling arguments is able to predict the correct anomalous regime for different
topologies. In addition, we show that even in the presence of anomalous diffusion, Einstein’s relation still
holds, implying a proportionality between the mean square displacement of the unperturbed systems and
the drift induced by an external forcing.

1. Introduction

Einstein’s work on Brownian motion represents one
of brightest example of how Statistical Mechanics [1]
operates by providing the first-principle foundation to
phenomenological laws. In his paper, the celebrated
relationship between the diffusion coefficient and the
Avogadro’s number NA was the first theoretical evidence
on the validity of the atomistic hypothesis. In addition, he
derived the first example of a fluctuation-dissipation relation
(FDR) [2, 3].

Let xt be the position of a colloidal particle at time t
undergoing collisions from small and fast moving solvent
particles, in the absence of an external forcing. At large times
we have

〈xt〉0 = 0, 〈x2
t 〉0 ' 2D t, (1)

where D is the diffusion coefficient and the average 〈· · ·〉0 is
over an ensemble of independent realizations of the process.
The presence of an external constant force-field F induces a
linear drift

〈δxt〉F = 〈xt〉F − 〈xt〉0 = µFt, (2)

where 〈· · ·〉F denotes the average over the perturbed system
trajectories and µ indicates the mobility. Einstein was able to

prove that the following remarkable relation holds:

〈x2
t 〉0

〈xt〉F − 〈xt〉0
=

2kBT

F
. (3)

The above equation is an example of a class of general
relations known as fluctuation-dissipation relations, whose
important physical meaning is the following: the effects of
small perturbations on a system can be understood from the
spontaneous fluctuations of the unperturbed system [2, 3].

Anomalous diffusion is a well known phenomenon
ubiquitous in Nature [4–6] characterized by an asymptotic
mean square displacement behaving as

〈x2
t 〉0 ' t2ν with ν 6= 1

2 . (4)

The case ν > 1/2 is called superdiffusive, whereas ν < 1/2
corresponds to subdiffusive regimes. The nonlinear behaviour
(4) occurs in situations whereby the central limit theorem
does not apply to the process xt. This happens in the
presence of strong time correlations and can be found in
chaotic dynamics [7, 8], amorphous materials [9] and porous
media [10, 11] as well.

Anomalous diffusion is not an exception also in
biological contexts, where it can be observed, for instance,
in the transport of water in organic tissues [12, 13] or
migration of molecules in cellular cytoplasm [14, 15].
Biological environments which are crowded with obstacles,
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Figure 1. Cartoon of a one-dimensional lattice (backbone)
decorated by identical arbitrary-shaped sidebranches or dead-ends
depicted as lateral irregular objects. Such sidebranches act as
temporary traps for the random walk along the backbone.

compartments and binding sites are examples of media
strongly deviating from the usual Einstein scenario. Similar
situations occur when the random walk (RW) is restricted on
peculiar topological structures [16–18], where subdiffusive
behaviours spontaneously arise. In such conditions, it
is natural to wonder whether the fluctuation–response
relationship (3) holds true and, if it fails, what are its possible
generalizations.

The goal of this paper is to present a derivation based
on a simple physical reasoning, i.e. without sophisticated
mathematical formalism, of both the anomalous exponent
ν and equation (3) for RWs on a class of comb-
like and branched structures [19] consisting of a main
backbone decorated by an array of sidebranches as in
figure 1. Such branched topology is typical of percolation
clusters at criticality, which can be viewed as finitely
ramified fractals [20, 21]. Comb-like structures moreover
are frequently observed in condensed matter and biological
frameworks: they describe the topology of polymers [22, 23],
in particular of amphiphilic molecules, and can be also
engineered at the nano- and microscale. Moreover, they are
studied as simple models for channels in porous media and a
general account of these systems can be found in [16].

The diffusion along the backbone, longitudinal diffusion,
can be strongly influenced by the shape and the size of such
branches and anomalous regimes arise by simply tuning their
geometrical importance over the backbone. In other words,
the dangling lateral structures, dead-ends, introduce a delay
mechanism in the hopping to neighbouring backbone sites that
easily leads to non-Gaussian behaviour, as has been observed
for instance in flows across porous media [24, 25].

The simple analysis of the RW on such lattices is based
on the homogenization time, meant as the shortest timescale
after which the longitudinal diffusion becomes standard. The
homogenization time t∗(L) can be identified with the typical
time taken by the walker to visit most of the Msb(L) sites
in a single sidebranch of linear size L. Such a time is
expected to be a growing function of Msb(L) and thus of L:
t∗(L) = g[Msb(L)]. In the following, we shall see how the
scaling properties of t∗(L)= g[Msb(L)] can be easily extracted
from graph-theoretical considerations, in simple and complex
structures as well.

Figure 2. Sketch of the simplest comb lattice structure made of a
‘backbone’ (horizontal array) and ‘tooth’ (lateral arrays) of size L.

Once such a scaling is known, we can apply a ‘matching
argument’ to derive the exponent ν in the relation (4).
For finite size sidebranches, the anomalous regime in the
longitudinal diffusion is transient and sooner or later it will
be replaced by the standard diffusion,

〈x2
t 〉 ∼

{
t2ν if t � t∗(L)

D(L) t if t � t∗(L),
(5)

where D(L) is the effective diffusion coefficients depending
on L. The power-law and the linear behaviours have to match
at time t ∼ t∗(L), thus we can write the matching condition

t∗(L)
2ν
∼ D(L) t∗(L) or equivalently

t∗(L)
2ν−1
∼ D(L).

(6)

Accordingly, both the scaling D(L) ∼ L−u and t∗(L) ∼ Lv

provide direct access to the exponent ν via the expression
(1–2ν)v = u. We shall see in the following how the values
of u and v are determined by two relevant dimensions of RW
problem: the spectral (dS) and the fractal (d) dimensions. The
former is related to the return probability to a given point of
the RW and the latter defines the scaling Msb(L) ∼ Ld.

Moreover, we will show that the anomalous regimes
observed in branched graphs satisfy the FDR (3) supporting
the view that FDR has a larger realm of applicability than
Gaussian diffusion, as already pointed out by other authors
in similar and different contexts [26–29]. In the branched
systems considered in this work, the generalization of FDR
is due to a perfect compensation in the anomalous behaviour
of the numerator and the denominator of the ratio (3).

The paper is organized as follows. In section 2,
we discuss the diffusion and the response by starting
from the simplest branched structure: the classical comb
lattice (figure 2), i.e. a straight line (backbone) intersected
by a series of sidebranches. The generalization to more
sophisticated ‘branched structures’ made of complex and
fractal sidebranches is reported in section 3. Section 4
contains conclusions, where possible links of the FDRs here
derived to other frameworks are briefly discussed.
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2. The simplest branched structure

First, we consider the basic model: the simplest comb lattice
is a discrete structure consisting of a periodic and parallel
arrangement of the ‘teeth’ of length L along a ‘backbone’ line
(B), see figure 2. This model was proposed by Goldhirsch
et al [30] as a elementary structure able to describe some
properties of transport in disordered networks and can be well
adapted to all physical cases where particles diffuse freely
along a main direction but can be temporarily trapped by
lateral dead-ends. The walker occupying a site can jump to
one of the nearest-neighbour sites. Denoting by rt = (xt, yt)

the position of the walker at time t, we can define the
longitudinal displacement from the initial position as

xt − x0 =

t∑
j=1

δj, (7)

where {δj} are non-independent random variables such that

δj =

{
δ
‖

j if rj ∈ B

0 if rj 6∈ B

where δ
‖

j = {−1, 0, 1} with probability {1/4, 1/2, 1/4}
respectively and B denotes the set of points with y = 0,
i.e. forming the backbone B (figure 2). A simple algebra yields

〈(xt − x0)
2
〉0 =

t∑
j=1

〈δ2
j 〉0 + 2

t∑
j=1

t∑
i>j

〈δjδi〉0

where terms 〈δ2
j 〉0 = 0 if rj 6∈ B, whereas 〈δ2

j 〉0 = 1/2 if
rj ∈ B. On the other hand 〈δjδi〉0 = 0 for all j 6= i. Therefore
we have

〈(xt − x0)
2
〉0 =

1
2 tft, (8)

where ft is the mean percentage of time (frequency) the walker
spends in the backbone B during the time interval [0, t]. To
evaluate ft, we begin from the case t > t∗(L), t∗(L) being
the homogenization time, meant as the time taken by the
walker to span a whole tooth, visiting at least once all the
sites [31]. Since along the y-direction the one-dimensional
diffusion 〈y2

t 〉 ' 2D0t is fast enough to explore exhaustively
the size L and, more importantly, it is recurrent, t∗(L) can be
taken as the time such that 〈y2

t 〉 ∼ L2 and thus t∗(L) ∼ L2.
Since, after the time of the order t∗(L) ∼ L2, the probability
for the walker to be in a site of the tooth can be considered to
be almost uniform, we have

ft =
1

1+ L
' L−1,

hence for t ≥ t∗(L), the mean square displacement behaves as

〈(xt − x0)
2
〉0 '

1
2(1+ L)

t (9)

with an effective diffusion coefficient D(L) = 1/[4(L + 1)].
In the above derivation, we have assumed that the lateral teeth
are equally spaced at distance 1. When the spacing is ` > 1
the formula changes to D(L) = 1/[4(L + `)]. This formula
can be interpreted as the ratio between the free D0 = 1 and

the effective diffusivity D(L). In the literature on transport
processes, this ratio is sometimes referred to as tortuosity
and it describes the hindrance posed to the diffusion process
by a geometrically complex medium in comparison to an
environment free of obstacles [32, 13].

The diffusion on a simple comb lattice for L = ∞ is
known to be anomalous [17, 4, 33]. For finite L the diffusion
remains anomalous as long as the RW does not feel the finite
size of the sidebranches. Therefore for times t < t∗(L), we
expect an anomalous behaviour

〈(xt − x0)
2
〉0 ∼ t2ν (10)

where the exponent ν can be computed by the matching
condition (6), with t∗(L) ∼ L2 and D(L) ∼ L−1, yielding
L4ν
∼ L−1

× L2, from which ν = 1/4,

〈(xt − x0)
2
〉0 ∼ t1/2. (11)

This result can be rigorously derived from standard RW
techniques [17]. It is interesting to note that, as the
homogenization time t∗(L) diverges with the size L, upon
choosing the appropriate L, the anomalous regime can be
made arbitrarily long until it becomes the dominant feature
of the process.

The longitudinal diffusion is a process determined by the
return statistics of the walkers to the backbone. The walker
indeed becomes ‘active’ only after a return time Tr = Tr(t)
(operational time) which is actually a stochastic variable of
the original discrete clock t = nt0. This is an example of
subordination: the longitudinal diffusion is subordinated to
a simple discrete-time RW through the operational time Tr.
In a more familiar language, we are observing a continuous
time random walk (CTRW) where waiting times are the return
times to backbone sites [33] during the motion along the teeth.
CTRW on a lattice, proposed by Montroll and Weiss [34],
is a generalization of the simple RW where jumps among
neighbour sites do not occur at regular intervals (tk = kt0) but
the waiting times between consecutive jumps are distributed
according to a probability density ψ(t). Shlesinger [35]
showed that anomalous diffusion arises if ψ(t) is long tailed.

The equation governing the CTRW is

P(x, t) =
∞∑

n=0

G(x, n)P(n, t) (12)

where G(x, n) is the probability distribution of the variable x
after n steps along the backbone from the origin x = 0 and
P(n, t) indicates the probability to make exactly n steps in
the time interval [0, t]. The probability P(n, t) is related to
the waiting-time distribution ψ(t). On the comb lattice, the
waiting-time distribution ψ(t) coincides with the distribution
of first-return time to the backbone sites, which for infinite
sidebranches is long tailed and asymptotically decays as
ψ(t) ∼ t−3/2 (see [17]). For finite sidebranches of size L, the
distribution is truncated to t∗(L) by the finite-size effect, thus
ψ(t) ∼ t−3/2 exp[−t/t∗(L)], [4, 33].

We now consider the problem of the response of a driven
RW on a comb lattice in the presence of an infinitesimal
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A) B)

Figure 3. (A) rescaled MSD, 〈x2
〉0/L, for the comb lattice (figure 2) of tooth length L, as a function of the rescaled time t/L2. There is a

crossover, at t/L2
∼ 1 (i.e. t ' t∗ ∼ L2) between a subdiffusive, t1/2, to a standard regime t. Inset: plot of 〈x2

〉0 versus t without rescaling for
different L. (B) Plot showing the generalized fluctuation-dissipation relation (14). The slope of the dashed straight line is 2ε, where
ε = 2δp = 0.02 as prescribed by equation (14). Inset: separate plot of MSD and fluctuation 〈δxt〉ε versus time to appreciate their common
behaviour in both anomalous and standard regime.

longitudinal (i.e. parallel to the backbone line) external field
ε [26, 36]. In that case, the displacement on the backbone is

xt − x0 =

t∑
j=1

1
(ε)
j ,

where

1
(ε)
j =

{
δ
(ε)
j if rj ∈ B

0 if rj 6∈ B

δ
(ε)
j = {−1, 0, 1} with probabilities, {(1/4+ δp), 1/2, (1/4−

δp)}, so that 〈δ(ε)j 〉 = ε. Thus a biased RW with jumping
probabilities 1/4− δp and 1/4+ δp to the left and to the right
respectively is used to model the effect of a static external
field. The average jump is 〈δ(ε)j 〉 = 1 × (1/4 + δp) − 1 ×
(1/4 − δp) = 2δp, thus ε = 2δp. Notice that ε plays the role
of the external field F. By the same argument used for the free
RW on the comb, we obtain

〈δxt〉ε = 〈(xt − x0)〉ε − 〈(xt − x0)〉0 = εtft. (13)

The comparison of equations (8) and (13) provides the general
result

〈(xt − x0)
2
〉0

〈δxt〉ε
=

1
2ε
. (14)

We stress that this expression holds at any time: for both t &
t∗(L) and t . t∗(L) [26], thus it works even when the averages
are not taken over the realizations of a Gaussian process.
In this respect, equation (14) represents a generalization of
the Einstein relation (14) to the RW over comb lattices in
agreement with analogous results found in different systems
and contexts [27–29].

This property is a simple consequence of the subordina-
tion condition expressed by equation (12). In fact, the small
bias in the left/right jump (ε = 2δp) along the backbone
introduces a shift in the distribution of steps

Gε(x, n) =
1

√
2πDsn

exp
[
−
(x− εn)2

2Dsn

]

where Ds = 1/2 is the diffusion coefficient of the
subordinated dynamics Ds = limn→∞〈(x̃n − x̃0)

2
〉/(2n) and

x̃n indicates the position after n jumps on the backbone; for
ε = 0 the distribution is a unbiased Gaussian (in the limit of
large t also n is large and the Binomial is well approximated by
Gaussian G0(x, n)). Actually the precise shape of Gε(x, n) is
not very relevant. Since 〈x̃n〉 = εn, we can compute the biased
displacement in the perturbed system

〈xt〉ε = ε

∞∑
n=0

P(n, t) n.

Considering that 〈n(t)〉 =
∑

nP(n, t) n, we can rewrite this as

〈xt〉ε = ε〈n(t)〉.

From equation (12) we compute the MSD obtaining
〈x2

t 〉0 = 〈n(t)〉/2 which is the same result of equation (8),
hence equation (14) follows. Note that FDR is exact also
for anomalous behaviours as the drift we have applied has
no effect (or no components) on the sidebranches, therefore
the waiting-time distribution and thus Pn(t) remains unaltered
with respect to that of the unperturbed system.

To verify the above results, we generated Np = 7 × 104

independent RW trajectories for t = 2× 107 time steps over a
regular comb lattice with different sidebranch sizes L.

Panel (A) of figure 3 refers to the mean square
displacement (MSD) for an ensemble of walkers on the
traditional comb lattice (figure 2) at different teeth length to
probe the homogenization effects characterized by the time
t∗(L) ∼ L2. The rescaled data (t/L2, 〈x2

〉0/L) collapse onto
a master curve showing a clear crossover, at the rescaled
crossover time, from a subdiffusive, t1/2, to a standard regime,
t. The response (panel (B) of figure 3) for the same lattice
fulfils the generalized fluctuation-dissipation relation (14),
thus a plot of the response 〈xt〉ε − 〈xt〉0 versus the fluctuation
〈(xt − x0)

2
〉0 shows that the data for different values of L

align along a straight line with slope ε = 2δp. The perfect
alignment is a consequence of the exact compensation at every
time between fluctuations and response (inset of figure 3(B)).
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In the simulations of figure 3(B), the drift is implemented
by an unbalance δp = 0.01 in the jump probability along the
backbone giving ε = 2δp = 0.02.

3. Generalized branched structures

Interestingly, the previous analysis can be easily extended
to the cases where each tooth of the comb is replaced by a
more complicated structure, e.g. a two-dimensional plaquette,
a cube or even a graph with fractal dimension d and spectral
dimension dS. The spectral dimension is defined by the decay
of the return probability P(t) to a generic site in t steps P(t) ∼
t−dS/2 [16, 37], while the ratio between dS and d is known to
control the mean square displacement behaviour [16]

〈x2(t)〉 ∼ tdS/d. (15)

Of course, formula (7) still applies to fractal-like graphs and
equations (8), (14) hold true, provided an appropriate change
in the ‘geometrical’ prefactor is introduced, as we explain in
the following.

In the general case where the ‘teeth’ are fractal structures
with spectral and fractal dimensions dS and d respectively, the
lateral diffusion satisfies

〈y2
t 〉0 ∼ tdS/d.

Here, and in the following, yt indicates the transversal process
with respect to the backbone. The previous argument for the
homogenization time stems straightforwardly by noting that
a walker on an infinite sidebranch, in an interval t, visits a
number of different sites [37, 17, 16]

Msb(t) ∼

{
tdS/2 if dS ≤ 2

t if dS > 2
(16)

and accordingly, in a finite sidebranch of linear size L,
the homogenization time t∗(L) is obtained by the condition
Msb[t∗(L)] ∼ Ld of an almost exhaustive exploration of the
sites. Then when the sidebranch has spectral dimension dS ≤

2, the first condition of (16) yields an homogenization time
t∗(L) ∼ L2d/dS , whereas if the sidebranch has dS > 2, the
second condition of (16) must be used to obtain t∗(L) ∼ Ld.
The physical reason for the different expression of t∗(L) above
and below dS = 2 is due to the non-recurrence of the RW for
dS > 2 [4]. In this case, the exploration of the sidebranches
over a diffusive timescale defined by the law (15) is not
significant and the full sampling takes a much longer time
which can be estimated directly from the second of equations
(16).

Now using equation (6), we obtain in the case dS < 2 that

〈(xt − x0)
2
〉0 ∼ t2ν, 2ν = 1−

dS

2
. (17)

These results coincide with the exact relations obtained
by a direct calculation of the spectral dimension on
branched structures, based on the asymptotic behaviour of
the return probability on the graph, or on renormalization
techniques [38, 19, 39].

Figure 4. Sketch of the comb structures used in the simulations and
obtained as an infinite periodical arrangement of the same
geometrical element: (A) comb of plaquettes (dubbed ‘kebab’) and
(B) two-nested comb lattices (‘antenna’).

The case dS = 2 deserves a specific treatment. Thus,
as an example, we consider the ‘kebab lattice’ (figure 4)
where each plaquette is a regular two-dimensional square
lattice, for which dS = d = 2. Indeed dS = 2 is the critical
dimension separating recurrent (dS < 2) and nonrecurrent
(dS > 2) RWs. Thus dS = 2 is the marginal dimension [4]
which is reflected in the logarithmic scaling of the transversal
MSD 〈y2

t 〉0 ∼ t/ ln(t), hence the homogenization time is
now t∗(L) ∼ L2 ln(L). Applying once again the matching
argument, we obtain the scaling

〈(xt − x0)
2
〉0 ∼ ln(t) (18)

indicating a logarithmic pre-asymptotic diffusion along the
backbone. The time evolution of MSD from initial positions
of the simulated random walkers on the ‘kebab’ lattice verifies
the transient behaviour (18) at different sizes L, figure 5(A).

Notice that, in our matching arguments, we only make
use of the spectral and fractal dimension of the sidebranches.
Interestingly, these two parameters are left unchanged if
one performs a set of small-scale transformations on the
graph [40], without altering their large-scale structure. Our
results hold therefore true also for different and disordered
sidebranches, provided the two dimensions are unchanged.

Following the same steps as those described for the comb
lattice, the generalized fluctuation-dissipation relation also
holds for all branched structures. To check the result we study
the ‘kebab’ lattice (figure 4(A)), where the two-dimensional
plaquette is a regular square lattice of side Ly and unitary
spacing [38]. It follows that

〈(xt − x0)
2
〉0

〈δxt〉ε
=

1
3ε
. (19)

5
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A) B)

Figure 5. Panel (A) linear-log plot of MSD, 〈x2
t 〉0 versus time for plaquette-comb lattice at different L, (figure 4(A)). Data show an initial

collapse onto the common baseline ln(t), in perfect agreement with the scaling result (18). Panel (B) plot of the response 〈δxt〉ε versus the
fluctuations 〈(xt − x0)

2
〉0 showing the generalized Einstein relation (19). The slope of the dashed line is 3ε, with ε = 2δp and δp = 0.01

(imbalance in the left–right jump probability along the backbone).

Figure 6. (A) panel: time behaviour of MSD, 〈x2
t 〉0 for the ‘antenna’ (figure 4(B)) with Ly = 2Lz = L at different values of L. (B) panel:

generalized fluctuation-dissipation relation (19): response 〈δxt〉ε versus 〈x2
t 〉0. The slope of the dashed straight line is the proportionality

factor 3ε.

The prefactor 1/3 stems from the fact that, in a
comb-plaquette lattice, the probability to jump back and
forth along the backbone is 1/6. Panel (B) of figure 5
reports the verification of the fluctuation-dissipation relation:
independently of the lattice size, the plot response versus
MSD is a straight line with slope 1/(3ε).

To show the effect of dS on the homogenization time
and on the diffusion process, we consider a structure
composed by two-nested comb lattices that we dub ‘antenna’
(figure 4(B)), i.e. a comb lattice, where the teeth are comb
lattices themselves on the y, z plane. This structure is then
characterized by two length scales, the vertical, Ly, and
transversal, Lz, teeth length; for the sake of simplicity we
assume Ly ∼ Lz ∼ L.

Also in this case there exists a crossover time t∗(L) ∼ L2

depending on the length of the teeth along z, such that: for t &
t∗(L), the diffusion becomes standard, whereas for t . t∗(L),
an anomalous diffusive regime takes place. Since for a simple
comb lattice, dS = 3/2, see [17], we obtain from equation (4)
that

〈(xt − x0)
2
〉0 ∼ t1/4.

For finite L, the MSD in figure 6(A) exhibits an initial regime
t1/4 followed by a t1/2 behaviour with a final crossover to the
standard one. Such a particular scaling, t1/4, is certainly due
to the ‘double structure’ of the sidebranches.

Also in this case, the generalized Einstein relation is
verified (figure 6(A)) which coincides with equation (19) for
the ‘kebab’. Indeed, the walkers on both antenna and kebab
lattices have the same probability 1/6 to make a jump to a
nearest-neighbour site along the backbone.

The case of dS > 2 must be carefully considered. For
simplicity we present our analysis for the particular condition
dS = d = 3, so we consider a comb-like structure where
the lateral teeth are compenetrating but non-communicating
cubes. For computational simplicity the cubes are arranged
with centres at a unitary distance from one another along the
backbone. Actually, the minimal distance between the centres
of non-compenetrating cubes with edge L, is L/2 + L/2 = L
which is of course larger than 1 as soon as L > 1, but in
our model the cubes, despite their large overlap, are still
considered as distinct sidebranches connected only through
the backbone. The homogenization time will be t∗(L) ∼ Ld

and D(L) ∼ L−d. Therefore, for t � t∗(L), we expect the

6
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Figure 7. Comb lattice of compenetrating cubes. (A) Collapse of the MSD 〈x2
t 〉0 at different cube sides L versus the rescaled time t/L3. The

data show the plateau which is a precursor of the standard diffusion. Inset: same data not rescaled. (B) Plot showing the generalized
fluctuation-dissipation relation: response 〈δxt〉ε versus 〈x2

t 〉0. Inset: plots of 〈δxt〉ε and 〈x2
t 〉0 showing the parallel behaviour of response and

MSD independently of the regime.

standard diffusive growth 〈(x − x0)
2
〉0 ∼ t/Ld, while below

t∗(L), 〈(x − x0)
2
〉0 ∼ t2ν and the matching condition at t∗(L)

predicts the existence of a plateau 〈(xt − x0)
2
〉0 ∼ const, as

derived by exact relations based on return probabilities [19].
The simulation data are in agreement with the above results,
see figure 7, and also the proportionality between fluctuation
and response is again perfectly verified.

4. Conclusion

In this paper we have analysed the random walk and Einstein’s
response–fluctuation relation on a class of branched lattices
generalizing the standard comb lattice. For any sidebranch
of finite size, a transient regime of anomalous diffusion is
observed whose exponents can be derived by a heuristic
argument based on the notion of homogenization time and on
the geometrical properties of the lateral structures.

Our analysis has been here restricted to branched lattices
where the distance between two consecutive sidebranches is
unitary, but it can be straightforwardly extended to cases with
arbitrary spacing.

We can conclude by noting that a random walk on
a generic branched lattice satisfies a generalized Einstein
relation for different shapes and sizes L of the sidebranches.
This is clearly apparent in figures: 5(B), 6(B) and 7(B), where
data perfectly collapse onto a straight line when plotting the
free mean square displacements against the response.

Since this is a straightforward consequence of equa-
tions (8) and (13), including their analogues in more complex
comb structures, the result that

R(t) =
〈(xt − x0)

2
〉0

〈δxt〉ε
= const

is exact and valid for any comb-like structure both in the
transient and asymptotic regimes. This stems from the perfect
compensation, at any time, between the response of the biased
RW and the mean square displacement of the unbiased RW.

Our results may add other elements to the general
issue [41–43] about the validity of the fluctuation-dissipation

relations (FDR) in far-from-equilibrium systems and non-
Gaussian transport regimes.

There is now sufficient theoretical [27, 26, 44] and
experimental [45, 46] evidence to claim that FDR can be
often generalized well beyond its realm of applicability. This
traditional issue of Statistical Mechanics has received renewed
interest thanks to the amazing progress in single-molecule
manipulation techniques. Experiments whereby a colloidal
particle is dragged by optical tweezers well approximate the
ideal system of a single Brownian particle driven out of
equilibrium. This offers the opportunity to test in a laboratory
the FDR on a minimal non-equilibrium system. To some
extent, invoking the similarity between RW and Brownian
motion, the issues addressed in this work involve that
class of behaviours encountered in mesoscopic systems [47],
where either particles or generic degrees of freedom move
diffusively on a complex support.
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