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Abstract. In this work we present a theoretical and numerical study of the behaviour of the
maximum Lyapunov exponent in products of random tridiagonal matrices in the limit of small
coupling and small fluctuations. Such a problem is directly motivated by the investigation of
coupled-map lattices in a regime where the chaotic properties are quite robust and yet a complete
understanding has still not been reached. We derive some approximate analytic expressions by
introducing a suitable continuous-time formulation of the evolution equation. As a first result,
we show that the perturbation of the Lyapunov exponent due to the coupling depends only on
a single scaling parameter which, in the case of strictly positive multipliers, is the ratio of the
coupling strength with the variance of local multipliers. An explicit expression for the Lyapunov
exponent is obtained by mapping the original problem onto a chain of nonlinear Langevin equations,
which are eventually reduced to a single stochastic equation. The probability distribution of this
dynamical equation provides an excellent description for the behaviour of the Lyapunov exponent.
Finally, multipliers with random signs are also considered, finding that the Lyapunov exponent
again depends on a single scaling parameter, which, however, has a different expression.

1. Introduction

Coupled-map lattices (CMLs) represent an interesting class of models for the investigation
of several spatio-temporal phenomena, ranging from pattern formation to synchronization
and spatio-temporal chaos. Even though the discreteness of both space and time variables
makes CMLs more amenable to numerical simulations than partial differential equations, the
development of analytical techniques remains a difficult task. As usual, when dealing with
difficult problems, it is convenient to start from the identification of some relatively simple
limit and thereby develop a perturbative approach. In the case of lattice dynamics, there are
two opposite limits that are worth investigation: the weak- and strong-coupling regimes. In the
former case, one can use all the knowledge acquired about low-dimensional systems to predict
the dynamical properties when spatial directions are added. In this spirit, general theorems
have been formulated and proved about both the structure of the invariant measure [1] and the
existence of travelling localized excitations [2]. The weak-coupling limit is also interesting
in connection with the synchronization of chaotic attractors, a problem that can be studied
effectively by looking at the behaviour of the Lyapunov exponents [3]. In the opposite limit,
one expects a slow spatial dependence and, correspondingly, the existence of a few, dynamically
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active, degrees of freedom. This is the spirit that has led to the study of different truncations
of partial differential equations.

The maximum Lyapunov exponent (MLE) is one of the most useful indicators of chaos;
it is, therefore, desirable to provide a possibly analytic description of its dependence on the
coupling strength as well as on the local chaotic properties. The first author who investigated
the effect of a small coupling on chaotic dynamics was Daido [4], who numerically studied two
coupled maps as well as two continuous-time chaotic oscillators. He also made an attempt to
combine analytical considerations with numerical studies to explain the observed behaviour,
without, however, being able to go beyond the prediction of the scaling behaviour.

In fact, the problem, in its entirety, is already rather nontrivial in the weak-coupling limit,
since various factors concur to modify the chaotic properties of the dynamics: (i) perturbation
of the invariant measure; (ii) the onset of spatial correlations in real space; (iii) the onset of
correlations in tangent space. The last phenomenon is the most interesting one for at least two
reasons: first, it leads to counterintuitive effects such as an increase of the MLE even in the
presence of a stabilizing coupling; second, it provides the leading contribution in the weak-
coupling limit. It is precisely because of its presence that the power-law dependence described
in [5] for some CML model only extends over a finite range of coupling strengths [6].

In order to be more precise, let us introduce a standard CML model,

xi(t + 1) = f (yi(t + 1))

yi(t + 1) = εxi−1(t) + (1− 2ε)xi(t) + εxi+1(t)
(1)

where thexi(t) represents the state variable in the sitei at timet , yi(t) is an auxiliary dummy
variable, andε represents the coupling strength. The functionf (y) is a map of the interval
with chaotic properties (e.g. the logistic function 4y(1− y)) and, finally, periodic boundary
conditions are assumed. An infinitesimal perturbationui(t) satisfies the following evolution
rule:

ui(t + 1) = mi(t){εui−1(t) + (1− 2ε)ui(t) + εui+1(t)} (2)

wheremi(t) ≡ f ′(yi(t +1)) is the so-called local multiplier. In practice, one should determine
f ′(yi(t + 1)) from the evolution in real space, i.e. from equation (1) (this step involves the
first two of the above-mentioned factors) and thereby derive the dynamical properties of the
perturbation field.

Both to facilitate a theoretical analysis and because a previous study has shown that the
first two factors are less important [7], we shall introduce a random-matrix approximation,
assuming thatmi(t) is a givenδ-correlated stochastic process,

〈mj(τ)mi(t)〉 = Dδi,j δt,τ . (3)

In fact, random-matrix approximations have proven to be very effective in various dynamical
systems [8–10].

In spite of the simplifications introduced by neglecting spatial (and temporal) correlations,
not even the scaling behaviour of the MLE has been completely clarified. Indeed, the
approaches implemented in some previous papers [7, 11] have not been able to go beyond
a qualitative explanation of the dependence on the coupling strength. Here, instead, we aim
at presenting a fully quantitative, though approximate, treatment for the MLE in the small-
coupling regime. We restrict our analysis to the usual diffusive coupling scheme defined in
equation (2), but we are confident that the present approach can be effectively adapted to
different (short-range) interaction schemes.

The first approach [7] devised to deal with the random-matrix process (2) exploited
the analogy with the statistical mechanics of directed polymers in random media. Indeed,
equation (2) can be also read as the recursive equation for the partition function ‘ui(t)’ of a
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polymer of lengtht which grows by adding any new monomer no farther than one site from the
last one. A possibly relevant difference between the two problems comes from the ‘Boltzmann
weight’mi which is necessarily positive in the polymer case (being a probability), while it can
be negative in a CML (by recalling the interpretation ofmi as the derivative of the mapf ).
This is the first issue that makes treatment of problem (2) more difficult and it is the reason why
previous studies have been restricted to the case of strictly positive multipliers [7,11]. In fact,
without entering the mathematical treatment, one can see that ifmi can be either positive or
negative,ui(t) is no longer positive definite and partial cancellations can occur in the iteration
of the recursive relation.

The efforts made in [7] to estimate the MLE consisted of developing a mean-field
analysis on the basis of the equivalence between the MLE and the free energy in directed
polymers. Thus, by using the approaches developed in [12, 13], it was possible to show
that the spatial coupling induces an increase of the MLE from the ‘quenched’ average
30 = 〈logmi〉 (corresponding to the absence of a spatial coupling) towards the ‘annealed’
average30 = ln〈mi〉 that holds above some critical coupling value. While some features of
this scenario were qualitatively confirmed by the numerical simulations (as, e.g., the increase
of the MLE), no evidence of the phase transition was actually found. A perturbative technique,
developed later on to improve the previous estimates [11] has shown that the transition
point slowly shifts towards larger coupling values, possibly disappearing in the asymptotic
limit. Nevertheless, the extremely slow convergence of the estimates of the MLE to the
values numerically observed, makes a general implementation of this approach unappealing.
Moreover, we should also recall that the analogy with directed polymers does not even allow
an exact prediction of the scaling behaviour of the MLE, insofar as it indicates the existence of
an additional, extremely weak, dependence on the coupling strength which seems to be absent
in the outcome of direct numerical simulations.

It is also worth recalling the analogy between the behaviour of the MLE and the evolution
of rough interfaces. By interpreting the logarithm of (the amplitude of) the perturbation as the
height of an abstract interface, the Lyapunov exponent becomes equivalent to the velocity of
one such interface [14, 15]. However, this analogy is of no utility in the present case, since
the deviation of the MLE from the uncoupled limit cannot be determined by studying the
corresponding Kardar–Parisi–Zhang (KPZ) equation as already remarked in [11]. In a sense,
the MLE corrections are connected to non-trivial deviations from a KPZ behaviour over short
temporal and spatial scales.

In this paper we derive approximate but analytical expression for the MLE, by mapping
the original dynamics onto to a chain of continuous-time, nonlinear Langevin equations. Such
a set of equations is then reduced to a single stochastic equation whose solution yields an
expression for the MLE that is in good agreement with direct numerical simulations. As the
whole approach does not make use of the specific structure of the initial equations, we are rather
confident that it can be repeated for other types of couplings, and presumably the only difference
will be the structure of the deterministic force in the final stochastic equation. Moreover, we
would like to point out that the mapping onto continuous-time equations indicates that the
initial discreteness of the time variable is not a distinctive feature and we can imagine that a
similar approach also works in the case of coupled chaotic oscillators. Our hope is reinforced
by the observation that some equations obtained in the present framework can also be derived
in the case of two weakly coupled differential equations [16].

The paper is organized as follows. In section 2, we briefly introduce the problem and
some notations. In section 3 we discuss the properties of tangent dynamics in the case of
strictly positive multipliers: the analytical treatment is followed by a comparison with the
numerical results. In section 4 we extend the analytical treatment to the case of multipliers
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with random signs. Finally, in section 5 we summarize the main results and comment about
the problems still open. The two appendices are devoted to the small-noise limit in the case of
strictly positive multipliers and, respectively, to the small-coupling regime in the general case
of random signs.

2. Preliminary treatment

In this section, we formulate the problem of computing the MLE under the assumption of a
small-coupling strength. The first step consists of introducing the ratio between the perturbation
amplitude in two consecutive sites,

Rj(t) ≡ uj (t)/uj−1(t) (4)

which allows one to write equation (2) as

ln

∣∣∣∣ui(t + 1)

ui(t)

∣∣∣∣ = ln |mi(t)| + ln

∣∣∣∣1− 2ε + εRi+1(t) +
ε

Ri(t)

∣∣∣∣ (5)

where the average of the lhs is nothing but the MLE3(ε), while the rhs is naturally expressed
as the sum of the zero-coupling value plus the correction term induced by spatial interactions.

A more convenient way of writing the Lyapunov exponent is obtained by transforming
the smallness parameter as

γ ≡ ε/(1− 2ε) (6)

which leads to

3(ε) =
〈
ln

∣∣∣∣ui(t + 1)

ui(t)

∣∣∣∣〉 = 3(0) + ln(1− 2ε) + δ3(γ ) (7)

where the Lyapunov correction is split into two parts, a multiplier-independent term and a
non-trivial contribution

δ3(γ ) =
〈
ln

∣∣∣∣1 +γRi+1 +
γ

Ri

∣∣∣∣〉 (8)

where 〈·〉 represents the time average along the trajectory generated by equation (1) or,
equivalently, the ensemble average if ergodicity holds.

Equation (8) tells us that the determination of the MLE requires the prior knowledge of
the invariant measure of the stochastic processRi(t) on two consecutive sites. By expanding
the logarithm in powers ofγ , the correction to the MLE can be expressed in terms of all the
momenta of the probability distribution,

δ3(γ ) = −
∞∑
j=1

j∑
m=1

(j − 1)!(−γ )j
m!(j −m)! 〈R

m
i+1R

j−m
i 〉. (9)

It is, therefore, quite useful to derive a dynamical equation forRi(t). Let us start by rewriting
the tangent dynamics in the two consecutive sites{i − 1, i} in terms of theRi variables

ui−1(t + 1)

ui−1(t)
= mi−1(t){1− 2ε + ε/Ri−1(t) + εRi(t)}

ui(t + 1)

ui(t)
= mi(t){1− 2ε + ε/Ri(t) + εRi+1(t)}.

By taking the ratio between these two equations we find, after some rearrangements,

Ri(t + 1) = µi(t)Ri(t) 1 +γRi+1(t) + γ /Ri(t)

1 +γRi(t) + γ /Ri−1(t)
(10)

where we have introduced the stochastic process

µi(t) ≡ mi(t)/mi−1(t) (11)

whose geometric average is equal to one,µi being the ratio of two i.i.d. processes.
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3. Positive multipliers

We first consider strictly positive multipliers, while the more general case is addressed in
the following section. In fact, while the two cases require a somewhat different treatment, a
discussion of the former problem allows the introduction of several tools that turn out to be
also useful in the latter context.

3.1. Theory

If the µi are positive definite, the ratiosRi remain positive whenever initialized as such.
This allows one to introduce the variablewi = lnRi without having to deal with the sign
of Ri . The introduction ofwi is convenient in that it transforms the original problem into a
stochastic process with additive rather than multiplicative noise. With no restriction other than
the positiveness of the multipliers, we obtain

wi(t + 1)− wi(t) = lnµi(t) + ln{1 +γewi+1(t) + γe−wi(t)} − ln{1 +γewi(t) + γe−wi−1(t)}. (12)

In the small-γ limit we can expand the logarithms and retain only the leading linear terms in
γ†,

wi(t + 1)− wi(t) = −2γ sinh(wi) + γ (ewi+1 − e−wi−1) + ξi(t) (13)

whereξi ≡ lnµi is a stochastic process with zero average and correlation function,

〈ξi(t)ξj (t ′)〉 = 4σ 2δt,t ′(δi,j − 1
2δi±1,j ) (14)

whereσ 2 is the variance of the logarithm ofmi and the factor 4 replaces the usual factor 2,
since the noise term is the ‘sum’ of two i.i.d. processes (ξi = lnmi − lnmi−1). The spatial
correlations between neighbouring sites,i, i + 1 follow from the very definition ofξi : the
process lnmi enters the definition of bothξi andξi+1.

The smallness ofγ in equation (13) makes it possible to interpret the lhs of such an
equation as a time derivative,wi(t + 1)−wi(t) ∼ ẇi(t), provided that the noise termξi is not
large as well, and thus to write a continuous-time stochastic differential equation

ẇi = −2γ sinh(wi) + γ (ewi+1 − e−wi−1) + ξi(t). (15)

The correctness of the above conclusion (and the accuracy of the approximations) can be
controlled by deriving the corresponding Fokker–Planck equation from the original integral
equation for the the probability distributionPL(w1, . . . , wL; t) for the discrete-time dynamics
(13). As the calculations are conceptually straightforward and lead to the result that one would
expect from the Langevin equation (15), we limit ourselves to recall the key step: because of
the smallness of the noise fluctuations, the convolution with the probability distribution of the
stochastic force can be transformed into differential calculus by expandingPL up to the second
derivative. As a result, one finds the Fokker–Planck equation

∂PL

∂t
= −

L∑
i=1

∂

∂wi
{F(wi)PL +8(wi+1, wi−1)PL} + 1

2

L∑
i,j=1

Di,j
∂2PL

∂wi∂wj
(16)

where

F(wi) = −2γ sinh(wi) (17)

is the single-particle force (see equation (15)),8(wi+1, wi−1) = −2γ (ewi+1 − e−wi−1) is the
coupling term andDi,j are the diffusion coefficients obtainable from (14).

† A rigorous justification of this approximation can be obtaineda posteriori, once we have seen that〈γ exp(±wi)〉 →
0 for γ → 0.
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Equation (15) represents a chain of coupled Langevin equations describing the evolution
of interacting ‘particles’. Even without solving the model, it is possible to realize that a single
parameter suffices to describe the scaling behaviour of the Lyapunov exponent, the rescaled
smallness parameter

g = γ /σ 2 (18)

which can also be interpreted as the inverse effective diffusion constant. In fact, the factorγ

in front of the deterministic forces can be eliminated by properly scaling the time units.
In section 3.2, we numerically investigate the validity of this prediction, by plotting the

Lyapunov exponent (obtained for different values ofσ , γ and two choices of the probability
distribution of multipliers) versusg: a data collapse onto a single curve will represent the
direct confirmation thatg is the only relevant parameter.

The evaluation ofδ3(γ ) requires finding the invariant measure for the whole set of
stochastic equations (15). This is still a difficult problem, since the deterministic forces do not
follow from a potential and, therefore, the corresponding Fokker–Planck equation cannot be
straightforwardly solved. In particular, it is interesting to notice that, although we are working
in the limit of weakly coupled maps, the ‘particles’ are not weakly interacting. This is the most
serious difficulty when performing a perturbative treatment of the problem. The only strategy
that we have found to obtain a meaningful analytic estimate of the Lyapunov exponent is a
mean-field approach. It allows reducing the, in principle, infinite set of stochastic equations
to a single effective Langevin equation. In spite of the unavoidable approximation, we shall
see that the resulting analytic expression is reasonably close to the numerical results.

Let us now introduce the single-particle distributionP(wi), by integrating over all the
otherL− 1 degrees of freedom

P(wi, t) =
∫ ∏

j 6=i
dwj PL(w1, . . . , wL; t).

The corresponding equation can be directly derived from equation (16),

∂P

∂t
= − ∂

∂wi
{F(wi)P } + 2σ 2∂

2P

∂w2
i

−γ ∂

∂wi

{∫
dwi+1P2(wi, wi+1)e

wi+1 −
∫

dwi−1P2(wi−1, wi)e
−wi−1

}
. (19)

Equation (19) is not closed since it involves the unknown two-body distributionP2. Indeed,
the above equation is the first of a hierarchy of equations involving probability distributions
of increasing order. The simplest approximation to close the system consists of truncating the
hierarchy at the lowest level by assuming a perfect factorization,P2(x, y) = P(x)P (y). This
is the standard mean-field approach which leads to the closed Fokker–Planck equation

∂P

∂t
= − ∂

∂w
{F(w)P } + 2σ 2∂

2P

∂w2
(20)

since the symmetry of the distribution (P(w) = P(−w)) implies that the coupling terms
cancel each other.

The Fokker–Planck equation (20) corresponds to the single-particle Langevin equation

ẇ = F(w) + ξ(t) (21)

where we have dropped the by now irrelevant spatial dependence.
It is instructive to test the validity of the above approximation in the limit of largeg

values, when the forces can be linearized and an analytic solution can be obtained for the
entire chain of Langevin equations. For the sake of readability, the discussion of this technical
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problem is presented separately in the first appendix. The main result of this analysis is that the
approximation (21) is exact! The stationary probability distribution of equation (20) is equal
to the projection of the many-particle distribution for the whole chain. However, one cannot
expect that the same also holds true for finiteg values, when nonlinearities come into play.

The stationary distributionw is obtained by solving the Fokker–Planck equation (20),

P(w) = C exp[−γ /σ 2 cosh(w)] (22)

where the normalization constantC = 2K0(γ /σ
2) is expressed in terms of the zeroth-order

modified Bessel function [17,18]

Kν(x) =
∫ ∞
−∞

dt exp{−x cosh(t)± νt}.

By substituting the definition ofw (w = lnR) in equation (9), and assuming〈wiwi−1〉 = 0
(an hypothesis accurately confirmed by direct numerical simulations), we finally obtain

δ3(γ ) = −
∞∑
j=1

j∑
m=1

(j − 1)!(−γ )j
m!(j −m)!

Km(2g)Kj−m(2g)
K0(2g)2

. (23)

As γ is assumed to be small, we can safely retain only the first two terms of the series (23),
obtaining

δ3(γ ) = 2γ
K1(2g)

K0(2g)
(24)

which represents the (approximate) perturbative expression for the correction to the MLE in
the limit of small coupling.

First of all, it is instructive to investigate the limitg � 1, by using the asymptotic
expression of the functionsKν(y). Since

K0(y) ∼ − ln(y/2) K1(y) ∼ 1

y
(25)

we find that

δ3(γ ) ∼ σ 2

ln(1/g)
. (26)

This equation represents a relevant improvement over the previous results. First of all, it is in
agreement with numerical simulations which do not give evidence of a ln| ln g| correction in
the numerator, as instead predicted by the statistical-mechanics treatment based on the analogy
with directed polymers [11].

A second and more important remark concerns the dependence on the ‘noise’ strength
which is explicitly determined. Previously, it was only clear that the correction to the MLE
must vanish if there is no multifractality (no multiplier fluctuations) but the dependence onσ

was not known.

3.2. Numerical results

The theoretical analysis performed in the previous section is based mainly on a perturbative
approach. Moreover, it involves a nontrivial transformation of a set of coupled Langevin
equations to a single effective Langevin equation in a limit where the coupling is not negligible.
Therefore, a comparison of the theoretical predictions with direct numerical simulations is
especially worthwile to check the validity of the dynamical mean-field approximation that is
behind this last step.



7610 F Cecconi and A Politi

We have decided to test the theoretical results by using two different probability densities:
(A) uniform distribution of multipliersmi within the interval [ea(1−11/2), ea(1+11/2)]; (B)
uniform distribution of the logarithms of themi within [a−12/2, a+12/2]. The corresponding
Lyapunov exponents in the uncoupled limit (ε = 0) are

3A(0) = a − 1 +
1

11

{(
1 +

11

2

)
ln

(
1 +

11

2

)
−
(

1− 11

2

)
ln

(
1− 11

2

)}
3B(0) = a

while the variances of lnmi(t) are

σ 2
A = 1− 1

12
1

(
1− 1

2
1

4

)
ln2

(
1 +11/2

1−11/2

)
(27)

σ 2
B =

12
2

12
. (28)

We start by testing the predictions for the shape of the probability distribution ofw. Two
meaningful examples are reported in figure 1, where the open circles refer to the histograms,
while the solid curves are the theoretical results. Let us first comment about the qualitative
shape of the distribution. In the limit of largeg, the noise is almost negligible and therefore,
the phase point is not expected to deviate significantly from the stable fixed pointw = 0. It is
therefore possible to linearize the equation, finding a Gaussian distribution. This is precisely
the message contained in figure 1(a), which refers tog = 2.4. Alternatively, in the limit of
smallg, it is the force that can be neglected except when the deviations are large. Since the
attracting force grows very rapidly (exponentially), it makes sense to replace the corresponding
potential with a flat well with infinitely high barriers placed where the deterministic force is of
the same order as the stochastic one. In this picture, one expects that the probability distribution
is just a uniform distribution in a finite interval (this is the kind of argument introduced in [7]
to predict the scaling behaviour in this regime). This scenario can be qualitatively recognized
in figure 1(b), which refers tog = 0.021.

Next, let us comment on the quantitative agreement between the theoretical expectations
and the numerical findings. In figure 1(a), there is an almost perfect agreement. However,
some deviations are observed in figure 1(b), where the theoretical curve is slightly more peaked.
A better agreement is obtained if the scaling parameterg is taken as a free parameter to be
fitted (see the dashed curve in figure 1(b) which corresponds to a 20% smaller value ofg than
expected). The same scenario is observed for all other parameter values, the deviation from the
theoretical expectation always being smaller than 30%. These results suggest that the model
(21) could be improved by renormalizing the coupling constantγ . Some preliminary results
confirm this perspective [19].

Since the aim of the present paper is to study the corrections to the MLE induced by the
spatial coupling, let us now discuss this issue. In order to assess the quality of our theoretical
predictions, we performed numerical iterations of equation (2) computing the MLE with the
well known algorithm presented in [20]. Simulations have been carried out on 500-site lattices,
imposing periodic boundary conditions. In every simulation the first 500 iterations have been
discarded to avoid any bias effect due to initial conditions. Tests made with different lattice
lengths indicate that finite-size effects are always much smaller than the deviation from the
theoretical predictions.

The first nice result is provided by figure 2(a). The data is plotted in order to emphasize
the existence of a single relevant parameter,g. Indeed, the good data collapse (all data align
along the same curve irrespective of the value ofγ , σ or the type of probability distribution)
represents a further confirmation of our theoretical analysis. Moreover, the nice agreement of
the numerical data with the theoretical expression (24) (see the solid curve in figure 2(a)) over
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Figure 1. The probability distribution ofw for two different values ofg: 2.4 (a) and 0.021 (b). In
both cases, circles refer to the numerical histograms, obtained by iterating equation (2) for 5×107

time steps (discarding the first 103 iterations) on a lattice ofL = 300 sites. The solid curves
correspond to the analytic formula (equation (22)). The dashed curve in (b) is obtained by fitting
g, which is estimated to be equal to 0.016.

a wide range of values of the effective coupling testifies to the accuracy of the approximations
introduced in the first part of this section.

However, there is a better way to emphasize the differences between theory and numerics.
In fact, the limitg → ∞ corresponds to negligible noise, i.e. to a regime where the MLE
Lyapunov exponent is unaffected by the presence of spatial coupling as shown in [21]. It is
therefore convenient to look at the behaviour of the whole deviation of the Lyapunov exponent
13 = δ3 − 2γ , which again exhibits the same scaling behaviour, as seen by dividing this
expression byσ 2 and using equation (26):

13

σ 2
= 2g

(
K1(2g)

K0(2g)
− 1

)
. (29)
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Figure 2. The Lyapunov exponent versus the scaling parameterg in the case of strictly positive
multipliers. The data is obtained by varyingε, σ and for both choices of the probability distribution
of the local multipliers (the cases (A) and (B) discussed in the text). In (a), the shiftδλ defined
in equation (8) is reported, while in (b) the total shift13 (see equation (29)) is plotted. The
solid curves correspond to the analytic expression. The dashed curve in (b) is the analytical curve
arbitrarily shifted to show that a ‘renormalization’ of the scaling parameter could account for the
remaining discrepancy with numerical data.

The data plotted this way are reported in figure 2(b). We clearly see that the trivial correction
term−2γ cancels almost exactly the growth exhibited byδ3 for largeg values allowing for a
more stringent test of the theoretical prediction. We can now see that the absolute difference
is not larger than 0.05 and it could be greatly reduced by suitably shifting the theoretical curve
(i.e. by rescalingg by approximately a factor of 2) as shown by looking at the dashed curve.
However, in the absence of theoretical arguments, this observation cannot be considered as
more than a hint for future considerations.
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4. The general case

4.1. Theory

In this section, we also account for sign fluctuations. In order to keep the theoretical treatment as
simple as possible, we shall assume that the sign is aδ-correlated stochastic process independent
of the modulus, so that the average factorizes as

〈mi〉 = (p − q)〈|mi |〉
wherep (q) is the probability thatmi is positive (negative). The major difference with respect
to the previous case is that the ratioRi can also assume negative as well as positive values.
It is therefore more convenient to work withRi instead of introducing its logarithm which
would require introducing absolute values and thus two different variables to account for the
dynamics in the positive as well as in the negative range ofRi values.

In the previous section, we have seen that the coupling with the neighbouring sites
compensate each other because of the symmetryR → 1/R (w → −w). Accordingly, they
have been neglected without causing much trouble to the theoretical approach. As the same
symmetry is maintained in this case (besides the sign symmetry that was present before), we
proceed in the same way, by neglecting theRi+1 andRi−1 terms in equation (10). At variance
with the previous section, we have decided to introduce this approximation before expanding
the dynamical rule in powers ofγ . The reason is that, as we shall see, the latter step is more
delicate in the present case and the crucial differences with the previous case can be better
appreciated in the single-particle context. As a result one obtains,

R(t + 1) = µ(t) R(t) + γ

1 +γR(t)
(30)

where, for the sake of simplicity, we have removed the now irrelevant site dependence.
Mapping (30) possesses two remarkable symmetry properties: the evolution is invariant under
the transformationR → 1/R, since the stochastic processµ turns out to be invariant under
the same transformationµ→ 1/µ (it is sufficient to look at its definition). This is the same
symmetry as that discovered in the previous section where we found that the potentialV (w) is
an even function ofw. As a consequence, we can restrict our analysis to the interval [−1, 1].

The second symmetry has much more serious implications. We can see that the mapping
(30) is also invariant under time reversal. More precisely, if we expressR(t) as a function of
R(t+1)we find the same functional form of mapping (30), provided that the change of variables
S : R(t +1)→−R(t +1)/µ(t) andµ→ 1/µ are introduced as well. As the transformationS
is an involution (i.e.S2 = Id), we can state that mapping (30) is invariant under time reversal.
Therefore, there seems to be a contradiction present, as this property also holds for strictly
positive multipliers, when it is clear that there is an attractor (the pointw = 0, i.e.R = 1),
since time reversibility hints at a lack of attractors! Indeed, there is no contradiction, since
time-reversal symmetry is broken in the case of strictly positive multipliers. In fact, invariance
of the mapping only implies that a given solution can be neither stable nor unstable, if it is
itself invariant under the involutionS. However, this is not the case for the fixed pointR = 1
(in the absence of noise, i.e. forµ = 1) which is mapped byS ontoR = −1, so that we
can only conclude that ifR = 1 is stable, thenR = −1 must be unstable (as it is indeed
the case). In other words, positive values ofR are characterized by a contracting dynamics
towardsR = 1, while negative values depart from−1. If the multipliers are strictly positive,
negativeR values cannot be asymptotically observed as they lie in the repelling part of the
phase space and the previous treatment in terms of a Langevin equation with an attracting
force makes perfect sense. On the other hand, if the multipliers can assume both signs, the
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dynamical rule allows one to interchangeably visit the positive as well as the negative region.
In principle, it is still possible to have, on average, a global contraction provided that a longer
time is spent in the positive region. Actually, this is the assumption more or less implicitly
made in [6], where it was conjectured that no qualitative changes are expected when positive
and negative multipliers come into play except for the degenerate casep = q = 1

2. We see
below that even if the scaling behaviour in the limit of vanishing coupling is unaffected, this
is not true and it indeed requires the introduction of a different scaling parameter.

The most effective way we have found to analyse mapping (30) is by exploiting another
property: the possibility of transferring the change of sign ofµ toγ . With this trick, the change
of sign in equation (30) can be effectively treated perturbatively withγ being a small parameter.
More precisely, ifµ(t) happens to be negative, we can assume it to remain nevertheless positive
and perform the next iteration with−R(t + 1). It can then be seen that the resulting expression
is the same as the original one after changing the sign ofγ andµ(t + 1). Now, irrespective of
the sign of−µ(t + 1), we assume it to be positive and transfer its sign to the next value ofγ .
In other words, we can iterate the mapping

R(t + 1) = |µ(t)| R(t) + γ (t)

1 +γ (t)R(t)
(31)

where the sign ofγ (t) is that of
∏t−1
s=1µ(s). We can immediately see that even ifµ is, on average,

more positive than negative (or vice versa), the sign ofγ has no preference, since it simply
depends on the parity of the number of sign changes. It is due to this reason that fluctuating
multipliers are qualitatively different from strictly positive ones: even an asymmetry in the
signs (a preference, say, for the positive values) implies that the unstable and stable regions
(positive and negative values ofR in the initial representation) are equally visited.

The dichotomous structure of the noiseγ (t) allows one to express the stochastic map as
the sum of a net drift plus a zero-average fluctuating term. Indeed, by callingF+(R) andF−(R)
the lhs of equation (31) wheneverγ is positive, or respectively, negative, we can write

R(t + 1) = 1

2
{F+(R(t)) + F−(R(t))} + δ(t)

2
{F+(R(t))− F−(R(t))} (32)

whereδ(t) is again a dichotomous noise with entries equal to±1. More specifically,

R(t + 1) = |µ| (1− γ
2)R

1− γ 2R2
+ |µ|δ(t)γ (1− R

2)

1− γ 2R2
. (33)

In order to obtain an analytic expression for the probability density ofR, it is convenient to
turn this equation into a continuous-time model. Proceeding step by step, let us first expand
in powers ofγ and retain contributions up to second order,

R(t + 1) = |µ|[1− γ 2(1− R2)]R + |µ|δ(t)γ (1− R2). (34)

Let us now assume that the fluctuations of|µ| are small, i.e. we write|µ| = 1+ν+ν, where both
ν andν are small compared with one and the average〈ν〉 = 0. From the equality〈logµ〉 = 0
(see the definition equation (11)) it is immediately seen that, up to leading order,

ν = σ 2/2 (35)

whereσ 2 is the variance ofν. After substituting|µ| = 1 + ν + σ 2/2 in equation (34) and
neglecting higher-order contributions, we obtain

Ṙ = γ 2(R2 − 1)R + (ν + σ 2/2)R + δ(t)γ (1− R2) (36)

whereṘ is defined asR(t + 1) − R(t). Notice that the above stochastic equation must be
interpreted in the Ito sense as it follows from a discrete-time process.
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It is now very instructive to compare this stochastic process with the one discussed in
the previous section, where no sign fluctuations have been considered. Assuming no sign
fluctuations is tantamount to settingδ(t) = 1. As a result, the last term in the rhs of equation (36)
corresponds to a drift process. Additionally, it is much larger than the first contribution which
can thus be neglected,

Ṙ = γ (1− R2) + (ν + σ 2/2)R. (37)

A straightforward application of the Ito calculus (see, e.g., [22]), shows that the above equation
is equivalent to equation (21). For those who are not familiar with this kind of transformation,
we briefly sketch an equivalent and more transparent derivation. Let us return to the discrete
time representation (i.e. replaceṘ with R(t + 1)−R(t)) and once again introduce the variable
w = lnR. We obtain,

w(t + 1) = w(t) + log{1 +γ (e−w − ew) + ν + σ 2/2}. (38)

By expanding the logarithm and including the only relevant quadratic term proportional to
ν2 (the average of which exactly compensates the last termσ 2/2), we arrive precisely at the
discretized version of equation (21). The only irrelevant difference is thatξ is now equal to
ν instead of lnµ (the two quantities coincide in the small noise limit). As a consequence, the
present derivation is perfectly consistent with the results discussed in the previous section.

Let us now return to the general expression (36). If the time variable is rescaled by a factor
σ 2, it is immediately recognized that the dynamics ofR depends on just one parameter

G = γ

σ
(39)

which is again a ratio between coupling strength and multiplier fluctuations. However, there
is an important difference with the parameterg = γ /σ 2 introduced in the previous case, as it
is seen by noticing that in the smallσ limit, the equality

σ =
√

2σ (40)

holds. Apart from the irrelevant numerical factor, it turns out that, in the general case, the rms
rather than the standard deviation enters as a measure of multiplier fluctuations.

According to the Ito interpretation of the stochastic differential equation (36), the Fokker–
Planck equation reads, in rescaled time units, as

∂P

∂t
= − ∂

∂R
(AP ) +

1

2

∂2

∂R2
(BP ) (41)

where

A(R) = −G2R(1− R2) +R/2 (42)

is the drift term, while

B(R) = R2 +G2(1− R2)2 (43)

is the diffusion coefficient. Since 4A(R) = dB/dR, the stationary solution is

P(R) = N(G)√
G2(1− R2)2 +R2

(44)

whereN(G) is the normalization constant discussed in appendix B.
An expression for the Lyapunov exponent can be obtained from equation (8), by integrating

over the above-determined probability distribution. Unfortunately, there is a crucial difference
with the previous case: we cannot simply expand the logarithm in powers ofγ , since this leads
to computing the first moment ofP(R) which is already a diverging quantity (P(R) decays
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Figure 3. Log–log plot of the probability distributionP(R) to highlight the power-law behaviour.
Circles, triangles and diamonds refer toG = √6× 10−2,

√
6× 10−3,

√
6× 10−5, respectively.

The simulation details are as in figure 1. The various curves represent the analytical results as from
equation (44).

to zero as slowly as 1/R2). Obviously, this is only a numerical artifact: the average of the
logarithm itself is still well defined and has a finite value.

Nevertheless, this is an indication that we must be much more cautious in performing
power expansions. In particular, this difficulty prevents one from obtaining a general analytical
expression analogous to that obtained in the previous section in terms of modified Bessel
functions. In this case, even obtaining an expression in the limiting case of smallG requires
rather laborious work. In appendix B we illustrate that one can eventually show that the
non-trivial deviation with respect to the uncoupled limit is given by

δ3 = 3σ 2

2 ln(1/G)
. (45)

Therefore, we also see that in the general case of positive/negative signs, the leading dependence
onε is of the type 1/ ln ε, as numerically observed. What is different is the dependence on the
multiplier fluctuations as testified by the presence of the parameterG rather thang.

4.2. Numerical results

The first meaningful test of the analytical approach devised in section 4 concerns the probability
distributionP(R). In figure 3 we report the outcome of a numerical experiment in doubly
logarithmic scales (see the various symbols). This allows one to observe a crossover from
an initial decay as 1/R to the asymptotic decay 1/R2, which represents the first qualitative
confirmation of the theoretical predictions. However, the agreement with expression (44)
(represented by the various lines) is more than just qualitative. In fact, besides noticing
the almost perfect overlap, one should also remember that the only parameter entering
equation (44), i.e.G, has not been fitted, but independently determined from the fluctuations
of the local multipliers. As a last remark, we would like to point out that the good agreement
is not totally obviousa priori at least for the reason that the reduction from a set of coupled
stochastic equations to a single equation is not completely under control.
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Figure 4. The Lyapunov exponent versus the scaling parameterG in the case of fluctuating
multipliers. The Lyapunov correctionδ3 is normalized so as to emphasize the 1/| lnG|
dependence. Circles correspond toε = 10−5 while diamonds toε = 10−3. The solid line
represents the theoretical result (45).

Moreover, it is instructive to compare the shape of this distribution with the results
predicted by the theory for strictly positive multipliers. By expressing the probability density
of equation (22) in terms ofR, we find an exponential tail (P(R) ' exp(−gR)/R). The
power law observed in figure 3 is also, therefore, evidence of a clear difference between the
two regimes.

Finally, let us look at the deviations of the MLE plotted versus the scaling parameterG.
The data reported in figure 4 have been obtained for different noise amplitudes and either
ε = 10−3 (diamonds) orε = 10−5 (circles). It is clearly seen that,δ3 lnG/σ 2 is constant, and
independent of the value ofG. This confirms the scaling behaviour predicted by equation (45).
A more quantitative check can be made by comparing the actual value ofδ3 lnG/σ 2 (about
1.1 ≈ 1.2 in direct simulations) with the theoretical prediction (1.5). We believe that the
deviation can be ascribed to the approximation made in reducing the set of coupled stochastic
equations to a single Langevin equation.

5. Conclusions and perspectives

In this paper we have developed a theoretical method that is able to explain the scaling behaviour
of the MLE previously observed in CMLs in the small-coupling limit [7]. Furthermore, our
treatment provides a quantitative estimation although under the assumption ofδ-correlated
multipliers (i.e. in the random matrix approximation). It is important to stress that such
quantitative results have been obtained not only in the case of strictly positive multipliers (the
only one dealt with in the previous studies) but also in the case of random signs.

In both cases we have found that the correction to the MLE induced by the local interactions
actually depends on a single scaling parameter which is simply the coupling strength rescaled
by the ‘amplitude’ of multiplier fluctuations. However, the scaling parameter is significantly
different in the two cases: for strictly positive multipliers, the fluctuation ‘amplitude’ is the
mean-square deviationσ 2 (see the definition ofg—equation (18)), while in the case of random
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signs, the ‘amplitude’ is the rms deviation (see the definition ofG—equation (39)). Important
differences affect also the probability distribution of the ratiosRi of the perturbation amplitude
in two adjacent sites: in the case of fluctuating signs, long tails characterized by a power-law
decay are present.

Among the problems still open, there is certainly the exigency of a more rigorous procedure
to solve the set of coupled Langevin equations. In fact, while the derivation of the set of coupled
stochastic equations is the result of a well controlled perturbative approach, its reduction to a
single equation is based on a mean-field approximation whose validity cannot be controlleda
priori but only checkeda posteriori.

As the analytic formulae provide a good description of the ideal random-matrix case, it
would be now interesting to compare our predictions with the actual evolution of a generic
CML and if possible take care of modifications of the invariant measure as well as of the
temporal correlations.

Finally, we want to mention the possibility of extending this approach to the case of weakly
coupled attractors, where time is continuous from the very beginning. This is certainly the most
stimulating perspective that is also supported by the preliminary observation that the Langevin
equation (21) is also obtained in the case of two weakly coupled differential equations [16].
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Appendix A. Linear limit

This appendix is devoted to the analysis of equation (15) in the linear limit,

ẇi = −γ (wi+1− 2wi +wi−1) +ψi(t)− ψi−1(t) (A1)

where we have introducedψk = ln{mk(t)}. This is apparently a discretized Edwards–
Wilkinson equation [23], but the spatial structure of the noise prevents the onset of any
roughening phenomenon (as commented in the main body of the paper).

To solve this equation, it is convenient to perform a spatial Fourier transform, since it
leads to a set of uncoupled equations,

ẇ(k, t) = −2γ (1− cos(k))w(k, t) + (1− eik)ψ(k, t) (A2)

wherew(k, t) is a complex number that can be decomposed into a real and imaginary part
(w(k, t) = x(k, t) + iy(k, t)), which satisfy the same equation

ẋ(k, t) = −2γ (1− cos(k))x(k, t) + η(k, t) (A3)

where the noise termη is δ correlated,

〈η(t)η(t ′)〉 = 2σ 2(1− cos(k))δ(t − t ′). (A4)

Accordingly, all Fourier modes obey the same Gaussian distribution function,

P {w} ∼ exp

(
−γ (x

2 + y2)

2σ 2

)
. (A5)

The probability distribution ofwi on a single site is easily obtained by summing the independent
distributions corresponding to all modes. As a result, the distribution ofwi is also Gaussian
and its variance isσ 2, as if we had neglected the spatial coupling in equation (A1).
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Appendix B. Lyapunov correction

In this appendix we determine the nontrivial part of the leading correction to the MLE in the
general case. We start by computing the normalization constant. It is convenient to exploit
the invariance ofP(R) under parity change and the transformationR → 1/R, to express the
normalization condition as

1= 4
∫ 1

0
dR P(R) = 4N(G)

∫ 1

0

dR√
R2 +G2(1− R2)2

. (B1)

Since an explicit analytical expression for the above integral does not exist, we shall limit
ourselves to studying the small-G limit. One cannot simply expand the denominator, as it
gives rise to a non-integrable singularity inR = 0. It is, instead, convenient to introduce
the variablex = R/G. Afterwards, one can expand the integrand in powers ofG without
encountering undesired divergences. By retaining the leading terms, we find

1

N
' 4

∫ 1/G

0

dx√
1 +x2

' 4 ln(1/G). (B2)

From equations (7), (5), it turns out that the estimation ofδ3 requires computing the mean
value ofL(R1, R2) ≡ ln |1 +γR1 + γ /R2|, i.e.

δ3 =
∫ ∞
−∞

∫ ∞
−∞

dR1 dR2P(R1)P (R2)L(R1, R2). (B3)

Thanks to the equalityL(R1, R2) = L(1/R2, 1/R1) and to the invariance ofP(R) under the
transformationR→ 1/R, we can write the Lyapunov correction as the sum of three different
contributions, namely

δ3 ≡ δ1 + δ2 + δ3 =
∫ 1

−1

∫ 1

−1
dR1 dR2P(R1)P (R2){L(R1, 1/R2)

+2L(R1, R2) +L(1/R1, R2)} (B4)

where the meaning of the new symbols is obvious.
In analogy with the computation of the normalization constant, we introduce the variables

x = R1/G andy = R2/G. As a consequence, the expressions for the three contributions can
be written as

δ1 = N2
∫ 1/G

−1/G

∫ 1/G

−1/G
dx dy

ln |1 +γGx + γGy|√
x2 + (1−G2x2)2

√
y2 + (1−G2y2)2

(B5)

δ2 = 2N2
∫ 1/G

−1/G

∫ 1/G

1/G
dx dy

ln |1 +γGx + γ /(Gy)|√
x2 + (1−G2x2)2

√
y2 + (1−G2y2)2

(B6)

δ3 = N2
∫ 1/G

−1/G

∫ 1/G

−1/G
dx dy

ln |1 +γ /(Gx) + γ /(Gy)|√
x2 + (1−G2x2)2

√
y2 + (1−G2y2)2

. (B7)

The inequalitiesγ � G� 1 imply that the contributions proportional toγG in the arguments
of the logarithms can be neglected so thatδ1 is altogether negligible. Moreover,Gcan be always
neglected in the denominators, so that the leading contribution to the MLE can be determined
by merely estimating the two integrals

δ2 = 2N
∫ 1/G

−1/G
dy

ln |1 +σ/y|√
1 +y2

(B8)

δ3 = N2
∫ 1/G

−1/G

∫ 1/G

−1/G
dx dy

ln |1 +σ/x + σ/y|√
1 +x2

√
1 +y2

(B9)



7620 F Cecconi and A Politi

where we have re-introduced the parameterσ for later convenience. We start by discussingδ2;
it cannot be computed by expanding the logarithm as this leads to an unphysical divergence.
It is, instead, helpful to split this contribution into two parts

δ2 = δ′2 + δ′′2

= 2N
∫ 1/G

−1/G
dy

ln |y + σ |√
1 +y2

− 2N
∫ 1/G

−1/G
dy

ln |y|√
1 +y2

. (B10)

The first integral can be estimated by introducing the variablew = y+σ and thereby expanding
the denominator in powers ofσ . By retaining terms up to the second order, we find thatδ′2 can
be written as

δ′2 = 2N
∫ 1/G+σ

−1/G+σ
dw

{
ln |w|√
1 +w2

+ σ
w ln |w|
(1 +w2)3/2

+
σ 2

2

w2 ln |w|
(1 +w2)5/2

(2w2 − 1)

}
. (B11)

By expanding the zeroth-order term around the integral boundaries in powers ofσ , we find
that it is equal to−δ′′2 plus corrections of the orderγ 2 lnG. A contribution of the same order
is obtained also by integrating the linear term inσ . However, the leading contribution to the
MLE comes from the second-order term which, in the small-G limit can be written as

δ2 = 2Nσ 2
∫ ∞

0
dw

lnw

(1 +w2)5/2
(2w2 − 1). (B12)

The integral can be analytically solved and turns out to be equal to one, so that†

δ2 = 2N(G)σ 2 = σ 2

2 ln(1/G)
. (B13)

In principle, the determination ofδ3 requires even more cumbersome calculations, as it involves
a double integral. However, formally deriving the expression forδ3/N

2 with respect toG, we
find that, up to negligible corrections,

dδ3/N
2

dG
= − 4

G

∫ 1/G

−1/G
dy

ln |1 +σ/y|√
1 +y2

. (B14)

As the integral in this expression is exactly the same as that involved in the definition ofδ2

(see equation (B8)), we can write

dδ3/N
2

dG
= − 2δ2

GN
. (B15)

Upon substituting the expression forδ2 (see equation (B13)), the above equations can be
rewritten as

dδ3/N
2

dG
= −4σ 2

G
(B16)

which, after integration, yields

δ3 = σ 2

4 ln(1/G)
. (B17)

In conclusion, we find that

δ3 = 3σ 2

2 ln(1/G)
(B18)

where we have preferrentially introduced the explicit dependence on the physical parameterσ

rather thanσ .

† We have solved it with the help of the Maple software package.
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