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Abstract: The theoretical prediction of protein structures has become a field of increasing importance in both biology and 
physics. Reliable prediction methods in fact, would spare time consuming experimental X-ray and NMR techniques and 
they would represent a challenge for computational protein modeling as well. The well known limitations of all-atom 
models call for the development of coarse-grained protein descriptions including a minimal number of protein-like fea-
tures, while being capable of mimicking the essence of protein folding mechanisms. In this paper we review the most im-
portant classes of coarse-grained protein models in order of increasing complexity, starting from (over simplified) binary 
models, to models with one or two reaction centers per residue. We discuss how, despite their simplification, coarse-
grained models constitute a viable approach to structure prediction and they shed light on many aspects of protein-folding 
problem. 
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INTRODUCTION 

 The word protein derives from the Greek  which 
means ”being of primary importance”. No better term could 
have been chosen to describe this class of molecules playing 
a key role in practically all biological processes [1]. Proteins 
are involved, for instance, in enzymatic c catalysis, muscle 
contraction, immunitary defense, transmission of nervous 
signals, transport of charges and metabolites etc. The possi-
bility for proteins to perform their biological activities de-
pends crucially on their specific tridimensional structure [2]. 
Therefore, accurate information about a three-dimensional 
protein structure is required when the action mechanism of 
that protein is to be studied in detail. The determination of 
protein 3D-structures is far from trivial and is usually ac-
complished via X-ray crystal diffraction [3] and nuclear 
magnetic resonance (NMR) [4]. The X-ray technique pro-
vides high-resolution structural information as atom posi-
tions can be determined with errors lower than 2Å. Unfortu-
nately, protein crystal preparation is very critical and often 
slow: for some proteins it may take months to years to get a 
crystal clean and large enough for a X-ray experiment. The 
main advantage of NMR technique is that it does not need 
crystals and can be applied to proteins in solution provided 
that the concentration is high enough. NMR has got a couple 
of drawbacks: its resolution power is less than that of X-ray 
diffraction and it cannot be applied to very large proteins. It 
follows that such experimental techniques have serious lim-
its in that they cannot be applied to all proteins and the ex-
periments may be time-consuming. The development of 
computer methods for the prediction of protein structures  
 

 
 
*Address correspondence to this author at the INFM-CNR Center for Statis-
tical Mechanics and Complexity (SMC) Istituto dei Sistemi Complessi 
(ISC-CNR) Via dei Taurini 19, 00185 Rome Italy; Tel: +39 06.4993.7452; 
Fax: +39 06.4993.7440; E-mail: fabio.cecconi66@gmail.com 

from the amino acid sequence would therefore make faster 
and easier the study of the several new proteins that are dis-
covered every day [5]. With this respect, it is worthwhile 
noticing that, even if bioinformatics techniques, such as ho-
mology modeling and threading, are quite effective in struc-
tural prediction [6], they do not provide any insight in the 
folding mechanism and in forces driving it. These problems 
can be better addressed with physics-based models that will 
be also applicable to the study of conformational changes, 
protein-ligand binding and the action mechanisms of mac-
romolecules. 

 Anfinsen [7] postulated that, the amino-acid sequence 
contains all the information necessary to determine the na-
tive structure of a protein i.e. the conformation with the low-
est free energy. Within this framework, the protein folding 
problem, i.e. the prediction of the three-dimensional struc-
ture of a protein by only knowing its amino-acid sequence, 
can be addressed as a global optimization problem. Two in-
gredients are therefore necessary: a realistic energy function 
and an efficient algorithm for the sampling of the conforma-
tional space. This review will be mainly concerned with a 
comparative analysis of protein models with different de-
grees of simplification. 

 Quantitative sciences often resort to models to describe 
and explain natural phenomena. A physical model is a sim-
plified picture of a real system that captures all the essential 
features and neglects irrelevant details. An ab- initio descrip-
tion of the dynamics of the atoms in proteins involves Quan-
tum Mechanics, but this kind of approach for complex mole-
cules is still beyond any available computational resource. 
Hence, it is customary to use a classical description of mole-
cules in terms of bonds and effective atomic interactions, the 
only trace left of the electrons being the partial charges on 
the atoms. 

 The most straightforward approach is to consider the all-
atom representation of the protein molecule together with 
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empirical potential functions written as a sum of several con-
tributes [8,9]. The constants that describe molecular geome-
try and the strength of particular inter-atomic interactions are 
generally parametrized on empirical structural, spectroscopic 
and thermodynamic data available from small organic mole-
cules. The potential energy is expressed in the form of atom-
centered potentials with the energy of the molecule com-
puted as a sum over all interactions. Therefore the number of 
additive terms in potential functions is large, leading to ex-
tremely long computation times. A further limitation arises 
in all-atom Molecular Dynamics simulations where the time-
step is usually chosen one order of magnitude smaller than 
the period of the fastest oscillations of the system. Typically, 
the fastest stretching motion of the C-H bond imposes a 
time-step of the order of the femto-second. Currently all-
atoms simulations sample no more than a few tens of nano-
seconds. 

 This kind of problems can be partially overcome by using 
united residue simplified models at the price to approximate 
the folding process. In such models, every aminoacid residue 
is described by two interaction centers, one representing the 
side chain (assimilated to a sphere or an ellipsoid), the other 
representing the peptide group. The C  atoms are retained to 
give geometric constraints to the structure, but they are not 
directly involved in any interaction. Levitt [10] carried out a 
united-residue simulation on Pancreatic Trypsin Inhibitor 
reporting a gain of three orders of magnitude in the total 
simulation time over conventional all-atom methods. The 
united residue approach was further developed by Scheraga 
and his group [11-13], who also introduced a cumulant ex-
pansion of the free energy, accounting for the multi-body 
interactions which proved to be of paramount importance for 

-sheet and -helix formation [13,14]. 

 A further level of coarse-graining is represented by the 
class of one-bead models, where amino-acid residues are 
represented by beads centered on the position of the -
carbons and they are strung together by virtual bonds. Usu-
ally only two or three types of amino acids appear: hydro-
phobic, hydrophilic and possibly neutral, allowing simplified 
forms of the interaction between residues to be used. The 
aim is not providing an algorithm for 3D-structure determi-
nation from the amino acid sequence, but rather focusing on 
particular kinetic and thermodynamical aspects of the fold-
ing process. Investigations in this context include: the com-
pact filling of space, the preferential localization of polar and 
nonpolar aminoacids, the balance of long and short range 
interactions, the cooperativity of collapse into a compact 
structure and the discrimination between good and bad fold-
ers. 

 A final, extreme form of coarse-graining is represented 
by the Ising-like protein models [15,16] where the protein is 
portrayed as an array of binary variables that may represent 
residues, peptide bonds or native contacts. Each of these 
units can exist in two exclusive states: native-like and un-
folded. The most important advantage consists in the 
significant reduction of the conformational space. For a pro-
tein of N residues, the conformation space will only contain 
2

N
 
structures so that for suitable N, exhaustive enumeration 

becomes feasible. Another important feature is that, due to 
the extreme simplification, Ising-like models are often solv-

able analytically and amenable to more rigorous treatments 
[17]. 

 So far, we have classified protein models according to 
their structural representation of the protein chain. Models 
however, can also be classified according to whether they are 
topology-based or sequence-based. Before discussing key 
elements of these two classes however, it is necessary to 
identify which features a good protein model should have. 
Many of these features stem from the comparison of natu-
rally occuring proteins and random heteropolymers [18]. 
Natural proteins are characterized by a almost unique, stable 
native state that can be reached in a reasonably short time-
scale (milliseconds to seconds). Moreover, the folding of 
many natural proteins is often a cooperative process akin to a 
first order phase transition. This means that intermediate 
states between the native and the unfolded ones are never 
significantly populated. This is in sharp contrast with the 
behavior of random heteropolymers that have no unique na-
tive state and may fold in different conformations depending 
on initial conditions. At variance with proteins, the folding 
of random heteropolymers is a gradual process with interme-
diate structures dominating the population at intermediate 
temperatures. Finally, random heteropolymers fold slowly 
due to the presence of many kinetic traps. The different 
properties of natural proteins and heteropolymers are caused 
by the different topography of their energy landscape 
[19,20]. Protein energy landscapes, “sculpted” by millions of 
years of evolution, are funnel-like with rugged walls. The 
native state is placed at the bottom of the funnel which guar-
antees thermodynamic stability and fast accessibility. During 
the folding process, in fact, the protein just climbs down the 
landscape and the decrease in entropy is accompanied by a 
decrease in energy so that no significant free energy barriers 
will arise. At the folding temperature, the unfolded state and 
native state, will have the same free energy and the protein 
jumps straight from the unfolded to the native state so that 
folding will occurr in an all-or-nothing fashion. By contrast, 
the energy landscape of random heteropolymers is glass-like 
with many degenerate minima, each one representing the 
end-point of the folding process. Moreover, many metastable 
minima present in this frustrated landscape act as kinetic 
traps, slowing down the folding process. 

 The above discussion suggests that protein models can be 
assessed according to their ability to reproduce a funnel-
shaped energy landscape with a moderate amount of frustra-
tion. These requirements are surely satisfied by the topology-
based models originally introduced by Go et al. [21, 22] in 
1981. In the Go-model only residues forming native contacts 
interact attractively, whereas the others interact through a 
repulsive, excluded-volume potential. As a decrease in en-
ergy can only be attained through an increase in the fraction 
of native contacts, the Go-model minimizes frustration, as-
suring a fast folding behavior. A number of experimental 
evidences underscores the importance of the topology of the 
native state supporting the use of Go-models. In particular, 
proteins with similar native states and similar transition 
states, exhibit similar folding pathways in spite of their lack 
of sequence homology. Moreover, simple topological pa-
rameters such as the contact order were found to correlate 
well with the folding rates of small globular proteins [23, 
24]. The Go-model, producing a perfect funnel with minimal 
frustration, represents a sort of ”ideal limit” for the folding, 
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and deviations from it are not rare in real proteins. For in-
stance, the classic Go-model cannot discriminate the folding 
pathways of protein-L and protein-G, that share the same 
topology, but differ in their level of frustration [25]. Moreo-
ver, the folding mechanism proposed by Go-models can re-
sult artificial, since in nature, aminoacid residues interact by 
their physical and chemical properties and not on the basis of 
a ”knowledge” of their neighbors in the native state. 

 The challenge of physical modeling of protein folding is 
therefore the development of sequence-based protein models, 
still capable of producing a funneled energy landscape with a 
level of frustration higher than Go-models, but much lower 
than that of random heteropolymers. Sequence-based models 
must include the most important driving forces of folding 
[18]. Protein folding is mainly driven by the hydrophobic 
effect, i.e. the increase in entropy of the water caused by the 
destruction of the clathrates when the protein folds. Clath-
rates are highly ordered, cage-like structures formed by wa-
ter molecules surrounding the side-chains of apolar residues. 
Globular proteins fold in such a way that apolar residues are 
confined in a solvent-excluded, hydrophobic core, with re-
lease of a large number of water molecules. As it is ex-
tremely difficult to exactly reproduce this complex mecha-
nism, the hydrophobic effect is usually modeled through an 
effective Lennard-Jones potential also accounting for van der 
Waals interactions. Residues effectively behave as if they 
attracted each other, leading to the collapse of the protein 
into a compact conformation. The protein folding is also 
driven by a set of short-range and long-range interactions. 
Short-range interactions involve atoms and residues close 
along the primary sequence and include stretching, bending 
and dihedral potentials. Long-range interactions arise among 
residues close to each other, even if distant along the primary 
sequence. They include ionic interactions, disulfide bridges 
and hydrogen bonds.  

 In this Review, we will describe the most important fami-
lies of coarse-grained protein models in order of increasing 
complexity. In the first Section, we review Ising-like models, 
in the second one, we discuss one-bead models, and in the 
third, we describe two-interaction-centers models. Finally, in 
last section, we draw the conclusions of our discussion. 

ISING-LIKE MODELS 

 Ising-like models are statistical mechanical models where 
every element of the system can only take on two alternative 
states. This corresponds to simplifying a protein as an array 
of residues, peptide bonds or contacts, that can be either “na-
tive” or “non-native”. The first Ising-like natural approach 
focused on the helix-coil transition [26], because in a -helix 
each residue only interacts with its sequence neighbors. The 
model correctly showed that the helix-coil transition occurs 
in two steps: nucleation and elongation. 

 The application of Ising-like approach to -sheet struc-
tures requires the definition of interaction rules for residues 
that are not sequence neighbors [27]. This is usually done by 
using structure-based interactions: residues are allowed to 
interact only if they establish contacts in the native structure. 

 In the Galzitskaya Finkelstein (GF) model [16], each 
residue can be either folded (si = 1) or unfolded (si = 0). The 
protein populates its native state when all binary variables si 
= 1, whereas it is a random coil when si = 0 for all i. Two 

such residues can interact even when all the other residues in 
the chain between them are in a coil conformation. The 
Hamiltonian (actually a free-energy) of the GF model is:  

H(s) = ijsis j
i< j

TS(s)            (1) 

where the conformation entropy S(s) is computed as 

S(s) = R q (1 si )+ Sloop(s)
i=1

L 

 
 

            (2) 

with , R, T, L, being the energy scale, the gas constant, the 
absolute temperature and the number of residues, respec-
tively. In Eq.(1),  is the contact matrix, whose elements 
represent the number of heavy-atom contacts in the native 
state. Non-native contacts do not contribute to the stabiliza-
tion energy, so that frustration is minimal. The conforma-
tional entropy (2) is split in two contributions. The term Rq 

i (1 si) is just the sum of the entropies Rq of each residue in 
the unfolded state, while RSloop is the entropy of closing dis-
ordered loops computed as, 

S
loop
(s) = J(r

ij
) (1 s

k
)s

i
s
j

k= i+1

j 1

i< j

  

where 

J(r
ij
) =

5
2
ln | i j |

3
4

r
ij

2 d 2

Ad | i j |

        (3) 

 Expression (3) simply portrays a disordered loop as a 
random walk with end-to-end distance rij . The factor 5/2 
accounting for the excluded volume effect exerted by the 
globule surface on loops, replaces the classical factor 3/2 of 
random walks (see Ref. [16]). The parameters A and d repre-
sent the persistence length and the average distance between 
consecutive alpha-carbons respectively. 

 Another interesting model has been proposed by Wako 
and Saito [28] and later generalized by Muñoz and Eaton 
(WS-ME) who applied it to a16-residue -hairpin [15, 29]. It 
is based on the balance between the destabilization caused by 
loss of conformational entropy upon folding and the stabiliz-
ing effects of native hydrogen bonds and hydrophobic inter-
actions. Binary variables characterizing the protein state are 
pairs of backbone dihedrals i i+1 assumed to shift between 
native and non-native values in a coordinated manner. The 
structural unit of the system is therefore the peptide bond. 
The free energy function (meant as the Hamiltonian) of WS-
ME model can be written as 

H (s) = J
ij

i< j

s
n
+T S

conf
s
i

i=1

L

n= i

j

       (4)  

where J is the interaction strength, ij is a contact matrix 
element, si is the binary variable describing the status of the 
i-th peptide bond, T is the temperature and Sconf is the loss of 
conformational entropy per native bond. The product nsn in 
Eq.(4) constrains peptide bonds i and j to interact only if all 
the i+1,i+2,...,j 2,j 1 bonds are native. As a consequence, 
the entropic cost of loop closure is very high. 

 In 1999, Alm and Baker (AB) [30] proposed another na-
tive-centric binary model similar to GF and WS-ME ap-
proach, whose free-enegy function reads 

H = (ASA) +KT( n + ln(L /L0 ) 
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where K is the Boltzmann constant and T the absolute tem-
perature. In the first term native-attractive interactions are 
proportional to the variation of the accessible surface area of 
residue pairs forming native contacts (with  = 16 cal mol-1Å-

2). The term KT n represents the entropic cost of ordering n 
residues (with  = 175 Kcal mol-1), while KT  ln(L/L0) indi-
cates the entropic cost of loop closure and only applies to 
conformations with two consecutive stretches of native resi-
dues (  =1.8 L0 =0.15), L being the loop length. 

 The interaction rules of the above models are based on 
the concept of contact order [26] which is the average loop 
length in a protein structure [23]. The known correlation of 
the contact order with the folding rate suggests that Ising-
like models may reliably reproduce the kinetic behavior of 
folding [31]. The main difference is the entropic cost of loop 
closure which in the WS-ME is much larger than in GF and 
AB models. 

 The discreteness of the conformation space of binary 
models allows their kinetics and thermodynamics to be eas-
ily studied. In fact, at equilibrium, states are sampled with 
probability: 

P
eq
(s) =

e H ( s ) /RT

e H ( s ' ) /RT

s '

 , 

it is therefore possible to monitor the composition of the 
population by means of a vector P(t) of large but finite di-
mension. The time evolution of the probability vector can be 
attained from the Master Equation 

dP
dt

= M P
  

with the matrix M whose entries are the transition probabili-
ties from conformation s to s’ defined as 

M s ,s ' =
0

1 H (s' ) < H (s)

0

1 exp{ [H (s) H (s' )]/RT} H (s' ) > H (s)

 
 
 

 

 1/ 0

 

being the attempt rate. The transition matrix M is 
such that the sum of the elements of each column is zero. 
The Master Equation discretized in time, as P(t + h) = (1 - 
hM) P(t) allows the kinetics to be simulated. This approach 
for WS-ME model was applied by Cieplak et al. [32] to a 
shorter 12-residue version of the original -hairpin in order 
to sample the Transition State Ensemble exploiting the com-
plete enumerability of conformations in the single sequence 
approximation [*]. By convention, conformations 1 and 67 
were assumed as the native and fully unfolded states respec-
tively. Then, such states can act as probability sinks just set-
ting to zero the first and last column of matrix M. In Ref. 
[32], the flow of probability was studied by starting from a 
state where only one conformation is populated. The authors 
discovered that six states had equal probabilities to flow 
towards the native and the unfolded states, and are therefore 
located at the boundary between the native and non-native 
basins. Among these edge conformations, those with the 
lowest energy identify the transition state ensemble. 

 The method for studying the Transition State Ensemble 
developed by Galzitskaya and Finkelstein [16,33] through 
their model differs from that by Cieplak et al. [32] but it still 
relies upon the enumerability of a subset of structures with a 
reasonably small number of disordered loops. In this method, 

the protein is regarded as a chain of U links and each unfold-
ing step is the removal of one chain link. An unfolding 
pathway can therefore be represented as P =(S0  S1  ··· 

 SU ) where S0 is the native state, SU is the fully unfolded 
state and Sn in general is a microstate with n disordered and 
U n ordered loops. The transition state is identified by the 
maximum of the free energy along the pathway: F

p

† 

= 
max{F(S0), F(S1), ··· ,F (SU)}. The number of unfolding 
pathways is extremely high since for any number n of disor-
dered loops, there are many possible microstates Sn, and 
each of them may be crossed by many different pathways. 
The most efficient unfolding pathway connects the native to 
the unfolded state through the lowest free-energy barrier: 

F
p

† 

= min{max{F(S0), F(S1), ··· ,F (SU)}}. 

 This special saddle point that identifies the folding nu-
cleus was found through a systematic exploration of all un-
folding pathways by means of a recursive algorithm similar 
to that of dynamic programming. Since the protein does not 
necessarily unfold through Transition States of minimal free 
energy, the strategy suggested in Refs. [16,33] is to identify 
other not-optimal, but possibly numerous, passages over the 
free energy barrier. For every microstate S, all unfolding 
pathways passing through S are considered. If the free en-
ergy F(S) is equal to the lowest free energy barrier of all 
pathways passing through S, then conformation S belongs to 
the Transition State Ensemble.  

 As already stated, an interesting feature of binary-models 
is that they are amenable to analytical or semi-analytical 
treatments. For instance, Bruscolini et al. [34] derived a 
mean field approach (MFA) for GF model of the Pin1 WW 
domain. In its variational formulation [35], MFA, for a sys-
tem of Hamiltonian H and corresponding free-energy F, 
amounts to minimizing 

F F0 + H H0 0
= Fvar

, 

where H0 is a solvable trial Hamiltonian and F0 is the corre-
sponding free-energy, both depending on the variational pa-
rameters x={x1,…,xL}. Minimization leads to the self consis-
tent equations 

H0

xl 0

H H0 0
= (H H0)

H0

xl 0

.
 

 The standard MFA employs as trial Hamiltonian:  

H0 (s) = xisi
i=1

L           (5) 

with xi to be determined by minimizing the variational free-
energy [35] 

Fvar (x,T) = f0 (xi,T)+ H H0 0
i=1

L  

where the first term is the free energy associated to H0, 

f
0
(x

i
,T ) = RT ln{1+ exp( x

i
/RT )} 

 Thermal averages, performed through the Hamiltonian 
H0 factorize sisj….sk 0= si 0 sj 0…. sk 0. The approximate 
average “site magnetization” mi= si 0 depends only on the 
field xi, and is given by 

mi =
f0(xi ,T)
xi

=
1

1+ exp(xi /RT)
.
                                     (6) 
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 Instead of working with external fields xi’s, it is more 
intuitive to use the corresponding “magnetizations” mi’s, 
writing Fvar as a function of the mi’s. Due to the choice of H0 

[see Eq.(5)] and to expression (6), evaluating the thermal 
average H 0 amounts to replacing, in the Hamiltonian (1), 
each variable si by its thermal average mi. Finally one obtains 
[36] 

Fvar (m,T) = ijmim j TS(m)
ij

+ RT g(mi )
i=1

L  

where g(u) = uln(u) + (1-u)ln(1-u). 

 The MFA and its improvements [34] have been applied 
to the study of the folding behavior of the -hairpin fragment 
from the Immunoglobulin-binding protein (GB1). 

 The reaction coordinate characterizing the folding is the 
average magnetization 

Q =
1
L

s
i

i=1

L             (7) 

representing th e fraction of native-like residues (si =1). In 
MFA, this recasts to the quantity Q = imi/L. Fig. (1) shows 
the thermal behavior of Q as computed from exact enumera-
tion simulations and its MFA estimates. The inset reports the 
hydrophobic cluster (W43 Y 45 F52 V54) population Qhyd 

as a function of temperature (experimental data from [37]) 
and its fitting provided by the model. As shown in Fig.(1), 
the experimental data are well reproduced by both exact 
enumeration and MFA. 

 

 

Fig. (1). Fraction of native residues Q (see Eq.(7)) during thermal 
folding, according to the GF model. Full dots are the exact result 
obtained by exhaustive enumeration. Dashes and solid lines indicate 
improved approximations MFA1 and MFA3 respectively (cfr. Ref. 
[36] for details). Inset: Fit of the hydrophobic cluster 
(W43 Y45 F52 V54) population Qhyd (solid) to the experimental 
data from [37] (triangles). 

 
 Due to their minimalist character, Ising-like models yield 
predictions that are often in qualitative but not quantitative 
agreement with experiments, e.g in the case of -values. 
Many efforts are currently made [38] for increasing the level 
of detail and thus the accuracy of Ising-like models. A possi-
bility is to incorporate non-native interactions by increasing 
the number of configurations for each residue or the letters in 
the amino-acid alphabet [39]. 

 The Fold-X force-field developed by Serrano and co-
workers [38] has the same structure as the GF model [16], 
but the interaction and entropy terms were derived by means 
of a statistical analysis of the protein database and are thus 
more reliable. The free energy function, evaluated on the 
native structure, reads: 

F = (ACP +HB) + n  Ent + 2.1 RT ln(L/0.4). 

 The term ACP is a potential for atom-atom and atom-
solvent contacts, HB is the hydrogen bond term, Ent is the 
local entropy per residue and n is the number of residues. 
The term Sloop = 2.1R ln(L/0.4) represents the entropy of a 
disordered loop of length L connecting two native-like seg-
ments and it is estimated by fitting the experimental entropy 
data of three proteins, ROP, SH3 and CI2 [38].  

 Despite the simplicity, Ising-like models are suitable to 
the study of proteins with a quasi-linear organization as re-
peat proteins whose sequence composed by tandem repeats 
of short aminoacid stretches leads to elongated super-helical 
structures (see Ferreiro et al. [40]). Using this approach, Ref. 
[40] showed that, in repeat proteins, the coupling between 
stability and cooperativity stems from their common de-
pendence on the inter-repeat interaction energy. Thus assum-
ing, that mutations affect this specific energy contribution, it 
is possible to infer their experimentally observed simultane-
ous effects on both stability and cooperativity. 

SINGLE BEAD MODELS 

HP Model 

 The first bead models of proteins were introduced by the 
pioneering work of Dill and coworkers between the end of 
the 80s and the early 90s [41,42]. The protein is modeled as 
a linear chain of beads linked by virtual bonds of constant 
length. In the original version, each conformation was repre-
sented as a self-avoiding walk on a two-dimensional square 
lattice [41,42], (Fig. (2)), later versions [43] involved a cubic 
three-dimensional lattice. The lattice allows a discretization 
of the conformational space and enforces excluded volume 
effects. 

 

 
Fig. (2). HP-model in 2-dimension. In this lattice model, the poly-
mer is constrained on a cubic lattice. There are two kinds of beads: 
hydrophobic (black) and hydrophilic (white). The cartoon shows 
the propensity of hydrophobic beads to segregate in a hydrophobic 
core, whereas the hydrophilic ones, are exposed on the surface. 
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 The most important difference between 2D and 3D sys-
tems is the lattice coordination number z, i.e. the number of 
nearest neighbors of each site, which is 4 in the square and 6 
in the cubic lattice. As a consequence, the cubic lattice al-
lows for more orientations per bond (z 1=5 vs z 1=3 in the 
square lattice) and more nearest-neighbor potential binding 
partners. The 2D approximation allows a significant reduc-
tion of computation times, however, it is less limiting than it 
may seem, as the surface-to-volume ratio of long chains in 
3D is the same as that of shorter chains in 2D.  

 According to the model, just two types of residues com-
pose proteins: hydrophobic (H) and polar (P). To account for 
the hydrophobic effect, hydrophobic residues interact attrac-
tively with each other by negative contact energy HH < 0. The 
other possible interactions do not contribute to stability, 

HP= PP=0. The extreme simplification reflects in the limited 
size of both sequence and conformational space that are 
composed by 2

L 
and (z 1)

L 1 elements respectively, for an 
L-residue protein. As a result, the sequence and conforma-
tion space of short peptides can be explored by exhaustive 
enumeration, whereas for longer sequences the Monte Carlo 
technique is a more effective choice. Despite the crude ap-
proximations, the model reproduces a number of protein-like 
features. First of all, in the neighborhood of the folding tem-
perature, a high percentage of sequences shows a sharp tran-
sition from the unfolded ensemble to the native one 
[41,42,44]. The native ensemble appears to be composed of 
compact conformations with a hydrophobic core and, for 
many sequences, it contains just one or a few structures. Fur-
thermore, 2D compact conformations show the same distri-
bution of secondary structure elements as real proteins 
[45,46]. The mutational properties of HP sequences are also 
protein-like, with a large majority of neutral mutations and 
many instances of sequences attaining the same native struc-
ture [42,47]. 

 The model allowed also to clarify and illustrate the dif-
ferent scenarios associated to the energy landscape theory, 
where the static concept of folding pathways is replaced by 
the statistical notion of energy landscapes and folding fun-
nels. 

Stillinger Model 

 The model proposed by Stillinger [48] can be regarded as 
an off-lattice evolution of the HP model [41,42]. The protein 
is still described as a chain of L beads, hydrophobic and po-
lar such that the sequence can be encoded by a set of binary 
variables i, where  = 1 for hydrophobic and 1 for polar 
residues. However, the chain lives in a continuous 2D space 
and each conformation is described by a set of L 2 bond 
angles between pairs of consecutive bond vectors of fixed 
unit length, (Fig. (3)). The potential energy is expressed as 
follows: 
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 The term Vc( i) is related to the curvature of the protein 
and it favors extended conformations with i =0, 

i=2,.., L 1. Conversely, the term Vnb(rij, i, j) promoting 
compact conformations, is the Lennard-Jones potential for 
non-bonded interactions which depends on the chemical fea-
tures of the interacting beads through the C( , j) parameter 
whose values are +1 for HH pairs (strong attraction), +1/2 
for PP pairs (weak attraction) and 1 for HP pairs (strong 
repulsion). The strong attraction between H pairs warrants 
the propensity of the model to form a hydrophobic nucleus 
as sketched in Fig. (3). 

 Stillinger model has been widely applied by several 
authors. For instance, Irbäck et al. studied the low-
temperature behavior of chains of length 8 and 10 [49]. 
However, only a minority of sequences, with a very large 
energy gap between the native state and the lowest-energy 
decoys exhibit a single folded at the chosen temperature. 

 

Fig. (3). Chain representation in the off-lattice Stillinger model. 
Bond vectors of fixed length point from one bead to the next one. 
The angle between two successive bond vectors is the bending an-
gle . Similarly to the HP-model, residues can be either hydropho-
bic (black) or hydrophilic (white). The attractive interactions be-
tween hydrophobic residues generate a hydrophobic core. 

 
 In Ref. [50], the Stillinger model was employed to ad-
dress the problem of the characterization of good and bad 
folders. These authors mapped the energy landscape in the 
neighborhood of the native conformation, drawing a graph 
that shows the connections of the native structure with its 
first neighboring minima. In the case of bad folders, there are 
only a few connections between the native state and the 
neighboring local minima. Thus a protein starting from a 
random extended conformation is unlikely to find a pathway 
towards the native conformation. In the case of good folders 
several routes do exist towards the native valley. Another 
work [51] described the folding and unfolding dynamics as 
an activated process whereby the protein jumps from a local 
minimum to a neighboring one. The transition probabilities 
were computed using Langer’s theory and identifying saddle 
points via an over-damped dynamics. This computational 
approach, requiring the identification of a large number of 
minima and saddles is actually computationally very de-
manding. However, Livi et al. [52] suggested to reduce the 
number of saddles to be searched by using a bond-angle dis-
tance as a metrics in conformation space to identify directly 
connected pairs of minima. The authors showed that the val-

1

2

3

4

5

7

6
8

9

10



Coarse Grained Modeling and Approaches to Protein Folding Current Bioinformatics, 2010, Vol. 5, No. 3      223 

ues taken by the angular distance between minima of directly 
connected pairs (pairs of minima separated by one saddle, 
DCP) are confined to the small value tail of the probability 
density function of the distance between any pair of minima. 
As a consequence, the search of DCP is limited to the subset 
of pairs of minima whose distance is smaller than a threshold 
value. Since the application of this method could discard 
DCP belonging to the large value tail of the distance distri-
bution, and since the inspection of the energy landscape 
showed that the DCP closer to the native structure exhibit the 
largest separation, the metric criterion was complemented 
with a systematic search of the DCP belonging to the native 
valley. This approach provides a general effective strategy 
also for reconstructing the energy landscape of more realistic 
models. 

Kolinski-Skolnick and Honeycutt Thirumalai Models 

 It is convenient to describe the Kolinski-Skolnick (KS) 
[53] and Honeycutt-Thirumalai (HT) [54] models jointly, as 
the former actually inspired the latter. Both models extend 
the aminoacid alphabet, beyond hydrophobic (B) and hydro-
philic (L) residues, to include also neutral instances (N) pro-
viding a more realistic description of sequences than HP 
[41,42] and Stillinger [48] models. 

 In the KS model, in particular, the protein lives on a dia-
mond lattice and for each internal dihedral angle (between 
the two planes identified by 4 consecutive beads) only three 
discrete conformations are allowed: the trans one and the 
two gauche ones. Long-range interactions between hydro-
phobic residues are rewarded with an h < 0 energy stabiliza-
tion, whereas interactions involving hydrophilic residues are 
repulsive ( W > 0). Neutral residues thus do not appear in the 
non-bonded term of KS model. Interestingly, the model also 
includes a cooperativity term, which tries to account for ex-
perimental patterns such as the cooperativity in the formation 
of -helices, and, more generally the formation of hydrogen-
bond networks. In the KS implementation, two residues i and 
j can receive an extra-stabilization depending on the confor-
mation of the neighboring dihedral angles. The energy func-
tion of KS model reads: 
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where, (s) is the unitary step function, rc is a distance cut-
off, ti =1 if the i-th dihedral is in the trans state and zero oth-
erwise; ij = h if i and j are both hydrophobic and ij = W, if 
at least one of the two residues is hydrophilic; finally c sets 
the energy scale for cooperative effects. 

 The off-lattice model developed by Honeycutt and Thi-
rumalai [54] can be somehow regarded as the continuous 
version of KS. Accordingly, the neutral residues (N) mark 
the bend regions that are necessary to the formation of -
hairpins and related structures. The special role of neutral 
residues is due to their weak repulsion and weak dihedral 
forces in neutral stretches. This can be better understood 
from the examination of the potential energy function 
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 The first term in this Hamiltonian is just a harmonic po-
tential allowing only small oscillations of bending angles 
around their equilibrium value. The third term of the force-
field, where h sets the energy scale, is a non-bonded interac-
tion potential that mimics the hydrophobic effect. In fact, the 
S1 and S2 coefficients take on different values according to 
the nature of the interacting residues: S1 = S2 =1 for BB pairs, 
S1 = 2/3 and S2 = 1 for LL and LB interactions, and S1 = 1, 
S2 = 0 for all interactions involving N residues. As a conse-
quence, hydrophobic residues interact with each other 
through an attractive Lennard-Jones-like potential with an 
equilibrium distance 21/6  where  is just the virtual bond 
length between successive residues. On the other hand, LL 
and LB interactions are long-range and repulsive, while all 
interactions involving neutral residues are of the excluded-
volume type. 

 The dihedral potential is characterized by three minima 
corresponding to trans conformation (  = 0) and two gauche 
conformations ( =±arcos [(3B A)/(12B)]1/2). In the strand 
regions the coefficients A and B are chosen so to favor the 
trans conformation, whereas in the bend regions the coeffi-
cients make the three minima degenerate and separated only 
by a modest energy barrier. This ensures maximal flexibility 
to the expected bend regions. Notice that such a dihedral 
potential is the off-lattice variant of KS dihedral interaction. 
Moreover HT approach does not include the cooperativity 
term that was a peculiarity of KS model. 

 Thirumalai and coworkers used the model to perform 
several Molecular Dynamics simulations on a 46-residue 
chain [54,55] that had been designed by Skolnick et al. to 
fold into a 4-stranded -barrel [53]. In particular, a series of 
temperature-jump simulations showed the existence of a 
three-stage kinetics:  

Denatured  Compact  Native-like  Native 

 The folding process therefore first involves a collapse of 
the protein into a compact conformation that later acquires 
native-like elements and finally evolves to the native state 
through activated transitions. The last stage of this folding 
process is the signature of an energy landscape whose low-
energy region is extremely rugged and degenerate. Actually, 
based on the features of his model, Thirumalai formulated 
the so called Metastability hypothesis [54] according to 
which a polypeptide chain can exist in a number of structur-
ally similar but energetically different conformations de-
pending on initial conditions. These features of the land-
scape, however, are not typical of natural proteins, but are 
rather reminiscent of glass systems. The energy landscape of 
HT model has been analyzed by Guo and Brooks [56], Ny-
meyer, Garcia and Onuchic [57] and Miller and Wales [58]. 
All these studies pointed out that the landscape contains 
many traps and long-lived intermediates favoring collapsed 
states rather than the single native structure. 
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Sorenson-Head Gordon Model (SHG) 

 An improvement of HT-model was realized by Head-
Gordon and coworkers [59] by changing the dihedral term in 
potential (8) 

V = {A(1+ cos
k
)+B(1 cos

k
)+

k=1

L 3

C(1+ cos3
k
)+D[1+ cos( + / 4)]}

        (9) 

to describe mixed alpha beta protein structures. Therefore 
three types of dihedral angles do exist: helical (H), extended 
(E) and turn (T), corresponding to three sets of dihedral coef-
ficients A, B, C, D. It follows that the SHG model requires as 
input, not only the aminoacid sequence in the three-letter 
alphabet B, L, N, but also the secondary structure encoded 
by the E, H and T alphabet. The implementation of this 
model to realistic cases requires a sequence design technique 
based on energy gap maximization. The procedure implies 
first the selection of the native state and a set of low-energy 
misfolded conformations (called decoys). A search is then 
performed in sequence space until the mutant maximizes the 
energy gap between the native state and the next low-lying 
state. This strategy was tested for the first time on the 46-mer 
sequence introduced by Skolnick [53]. The designed se-
quence exhibited a lower collapse temperature and a higher 
folding temperature resulting in a faster and more coopera-
tive folding transition. Using a more difficult benchmark, the 
design protocol was then applied to produce sequences that 
correctly discriminate the differences in folding mechanism 
experimentally detected for protein-L and protein-G [60]. 
The model was then improved in 2008 [61], with the intro-
duction of an orientation-dependent hydrogen bonding term 
in the potential energy function and with the increase of the 
number of bead flavors from three to four. The new model is 
also characterized by an increased dependence on the secon-
dary structural information that now affects not only the di-
hedral but also the bending and hydrogen bonding terms. 
Moreover, the sets of dihedral parameters have increased 
from 3 to 6 and four different types of turns are accounted 
for. This new version retains the ability of the original model 
[59] to discriminate the folding pathways of protein L and 
protein G, but it shows greater cooperativity as well as a 
more funnel-like landscape, allowing the folding temperature 
to be well above the glass transition temperature. 

An Example of off-Lattice Go-Model 

 Comparative analysis aimed at assessing the folding fea-
tures of the Head-Gordon model [59] were performed by 
Cecconi et al. [62] using as a benchmark the WW-domain of 
hPin1 protein whose sequence had already been optimized in 
a preliminary study by Head-Gordon and coworkers [60]. 
Ref. [62] compared the performance of the Sorenson Head-
Gordon model with that of the Go-like force field proposed 
by Clementi et al. [63]. The energy function of the latter 
model reads: 

Vtot =
kh
2
(ri,i+1 Ri,i+1)

2
i=1

L 1
+

k

2
( i i

0 )2 +
i=1

L 2

k(1)[1 cos( i i
0 )

i=1

L 3
]+ k(3)[1 cos3( i i

0 )]

+ Vnb (rij )i, j>i+3

L

       (10) 

where the non bonded interaction potential Vnb  reads 
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 In the above equations rij is the distance between residue 
i and j, i is the bending angle identified by the three con-
secutive C ’s i 1, i, i+1, i is the dihedral angle defined by 
the two planes formed by four consecutive C ’s i 2, i 1, i, 
i+1. The symbols with the superscript “0” and Rij are the 
corresponding quantities in the native conformation. The first 
two terms of this force-field are harmonic stretching (chain 
connectivity) and bending potentials. The third term is a di-
hedral potential introducing a bias towards native secondary 
structure elements. The non-bonded 12-10 Lennard-Jones 
potential assigns attractive interactions to residues forming 
contacts in the native structure. Residues that do not form 
native contacts repel each other through an excluded-volume 
potential. In its first application [63], the force-field by 
Clementi et al. proved to correctly identify the transition 
state ensemble of CI2 and SH3, two small globular proteins 
folding as two-state folders. The force-field was also able to 
identify the folding intermediate of barnase, RNAase H and 
CheY proteins. 

 In some cases (i.e. small peptides, Ref. [62]), to attain the 
typical cooperative pattern of two-state folders, the coopera-
tivity of the Clementi et al. model can be enhanced by the 
rescaling technique proposed by Chan [64]. Experimental 
studies suggest [65,66] that the origin of cooperativity lies in 
specific interactions appearing only after the assembly of 
native-like structures. The extra stabilization that the protein 
receives upon entering the native basin, can be modeled by 
rescaling the interaction forces according to  
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where Vh is the stretching potential, Q is the fraction of 
formed native contacts and  = 2 is the scaling factor.  

 The simulations in Ref. [62] showed that potential (10) 
with rescaling could correctly reproduce the reversible, co-
operative, two-state mechanism of folding of hPin1 WW 
domain. In particular, the cooperativity is indicated by the 
single narrow peak in the specific heat plot and by a ratio of 
the van’t Hoff to calorimetric enthalpy close to 1. Con-
versely, the simulation results by the SHG model [59] were 
rather ambiguous. The thermograms in Fig. (4), feature not 
only a peak, but also a shoulder at lower temperature. This is 
a signature of a non-cooperative folding involving a collapse 
into a compact, only partially structured, globule, followed 
by a rearrangement into the native conformation. 

 More interestingly, Cecconi and coworkers showed that 
the native state conformations clustered in two main subsets 
characterized by non-overlapping distributions of RMSD 
from the lowest energy, reference conformation. The struc-
tures of the two subsets were similar in energy but showed 
opposite chirality. This situation is an indicator of a parti-
tioning of the native basin that can be visualized in Fig. (5) 
by plotting the potential of mean force as a function of 
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RMSD. The existence of two distinct clusters of native-like 
conformations suggests that the SHG model [59] still retains 
the roughness and degeneration of the energy landscape of 
HT model from which it was derived. According to Cecconi 
et al., a possible reason for the degeneracy of the native state 
relies on the symmetry of the dihedral potential V( ), Eq.(9). 
In fact, the secondary structure of hPin1 WW domain only 
contains Extended and Turn dihedrals so that V( ) is a poly-
nomial in cos( ) and it is symmetric for inversion   
assigning equal stability to structures with opposite chirality. 

 
 

 

Fig. (4). Comparison of Go and Sorenson-Head-Gordon models. 
Top panel: discrepancy of the specific heat versus temperature 
profiles of the folding (solid line) and unfolding (dashed) simula-
tions with the SHG model. A similar mismatch also applies to the 
thermal behavior of the energy as reported in the inset. Bottom 
panel: Go-model simulations yield perfect superposition of the 
specific heat and energy (inset) profiles of folding (solid line) and 
unfolding (diamonds). 

 
 Moreover, a significant overlap has been observed be-
tween the energy histograms of native and unfolded state 
ensembles, suggesting only a partial maximization of the 
energy gap between the native conformation and the lowest-
energy decoy. 

 Classical Go-models [see Eq.(10)] are completely based 
on the topology of the native state. They may not be fully 
adequate when the chemistry of the polypeptide sequence 
plays a more relevant role than native state topology in stir-
ring the folding process. Several improvements were intro-
duced in the basic Go model to include some chemical and 
physical information on residues. The first attempt is to take 

into account the effects of side chain hindrance by the heavy-
map approach. In the original model by Clementi et al., two 
residues are regarded to be in native contact if the distance 
between their C  atoms is below a given threshold. This, 
however, may lead to the erroneous conclusion that two resi-
dues with large side-chains, such as Glutamate and Lysine 
forming a salt bridge, are not in contact because their C  are 
very far from each other, while side-chain atoms are actually 
very close. This difficulty is readily overcome by consider-
ing the heavy-map approach where two residues are in native 
contact whenever at least a pair of side-chain heavy-atoms 
are within a distance cutoff.  

 

Fig. (5). Upper panel: low-temperature free energy profiles of the 
SHG model as a function of the RMSD from the reference (native) 
conformation. The native valley appears to be partitioned in two 
main sub-basins separated by a barrier. The sub-basin correspond-
ing to RMSD range [0.25-1.00] is populated by conformations with 
the same chirality as the PDB structure, whereas the sub-valley in 
the range [2.80-6.50], corresponds to the opposite chirality. Lower 
panel: low-temperature free energy profiles of the Go-model as a 
function of the RMSD from the native conformation (pdb-
id=1NMV). The native valley shows a single basin as opposed to 
the partitioning in two sub-valleys typical of the Go-model. For 
further details see [62]. 

 
 Moreover, Guardiani et al. [67-69], in order to perform a 
mutational analysis of domain C5 of Myosin Binding Protein 
C (MyBPC), found more appropriate to use heterogeneous 
energy couplings. In particular, contact energies were 
rescaled according to the number of atomic contacts using 
the equation: 
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where Nij is the number of atomic contacts between residues i 
and j while Nmax is the maximum of Nij over all pairs of resi-
dues in native contact of the protein under examination. The 
use of heterogeneous couplings is a key improvement allow-
ing the Go-model to successfully deal with extremely diffi-
cult benchmark proteins such as those with similar topolo-
gies but different folding mechanisms. For instance, this is 
the case of the B1 segments of pepto-streptococcal proteins 
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G and L. These share an identical fold with a central -helix 
packed against a four-stranded -sheet composed by two 
hairpins. Experimental evidences [70,71] show that in pro-
tein L the N-terminal hairpins form ahead of the C-terminal 
one, whereas in protein G the folding order of the two hair-
pins is reversed. Classical Go models such as the one used 
by Koga and Takada [25] failed to discriminate the folding 
mechanisms of these two proteins. The task, instead, was 
successfully accomplished by the models introduced by 
Karanicolas and Brooks [72] and Sutto et al. [73] that in-
cluded sequence effects via heterogeneous couplings. The 
model by Karanicolas and Brooks will be discussed in more 
detail later on in this section. As a further example, we can 
mention a work by Matysiak et al. [74] where a heterogene-
ous Go model reproduced available experimental data on 
free energy differences upon single mutations of S6 ribo-
somal protein and its circular permutants. Energetic hetero-
geneity has been crucial also to discriminate pathogenic mu-
tations on domain C5 of MyBPC (Guardiani et al. [67-69]). 
In fact, within the framework of the Go approach, a mutation 
is modeled by removing all the native contacts involving the 
mutated residue. However, if two residues form the same 
number of residue-residue contacts, the role of their mutation 
can be discriminated only by weighting the contact energies 
via the number of atomic contacts. Fig. (6), shows the sensi-
tivity of specific-heat plots of C5-domain from MyBPC to 
mutations on Arg14, Arg28 and Asn115 and to deletion of 
first seven residues,  1-7. 

 This sensitivity is enhanced by the use of heavy-map Go-
model with heterogeneous couplings. Another limit of the 
basic Go-models is that they do not account for desolvation 
effects. For instance, if we consider the Go-model described 
by Eq. (10), the solvent is implicitly simulated through a 
careful tuning of the ij parameters. The influence of the sol-
vent on kinetics is also captured performing Molecular Dy-
namics with the Langevin equation: 
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Fig. (6). Effect of pathogenic mutations on C5 domain from 
MyBPC: the thermal plot of the specific heat shifts toward lower 
and lower temperatures in agreement with the clinical severity of 
the mutation. Heat capacity of the Wild Type C5-domain (WT) is 
compared to those of the missense mutants deprived of the native 
contacts of Arg14, Arg28 and Asn115 (Mut14, Mut28 and 
Mut115), as well as, to the one of a deletion mutant ( 1 7). For 
further details see Ref. [67]. 

Accordingly, the force acting on residue i is a sum of three 
contributions: a conformational force Fi due to the interac-
tions of residue i with all the other residues of the protein, a 
friction force dri/dt due to the viscosity of the solvent, and 
a random force Ri modeling the random collisions of solvent 
molecules on the residue. This approach, however, does not 
consider the particle nature of water, responsible for the 
desolvation effect that needs appropriate treatment as dis-
cussed in the following. 

Go-Model with Desolvation 

 It is known [75] that the potential of mean force model-
ing the interaction between two methane-like molecules in 
water exhibits two minima, (Fig. (7)): the first minimum 
corresponds to the interaction of the two particles at a dis-
tance equal to the sum of their van der Waals radii; the sec-
ond minimum refers to the two methane particles separated 
by a single water molecule. The energy barrier between these 
two minima corresponds to high energy arrangements where 
the water molecule has been expelled but the methane parti-
cles are not yet close enough to strongly interact with each 
other. Accordingly, a free energy penalty must be associated 
with the desolvation of the hydrophobic core of a protein.  

 An improved Go-model with desolvation effects has been 
developed by Cheung et al. [76]. In this model the native 
contact LJ potential is corrected such that two minima ap-
pear. With reference to Fig. (7), the first one corresponds to 
two residues in contact (at equilibrium distance r = r’), the 
second one refers to a state where two attracting beads are 
separated by a single water molecule (at equilibrium distance 
r = r”).  

 

Fig. (7). Native-contact potential (reduced units) with desolvation 
correction as a function of inter-particle distance (Å). When two 
residues are at distance r’ they are in direct contact, whereas at 
distance r”, they are separated by a single water molecule. The 
expulsion of this water molecule generates an energy barrier. 
(Adapted from Fig.1 of Ref. [76]). 

 
 Between these two minima there is a desolvation barrier 
located at r = r

+. The depth of the energy wells at r’
 

and r” 
are labeled -  and - ’ respectively, while ” is the height of 
the desolvation barrier. These parameters are related to each 
other in such a way that they can be easily derived from the 
corresponding Lennard-Jones parameters  and r’. In fact, 
based on the findings reported by Hummer [77,78] and by 
Hillson [79], one has ( ” ’)/( ’- )=1.33 and ’/ =1/3. 
These expressions allow to derive both ’ and ” from . 
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Furthermore, as the width of the desolvation barrier corre-
sponds to the diameter of a water molecule ( 3Å), then r” = 
r’+3Å. Finally, the barrier position is assumed to occur at r

† 

= (r’+ r”)/2. 

 The model was applied to the folding of protein SH3 [76] 
characterized by a native state where a hydrophobic core is 
enclosed by -sheets. The simulations showed that the col-
lapse to a native-like structure is followed by a further step 
where water is expelled from the hydrophobic core. This 
pattern is supposed to be relevant for the biological activity 
of the protein. It is important to consider that the computa-
tion of energy as a sum of pairwise contributions, as in the 
Cheung et al. approach, is often criticized as being unsuit-
able to represent the many-body nature of the hydrophobic 
effect. For example, Czaplewski [75] showed that the three-
body term accounts for 10% of the total hydrophobic asso-
ciation energy. Despite this limitation, the sharper profile of 
the specific heat of SH3 obtained in Ref. [76] as compared to 
standard Lennard-Jones simulations clearly suggests an im-
provement in the cooperativity of the folding process.  

Karanicolas-Brooks Model 

 The sophisticated Go-model developed by Karanicolas 
and Brooks [72] (KB) includes all of the improvements dis-
cussed so far and it also accounts for non-native interactions 
responsible for the energetic frustration of real proteins. As 
in most Go-models, a stretching and a bending potential im-
pose chain connectivity and elasticity respectively, while 
residues not forming native contacts repel each other through 
an excluded-volume potential. 

 The interaction term for residues forming native contacts 
has the following form: 

Vij = ij 13
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 This potential differs from the 12-10 Lennard-Jones, for 
the presence of an additional repulsive term r

6 

, which im-
poses a desolvation penalty that every pair of residues must 
pay before reaching the equilibrium distance. In KB model 
there are two types of native interactions: hydrogen bonds 
involving backbone atoms and contacts between side-chains. 
Hydrogen bonds are identified using the criterion of Kabsch 
and Sander [80], based on an electrostatic energy threshold. 
For any pair of hydrogen-bonded residues, ij is set to unity 
and ij to the native distance of the C ’s. In the same spirit of 
the model by Kolinski and Skolnick [53] described above, 
the cooperativity effects of hydrogen bonds are also ac-
counted for. In particular, when residues i and j interact via 
two hydrogen bonds or a hydrogen bond and a side chain 
contact, the energy of one of the hydrogen bonds is not ap-
plied to the original (i,j) couple only, but it is distributed 
among four hydrogen bonds formed by i and j with the 
neighboring residues, according to the scheme sketched in 
Fig. (8). More explicitly, hydrogen bonds are also created for 
the pairs (i,j 1), (i,j+1), (i 1,j) and (i+1,j) with ij set to 1/4 
and ij set to the -carbon separation of each pair in the na-
tive state. The side-chain-side-chain interactions reflect the 
different chemical and physical properties of the 20 natural 
amino-acids and the ij’s are thus scaled in proportion to the 
contact energies reported by Miyazawa and Jernigan [81]. 
The model thus implements heterogeneous energy couplings 

similar to the model by Guardiani et al., discussed above 
[67-69]. Another interesting feature of the KB model is the 
use of a dihedral potential, that, unlike the one in Eq.(10), is 
not native-centric but sequence-based. 

 

Fig. (8). Karanicolas-Brooks model: redistribution of contact en-
ergy among neighboring residues to enhance cooperativity. When-
ever two residues i and j are linked by two hydrogen bonds or by a 
hydrogen bond and a side chain-side chain contact, the coupling 
parameter  = 1 of one of these contacts is redistributed among the 
4 pairs (i, j 1), (i, j+1), (i 1, j) and (i+1,j), each receiving an en-
ergy coefficient  = 1/4. 

 
 This dihedral term introduces frustration in the energy 
funnel, somewhat reproducing the non-native interactions 
that influence the folding of natural proteins. The dihedral 
potential is computed as V( ) lnP( ), where P( ) is the 
distribution of the virtual dihedral angle  derived from a 
survey of Protein Data Bank (PDB). The virtual dihedral 
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authors considered 400 P( ) distributions, for all of the pos-
sible amino-acid pairs. As already mentioned, the KB model 
was successful in discriminating the folding mechanisms of 
protein L and protein G despite their identical topology [72]. 

Statistical Potentials: Miyazawa-Jernigan 

 The development of the dihedral potential in the KB 
force-field [72] is an example of derivation of a potential of 
mean force exploiting the wealth of information contained in 
the PDB. Such a method is so general that it was widely used 
both in topological and sequence-based models. This is the 
reason why its description closes the section of one-bead 
models. This approach, in principle, is rather straightforward 
and is based on the inversion of the Boltzmann weight PAB  
exp( EAB/RT), (R being the gas constant and T the absolute 
temperature). Accordingly, the potential of mean force be-
tween residues A and B located at distance r ± r is com-
puted by Miyazawa-Jernigan [81] as 

wAB (r; r) = RT ln
PAB (r ± r)
PXX (r ± r)

                                         (12) 

where PAB(r± r) is the probability to find A, B at a distance 
r± r, PXX(r± r) is the corresponding probability in the refer-
ence state. With in the framework of the quasi-chemical ap-
proximation [82], the reference state is a random mixture 
where the number of contacts between species A and B is 
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proportional to their concentration. The potential of mean 
force developed in Ref. [83] accounts for desolvation effects 
through the reaction: 

A · S + B · S A · B + S · S 

where S represents a solvent molecule and A·S and B·S indi-
cate solvated state of the residues. An estimate of the contact 
energy of AB pair including also desolvation effects is thus: 

eAB = wAB + wSS wAS wBS ,  

and requires to apply Eq.(12) four times. 

 The arbitrariness of wAB stems from the choice of the way 
of characterizing the reference state (a non interacting mix-
ture of aminoacids). Zhou et al. [84] argued that the quasi-
chemical approximation deviates from a homogeneous mix-
ture of aminoacids in the very common situation of unbal-
ancing among attractive and repulsive pair interaction in the 
protein database. According to Ref. [84], this inaccuracy can 
be corrected by the extension of the ideal gas reference state 
to finite systems (Distance-scaled Finite Ideal-gas REference 
state, D.F.I.RE). This approach was applied to develop both 
an all-atom and a coarse grained statistical potential (includ-
ing only backbone and C -atoms) that proved effective in the 
computation of the Z-score of 32 multiple decoy set. 

 It is interesting to notice that, even if the energy of a pro-
tein is computed as a sum of pairwise contributions, the po-
tential of mean force accounts for multi-body effects as it 
automatically incorporates details of chemical neighborhood 
of the two interacting residues. This feature makes the mean-
force potential extremely reliable when native-like confor-
mations must be identified, as for instance in threading com-
putations. For the same reason, the potential of mean force 
may be less accurate in protein folding simulations, where it 
is necessary to compute the energy not only of native-like 
but also of unfolded conformations. It has been noticed, 
however, that the introduction of a more accurate distance 
dependence may relieve this kind of shortcomings as 
testified by the results of Park and Levitt [85] and Wallqvist 
and Ullner [86]. As a final remark, it should be noticed that 
the potential of mean force allows the amino-acid alphabet to 
be extended from the simplified two- and three-letter formu-
lations (e.g. HP-model [41], Stillinger [48] model and Thi-
rumalai model [54]) to a more realistic 20-letter version. 
This is extremely important because the letter number has an 
influence on the heterogeneity of interactions, that, in turn, 
determines the entity of the energy gap [39]. 

 The MJ potentials have been applied to a wide range of 
cases such as the evaluation of different sequences threaded 
onto known structures [87], the selection of native-like con-
formations from large sets of structures [88]  and the assess-
ment of the impact of amino-acid mutations on protein sta-
bility [89]. The MJ contact energies have also been em-
ployed in several simulation studies. Hinds and Levitt [90] 
used a dynamic programming algorithm for the exhaustive 
enumeration of protein conformations on a tetrahedral lat-
tice. Covell, on the other hand, preferred to use a dynamic 
Monte-Carlo scheme with constraints on size, surface area 
and total number of contacts [91]. The work by Covell 
shows that even a simple lattice model with effective inter-
residue contact energies may have predictive power. Finally, 
Kolinski and Skolnick [92] used a more detailed lattice rep-

resentation and a more sophisticated force-field (including 
non-local terms and cooperativity) to simulate the folding   
of the B domain of staphylococcal protein A, ROP and 
Crambin.  

TWO BEAD MODELS 

 In the previous section we discussed some approaches to 
protein modeling where aminoacids are assimilated to single 
interacting centers (single bead). In this section we briefly 
review two-bead models where each residue of a polypeptide 
chain is represented by two interaction centers, one repre-
senting the backbone part (the peptide bond), and the other 
one the side chain. 

Levitt Model 

 One of the first models considering two reaction centers 
per residue was developed by Levitt [10]. The peptide group 
is simplified by combining the C’, N and H atoms into an 
effective N’ atom and replacing the O by an effective O’ 
atom, see Fig. (9). The side chain is assimilated to a single 
effective “atom” located at the centroid of the side chain, it is 
thus completely rigid and sticks out from the backbone.  

 

Fig. (9). Cartoon of mutual distances involved in the computation 
of hydrogen bond energy in Levitt model. In this model hydrogen 
bonds are only allowed between united peptide groups. They are 
modeled through a Lennard-Jones like term only involving the pairs 
of oppositely charged atoms NO (at distance RNO) and ON (at dis-
tance RON), and by a Coulomb term applying to all possible couples 
(NN, OO, NO, ON). 

 
 In this model, bond lengths and bond angles are constant 
so they do not contribute to the energy function. Energy con-
tributions due to interaction of groups of atoms are computed 
as effective potentials. The first term is the van der Waals 
interaction between side chains. All the atoms of a side 
chain, due to termal motion, are assumed to uniformly fluc-
tuate onto a sphere centered on the side chain centroid and 
with radius equal to the average radius of gyration of the 
particular group. The effective potential between two identi-
cal side chains can then be calculated at various distances 
apart using: 

V (R) = d3uid
3u j
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where the pairwise atomic van der Waals potential is inte-
grated over positions, ri = ui, rj = R + uj, of atom i anywhere 
in sphere S1 and atom j anywhere in the sphere S2, the inter-
sphere distance is R and d3

ui = dxidyidzi. The position and 
depth of the minimum of the plot of V(|R|) against R=|R| are 
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termed RO
ij and ii respectively. In the case of non identical 

side chains of type i and j, it is assumed that ij = ( i j)
1/2 and 

r
O

ij = (rO
ii r

O
jj)

1/2. 

 Another important contribution to the potential energy is 
the side-chain-solvent interaction characterized by the hy-
drophobic parameters, denoted by si, taken by the experimen-
tal free energy of transfer from water to ethanol [93]. Each 
parameter si can therefore be considered as the free energy 
change of a side chain that has lost all the water molecules of 
the hydration shell. This implies that si is negative for hydro-
phobic side chains and positive for hydrophilic ones; a side 
chain retaining all the water molecules is characterized by 
si=0. If residue j at distance rij from i produces a displace-
ment of a fraction g(rij) of water molecules, the hydration 
energy becomes si g(rij). The function g(rij )is approximated 
by a sigmoid: 

g(rij ) =
1 1

2(7x 2 9x 4
+ 5x 6 x 8 )

1

 
 
 

  

  if x < 1

  if x 1

 

where x = rij/rmax, with rmax ~ 9Å. It must be considered that 
the energy term related to loss of solvent due to the close 
approach of residues i and j is (si + sj) g(rij), because in such 
a collision water is displaced from both i and j. In this model 
the dihedral angle between atoms C i-1 C i C i+1 C i+2, is 
roughly proportional to i + i+1 according to formula (11). 
The effective torsion potential is expressed as a Fourier ex-
pansion of the form:  

V ( ) = k
a

A
k
cos[(k 1) ]+ B

k
sin[(k 1) ]{ }

k=1

6  

where ka is the scale factor normally taken as 2. The coeffi-
cients Ak and Bk only depend on the chemical identity of the 
third residue defining the dihedral angle. In fact, i  i + 

i+1, but as side chains have a greater influence on  than on 
 angles [see Fig. (10)], the side chain of the third residue 

(the one linked to C i+1 affecting the i+1 dihedral) will de-
termine most of the torsional energy of angle i. The third 
amino acids can be divided into 3 classes according to their 
effect on  -torsion energy: the first group includes Gly, Asp 
and Asn found to favor reverse turns; the second group in-
cludes only Pro; finally, the third group includes Ala and all 
the other aminoacids not belonging to the first two groups. 
Adding together the different energy contributions gives the 
complete energy function: 
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 The third term accounts for disulfide bonds which must 
be known a priori and are given as elements of the primary 

structure. The disulfide bond harmonically oscillates around 
an equilibrium r

o

SS 

distance. 

 

 

 
Fig. (10). Geometric constructon showing why the side chain linked 
to C +1 mainly influence the diedral i. 

 
 The fourth and fifth terms, together give the peptide 
hydrogen bonds. The qp parameters are the partial charges on 
N’and O’ united atoms, while p and rp represent the position 
and the depth of energy minimum of a 12-6 Lennard-Jones 
potential between two pairs of N’ and O’ atoms. The rNN, rOO, 
rNO and rON are the distances of the pairs N ··· N, O ··· O, N ··· O 
and O ··· N respectively, according to Fig. (9). 

 This simplified model was extensively tested under a 
variety of different conditions. Bovine Pancreatic Trypsin 
Inhibitor (BPTI) was chosen as the benchmark protein be-
cause, in the early 70s, it was the only small protein of 
known conformation comprising a single subunit and no 
prosthetic group. The simulations starting either from a fully 
extended conformation or an extended conformation with a 
pre-formed C-terminal helix, were performed through alter-
nating cycles of energy minimization and normal-mode 
thermalization. They showed that 70% of the runs with the 
pre-set -helix ended up with a compact conformation hav-
ing the size, shape and -sheet structure of native BPTI. No 
near-native minimum closer than 2.5 Å RMSD to the native 
structure, however, could be found. Levitt verified that this 
limitation was due to the intrinsic lack of side-chain detail: 
the spherical shape of the side-chains, in fact, prevented 
them from reaching a compact packing arrangement. The 
runs starting from a fully extended chain are somewhat less 
successful in that the protein gets trapped in a metastable 
minimum and a pushing potential must be introduced to at-
tain native-like conformations. This poor performance is 
possibly due to poor parametrization of hydrogen bonds pre-
venting the spontaneous formation of -helices. Another 
limitation is that it accelerates the folding process thus pos-
sibly preventing the correct formation of secondary structure 
elements, leading to structural artifacts. 

 Despite such drawbacks, Levitt model introduced a num-
ber of seminal ideas in the field of coarse-grained modeling. 
For instance, it showed that folding could be favored by a 
combination of chain stiffness and flexibility at special turn-
promoting points. As already discussed (see Sect. KS and 
HT model), this idea was later borrowed by Honeycutt and 
Thirumalai who marked turn points of proteins with neutral 
residues whose dihedral coefficients favor the inter-
conversion between the trans and gauche conformations. 

C i-1
C i C i+1

C i+2
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 The experience gained with the 1975 model, also led 
Levitt to make some general remarks on the applicability of 
coarse-grained models. He observed that the averaged forces 
computed in simplified models lead the protein chain to a 
rapid collapse in a compact, globular conformation. The pro-
tein can now move between various approximately isoener-
getic neighboring minima about 6Å RMSD away from the 
native structure. At this stage, however, due to the side-chain 
packing, detailed atom-atom interactions would come into 
effect and the coarse-grained description of the protein be-
comes inadequate. He therefore, suggested to shift from a 
coarse-grained to an all-atom representation when the protein 
enters the molten globule state, thus anticipating the intro-
duction of multi-scale models. The research on coarse-
grained models is still ongoing in Levitt's laboratory. The 
new 2002 model [94], however, is more similar to Irbäck 
model (see Sect. Irbäck C-model) than to the original 1975 
release. In order to attain a better description of hydrogen 
bonds, the backbone is modeled at the all-atom level (with 
the only exclusion of H  atoms). The model also includes C  
atoms while the remainder of the side-chain reduces to a 
single virtual atom. With respect to the 1975 model, the 
force field now includes much fewer terms, namely an hy-
drogen bonding, an hydrophobic burial and a residue-residue 
interaction contribution. The burial and the pairwise interac-
tion potentials are expressed as linear combinations of Che-
byshev polynomials and the model comprises a total of 755 
parameters that were tuned either through Z-score optimiza-

tion [94] or through a funnel sculpting approach [95]. The 
latter method provided promising results in that it yielded 
parameters allowing the folding of five unrelated sequences 
at once. 

Kolinski-Skolnick 2-Bead Model 

 Another approach considering two reaction centers per 
residue was proposed by Kolinski and Skolnick in [96] 
(KS2). The protein backbone is modeled as a chain of beads 
centered in the position of the -Carbons and it is con-
strained onto a cubic lattice with edges of unit length. In 
each conformation, the backbone can be ideally built by add-
ing one bond at a time. In the coarser lattice introduced by 
the authors, each new bond can be chosen among 56 vectors 
that are generated by circular permutation of the x, y and z 
coordinates of fundamental vectors (2,1,1), (2,1,0) and 
(1,1,1), and considering all possible combinations of signs. A 
finer lattice was also created by permutations of vectors 
(3,1,1), (3,1,0), (3,0,0), (2,2,1), and (2,2,0). The purpose of 
this procedure was the creation of protein conformations as 
close as possible to the known geometrical features of natu-
ral proteins. 

 Side chains are modeled as single united atoms and oc-
cupy off-lattice positions. Each side chain can occupy a 
number of alternative rotamers depending on the chemical 
nature of the aminoacid and on the local backbone conforma-
tion. Each side group is characterized by a strongly repulsive 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Kolinski and Skolnick lattice protein models [97]. (A) Cubic lattice: black and white beads represent hydrophobic and hydrophilic 
residues respectively. (B) Face centered cubic lattice with two types of residues. (C) The coarse-grained lattice model introduced by Kolinski 
and Skolnick. The backbone units are white while side-chains, occupying off-lattice positions, are black. (D) The finer lattice model. Side-
chains are once again off-lattice (adapted from Fig. 1 of Ref. [97]).  
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square well, surrounded by an interaction sphere portrayed as 
a square well too. The geometric features of the coarse-
grained and fine-lattice protein representations introduced 
KS2 model are sketched in Fig. (11).  

 Dynamic Monte Carlo simulations [96], thanks to the 
existence of a coarser and a finer lattice representation, al-
lowed a hierarchical approach, whereby a fast simulation on 
the coarser lattice yield conformations with a loose side 
chain packing that can be refined by a new run on the finer 
lattice, leading to structures with a correct hydrogen-bonding 
pattern and protein-like chain packing. The latter conforma-
tions enable the identification of a number of secondary 
structure and tertiary contact constraints that can be used in a 
final, all-atom simulation used as a final refinement step.  

 The Hamiltonian of KS2 model is the sum of a number of 
potentials of mean force derived from a statistical analysis of 
the Protein Data Bank and basically reads: 

E = ECa trace + EHB + ERot + ESC corr

+ EHyd + EPair + EMB

 

 The term ECa-trace is a sequence-independent constraint for 
the chain to remain in the protein-like region of the confor-
mational space. In other words, it increases the frequency of 
visits to the minima of the Ramachandran plot. This term 
consists of a set of energy parameters that were obtained 
from the frequency distribution of the distances between the 

-Carbons i-th and (i+3)-th in the structures of the protein 
database and then reversing the Boltzmann expression. 

 Energy EHB is a cooperative hydrogen bonding interac-
tion; ERot accounts for the conformational energy of side-
chains; ESC corr depends on the positional correlation of the 
side-groups; EHyd models the hydrophobic effect rewarding 
hydrophobic residues located in the core of the protein; EPair 

is a pairwise interaction term and finally EMB is a multibody 
interaction term accounting for the cooperativity in side-
chain packing. The terms ESC corr and EMB were introduced for 
the first time in Ref. [96].  

 In this model, H-bonds link C  atoms whose distance is 
within a given range and they must satisfy specific geometric 
constraints: |(bi 1 bi)· rij|  amax and |(bj 1 bj)·rij|  amax 

which means that the difference of the bond vectors (b i 1 bi) 
and (bj 1 bj), that are perpendicular to the direction of the 
backbone, must also be orthogonal to the rij vector linking 
the H-bonded residues, [see Fig. (12)]. 

 Hydrogen-bond formation in this model is highly coop-
erative: whenever two H-bonds insist on consecutive resi-
dues, the protein receives an additional stabilization, which 
favors the formation of -helices and -sheets 

EHB = EH (i, j) +
i, j

E HH (i, j) (i ±1, j ±1)
i, j

 

Here E
H

 is the energy of a single H-bond, E
HH 

is the coopera-
tivity prize and (i,j) = 1, if residues i and j satisfy the geo-
metric requirements for H-bonding and 0 otherwise. The 
terms Erot and ESC corr both model the short-range interactions. 
In particular, ESC corr stems from the observation that the cor-
relation between the orientation of side chains has a large 
influence on the local conformation. The ESC corr term was 
derived as mean field potential of cos( i ,i+k) by using as a 

reference state a random population with a uniform distribu-
tion in all bins. The angle i,i+k, Fig. (13), is between the 
vectors connecting -Carbons i and i+k with the respective 
side-chains. A similar approach was followed to derive Erot 

from the frequency distribution of rotamers for each amino-
acid type. 

 

Fig. (12). Geometric elements necessary to compute the structural 
constraints for hydrogen bond formation in KS2 model (adapted 
from Figure 5 of Ref. [97]). The difference between two successive 
bond vectors such as bi-1 - bi and bj-1 - bj, is approximately perpen-
dicular to the direction of the polymer chain. In order to establish a 
hydrogen bond between residues i and j, bi-1 - bi and bj-1 - bj must 
also be orthogonal to vector rij. In other words, this constraint fa-
vors the establishment of hydrogen bonds between parallel stretches 
of polymer chain. 

  

 

Fig. (13). Sketch of the angular correlation in the side-chain orien-
tation of KS2-model. The angle  appearing in Eq.(13) is between 
two vectors each connecting the C  of a residue with its side-chain. 
These two vectors must refer to units no more than 4 residues apart. 
(Adapted from Figure 6 of Ref. [97]). 

 
 As a conclusion, the short-range interaction energy is 
computed as: 

Erot +ESC corr = Erot (ai )+ k=1

4
Ek ( i,i+k ,ai ,ai+k )i

        (13) 

where ai is the aminoacid on the site i. 

 There are three contributions to the long-range interac-
tions: Ehydrop, Epair and Emultib. The first simulates the hydro-
phobic effect and can be derived as a potential of mean force 
from the distribution of the distance (normalized to the ra-
dius of gyration) of each amino-acid from the center of   
mass of the protein. The pairwise interaction energy is ex-
pressed as: 
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where E
rep 

is a penalty for the side-chain overlap, ij is a pair-
dependent potential of mean force derived from statistical 
analysis of the protein database, and the f factor favors the 
attraction of residues located on secondary structure ele-
ments forming small angles. In order to attain compact side-
chain packing and a cooperative transition from the molten 
globule to the native conformation, Kolinski and Skolnick 
introduced a cooperative term also for side-chain interaction. 
This contribution is a four-body term of the following form: 

Emultib = ( i, j
k ,ni, j

+ i+k , j+n )Ci, jCi+k , j+n

 

where |k| = |n| and n = ±3, ±4; i+k,j+n is the energy prize that 
rewards interactions between side chains of residues close in 
the primary sequence, while Ci,j =1 if side chains i and j are 
in contact, and zero otherwise. The KS2 model was tested on 
three proteins: the B-domain of staphylococcal protein A, a 
monomeric version of ROP dimer and Crambin [92]. To 
avoid a possible bias, the analyzed proteins were not in-
cluded in the database used for deriving the statistical poten-
tials. The simulations with protein A and ROP were quite 
successful: protein A has a three-helix bundle topology that 
could be recovered in 2/3 of the runs in the low resolution 
lattice. The structures so obtained have a molten globule 
conformation with correctly formed secondary structure, but 
poorly defined tertiary contacts. The refinement on higher 
resolution lattice yielded conformations with an average 
RMSD of 2.25Å from the native structure. The simulations 
with ROP have been even more successful predicting the 
correct four-helix bundle structure in 11 runs out of 12, 
many years before, this fold was experimentally resolved by 
Kresse et al. [98]. The simulations on Crambin were much 
less satisfactory suggesting that the model might be biased 
toward highly regular helical structures. The antiparallel  
sheet which in Crambin is packed against a helical hairpin 
reduces to 10% the success rate of the runs. Such a limitation 
was removed in the improved version named CABS [99]. 
The acronym stems from the four interaction centers per 
residue: C , C , the center of the side chain and the united 
peptide bond as in the UNRES model (following section). 
This allowed a better description of the hydrogen-bonds that 
is essential for the correct formation of the secondary motifs. 
With respect to the original KS2 model, CABS is character-
ized by a more careful design of a set of sequence independ-
ent potentials that enforce a protein-like geometry compen-
sating for the structural inaccuracy due to the simplified lat-
tice representation. For instance, the latter environment arti-
ficially induces a gaussian distribution of the end-to-end dis-
tance of four-bond stretches in contrast with the experimen-
tal bimodal distribution. In a similar way, the lattice structure 
makes “crumpled” conformations with very close U-turns, 
more frequent than in real proteins. The right handedness of 
the -helices and the up-and-down geometry of -sheets is 
also imposed through sequence independent potentials. The 
model is completed by short and long range sequence de-
pendent orientational interactions. The performance of 

CABS in the CASP6 competion achieved the second best 
score among 200 participants. A significant test was the 
study by Kmiecik and Kolinski [100] on the Chymotrypsin 
Inhibitor 2 (CI2) and Barnase. In agreement with experimen-
tal data the authors showed that residual structure elements 
in the unfolded ensemble act as nucleation sites where the 
folding begins. Moreover the computed -values of CI2 
matched the experimental ones. As CI2 and Barnase fold via 
a two-state and a multi-state kineticts respectively, CABS is 
expected to reliably reproduce a wide range of folding 
mechanisms. Finally, as both proteins belong to the +  fold 
the bias of KS2 for -helical conformations appears to be 
overcome. 

UNRES Model 

 The UNRES model, originally developed by Scheraga’s 
group in 1993 [13], generalizes Levitt’s model [10]. It is 
similar as far as the geometry of the polypeptide chain is 
concerned, but it has a more complex force-field including 
terms that confer mobility to side-chains, and multibody 
terms that are relevant to the formation of secondary struc-
tures. The UNRES model was successfully used in conjunc-
tion with many optimization techniques such as the Monte 
Carlo with energy minimization (MCM), the electrostatically 
driven Monte Carlo (EDMC), and the conformational simu-
lated annealing [13,101]. Recently UNRES was also adapted 
to a Molecular Dynamics simulation scheme [102]. 

 The UNRES simplified protein chain, (Fig. (14)), is de-
scribed as a sequence of -carbons linked by virtual bonds. 
In the middle of each virtual bond, there is a united peptide 
group, and each C  is also linked (through the SCi vector) 
with a united side chain represented as a sphere or as an el-
lipsoid. The united side chains and the united peptide groups 
are the only interaction centers of the molecule while the C  
atoms play a role only in the definition of the geometry. All 
the virtual bond lengths are fixed and the geometrical vari-
ables of the model are: i) the virtual bond angle  defined by 
3 consecutive C  atoms C i-1 C i C i+1, ii) the virtual dihe-
dral angle  defined by 4 consecutive C  atoms: C i-1 C i 
C i+1 C i+2, iii) the side chain bond angle SCi 

formed by 
SCi and the bisector of the angle defined by C i-1 C i C i+1 
and iv) the side chain dihedral angle SCi 

of rotation about the 
bisector of C i-1 C i C i+1 angle, (Fig. (13)).  

 The energy function of the UNRES model is expressed 
by: 

U = USCi ,SC j
+ USCi p j

j i

+ wel U pi p j
+ wcorrUcorr

i, j> i+1i, j> i

+ wtor Utor ( i )
i

+ wloc Ub( i )+Urot ( SC i, SCi
)[ ]

i

 

where USCiSCj 

accounts for the interactions between united 
side chains and is determined mainly by hydropho-
bic/hydrophilic interactions, the USCi pj 

term is an excluded 
volume potential preventing the collapse of side chains onto 
the peptide groups, the Upi,pj  

term represents the average elec-
trostatic interaction between the centers of the peptide 
groups and accounts for hydrogen bonding within the back-
bone, Utor( i) denotes the energy of variation of the virtual 
bond dihedral angle i, Ub( i) is the bending energy of the 
virtual bond , Urot(aSCi

, SCi
)is the local energy of side 

chain i and Ucorr includes the cooperative terms. 
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 The w values represent the relative weights of the respec-
tive energy terms. The general form of the side chain interac-
tion is given by:  

Uij = 4[| ij | xij
12

ij xij
6 ]         (14) 

with ij the pair specific van der Waals well depth, positive 
for hydrophobic-hydrophobic interactions and negative for 
hydrophobic-hydrophilic and hydrophilic-hydrophilic inter-
actions. The particular choice of the sign of ij favors close 
contacts between hydrophobic side chains to yield close 
packing of hydrophobic groups within the core of the pro-
tein. The xij parameter can take on different functional forms. 
In the case of the two radial potentials employed in the UN-
RES model:  

xij =
ij
0

rij
xij =

rij
0

rij + rij
0

ij
0

        (15) 

 The constant ij
0, in this case represents the distance be-

tween side chains i and j, such that U(rij = ij
0) = 0. The sec-

ond functional form of xij shown in Eq.(15) corresponds to 
the shifted Lennard-Jones potential proposed by Kihara 
(LJK). In this case, the quantities rij

0
ij

0 and rij
0 can be 

identified with the dimensions of the hard and soft core re-
spectively. In this function U(r) = 0 for r =  and Umin =  
as in the LJ potential, but in the LJK potential the energy 
barrier is at r =   ro, when the hard core spheres of the two 
interacting side chains begin to inter-penetrate. In the 1998 
model, three potentials with angular dependence were also 
tested, namely: the Berne-Pechukas potential (BP) [103], the 
Gay-Berne potential (GB) [104] and the Gay-Berne-
Vorobjev potential (GBV) [105]. These are still described by 
Eq.(14), but the parameters ij and xij depend not only on the 
distance but also on the relative orientation of the two inter-
acting side chains. In the 1993 version of the model [13], the 

van der Waals radii were taken from set C of Levitt [10], 
while the ’s were calculated from the inter-residue contact 
energies [81]. In the 1997 model [11], conversely, the ij 
parameters, like all other parameters of the USCiSCj 

potential 
were chosen so that the theoretical correlation function fit 
best to the correlation functions determined from protein 
crystal data. 

 The side chain-peptide group interaction is modeled as an 
excluded volume potential: USC,p 

= SCp(rSC,p/rij)
6. This term 

clearly acts as a penalty function forbidding too close con-
tacts of the side chain of one residue with the backbone of 
another one. The peptide-group peptide-group interaction is 
treated as the interaction between two permanent dipoles 
placed in the middle of the C C  virtual bonds. Two per-
manent dipoles with moment vectors pi and pj placed at dis-
tance rij interact as:  

Uij =
pi p j 3(pi e ij )(p j e ij )

rij
3

, 

where eij
 
is the unit vector pointing from the center of peptide 

group i to the center of peptide group j and  is the dielectric 
constant. The orientation of pi and pj, located in the middle 
of two consecutive C , is determined according to a method 
proposed in Ref. [106]. For the evaluation of the dihedral 
energy, three classes of amino acids were considered [12]: 
Gly, Ala and Pro (the Ala class includes all the amino acids 
apart for Gly and Pro).  

The dihedral potential  

Utor
XY ( ) = A0 + Ak

XY[1+ cos(k )]+ Bk
XY [1+ sin(k )]{ }

k=1

n        (16) 

is expressed as a Fourier’s series whose coefficients are 
tuned on experimental distribution of the  angles in protein 
crystals. In Eq.(16), n takes on values from 3 to 6, depending 
on the type of the two central residues X and Y of the virtual 
dihedral angle. 

 The bending potential Ub( ) was also derived as a poten-
tial of mean force from a crystallographic frequency distribu-
tion of  angles that turned out to be the sum of two Gaus-
sians, one centered at 0 = 90o and the other one centered at a 
residue specific value c. A statistical analysis of the PDB 
structures showed that the angles SC and SC defining the 
orientation of a side chain centroid with respect to the C  
frame vary considerably and tend to cluster into different 
rotamers. Thus, the simplest analytical form of the distribu-
tion of side-chain rotamers would be a sum of two-
dimensional Gaussians in SC and SC. However, a correla-
tion was found to exist between the virtual bond angle  and 
the angles SC and SC belonging to the same residue. There-
fore, a correct expression for rotamer distribution has to in-
clude three-dimensional Gaussians in , SC and SC. Such 
information was useful to compute the orientational potential 
of side chains as a potential of mean force. 

 The first version [13] of the UNRES model assumed that 
virtual bond angles  had a constant value of 90o and that SC 
and SC angles had constant values too. It could successfully 
predict the three dimensional structures of simple helical 
proteins such as the avian pancreatic polypeptide (APP) [13] 
and Galanin [107]. However, one of the reasons for the suc-
cess of this first generation force-field was that the 

 

 

 

 

 

 

 

 

 

Fig. (14). Representation of a stretch of polypeptide chain in UN-
RES. The white beads represent the  Carbons whose role is to 
enforce the correct chain geometry. Halfway between successive 
C ’s lie the united peptide groups represented as dashed circles. 
The united side chains are black ellipsoids and are linked to each 
C  through a fixed bond vector. The degrees of freedom of the 
model are the virtual bond ( ) and dihedral ( ) angles, as well as 
angles  and  that describe the mobility of side chains (adapted 
from figure 1 of Ref. [11]). 



234    Current Bioinformatics, 2010, Vol. 5, No. 3 Guardiani et al. 

C C C  angles were fixed, thus introducing a bias towards 
regular helical structures. Therefore, although the model was 
able to reproduce some -helical proteins, there were prob-
lems with -sheet structures.  

 In the 1997 version of UNRES [11], the angles , SC 
and SC were kept variable, but the structural prediction of 
the -class proteins could be achieved only via the introduc-
tion of multibody terms accounting for the cooperativity in 
backbone hydrogen bonding and correlation between local 
and electrostatic interactions [108]. The multibody terms 
arise naturally as follows. The energy E(x,y) of a physical 
system can be considered as a function of two kinds of vari-
ables: the primary (or important) variables x = (x1,..., xm)T 
whose variation leads to major changes in the conformation 
of the system, and the secondary variables y = (y1,..., yn)

T 
that only weakly affect the conformation. A straightforward 
strategy to develop a simplified model of the system is there-
fore to average the energy over the secondary variables, 
yielding a mean-force potential 

U(x) = F(x) = RT ln
1
Vy

dn y exp[ E(x,y) /RT]
Vy

 
 
 

 
 
 

      (17) 

where Vy = 
 
d

n
y and F(x) is the average free energy of the 

system corresponding to a fixed value x of the important 
variables. In UNRES the primary variables are the virtual 
bond angle , the virtual bond dihedral angle  and angles SC 

and SC that define the orientation of the side chains. The sec-
ondary variables are the dihedral angles  that describe the 
conformation of the side chains, the angles  of rotation of 
the peptide groups around the C C

 
virtual bonds and the 

degrees of freedom of water. It should be noted that the av-
erage free energy as expressed by Eq.(17), can be evaluated 
only numerically, but in the case of proteins, this computa-
tion is very time consuming due to the large number of de-
grees of freedom. This problem can be relieved using a reli-
able approximation of the average free energy. This was 
computed by Scheraga and coworkers via the cluster cumu-
lant expansion method developed by Kubo [109]. Basically, 
the potential of mean-force is expanded as a sum  

F(x) = f i
(1)(x) +

i

f ij
(2)(x)+ fijk

(3)(x)+
i< j<ki< j

......+ f i1,i2 ,...,in
(n ) (x) +

i1< i2<....< in

........

 

where, as an example, the first three factors can be expressed 
as: 

fi
(1)(x) = Fi

(1)(x)

f ij
(2)(x) = Fij

(2)(x) Fi
(1)(x) Fj

(1)(x)

f ijk
(3)(x) = Fijk

(3)(x) Fij
(2)(x) Fik

(2)(x) Fjk
(2)(x) +

Fi
(1)(x)+ Fj

(1)(x)+ Fk
(1)(x)

 

 The first order factor f
i

(1) 

is just the average free energy of 
component interaction i. The terms USCSC,USCp, Upp as well as 
Ub and Urot are typical examples of the f

i

(1) 

factors. If the av-
erage free energy of each component interaction is inde-
pendent of the others, the F(x) function will be a sum of the 
f
i

(1) 

terms only and this case is regarded as the independent 
sites approximation. The factors f

ij

(2) 

contain the average free 
energy of pairs of component interactions minus the sum of 
the average free energies of single component interactions. 

Therefore f
ij

(2)includes correlation effects due to the coupling 
between the secondary degrees of freedom i and j. Likewise, 
the third order factors reflect the coupling between three 
component interactions which cannot be decomposed in 
coupling between pairs. 

 The analytic expression of the multibody term is ex-
tremely complicated [14,108], however the relevant contri-
butions to the average free energy function F(x) are provided 
by the U

MB
(p-p) and U

MB
(el-loc) terms. The UMB(p-p) energy 

is a four-body term corresponding to the correlation of the 
electrostatic interactions between the pairs of neighboring 
dipoles associated to peptide groups. This term is very im-
portant because accounts for the well-known phenomenon of 
cooperativity in -helix formation that was also studied by 
Kolinski and Skolnick [110,111]. 

 The term UMB(el-loc), on the other hand, is necessary to 
attain correct conformational predictions of proteins belong-
ing to the -structural class. This accounts for correlations 
between local interactions and peptide group-peptide group 
interactions. The progressive improvements of UNRES ap-
proach can be followed by the results attained in different 
editions of CASP (Critical Assessment of Structural Predic-
tion) competitions. In CASP3 the applicability of UNRES 
was limited to short fragments of  structural family. The 
inclusion of cooperativity terms based on cumulant expan-
sion improved the performance to correct structural predic-
tion of some proteins of the +  family (CASP4) [112]. 
UNRES performance was improved through a complete re-
parametrization of the Force-Field via a funnel sculpting 
(hierarchical optimization) procedure that was trained on 
four proteins of different ,  content. The resulting P4 
Force-Field correctly predicted the structure of 50-79 residue 
fragments of the , , and +  classes, even if with some 
significant topological errors. A further optimization of P4 
enabled an accurate prediction of the structure of two  and 
three +  proteins in CASP6. In particular the correct pre-
diction of the three-helix bundle of target T0215, whose non-
homologous template was available, showed that a physics 
based CG-model could outperform knowledge-based meth-
ods [113]. Finally, it must be remarked, that in the last UN-
RES versions the conformational search is carried on 
through the multiplexing replica exchange MD method, 
which replaces the traditional conformational space anneal-
ing based on genetic algorithm. The new algorithm allows 
exploring time scales of the order of the microsecond and 
milliseconds for small proteins [114]. 

Irbäck C -Model 

 Another interesting model still describing the side chain 
as a single interaction center was developed by Irbäck and 
coworkers [115-117]. As shown in Fig. (15), every residue 
retains the backbone atoms C , C’

 

and N as well as the O 
and H of the backbone units. The side chain is represented 
by a C  only and can be hydrophobic, hydrophilic or absent 
(Glycine residues). Bond lengths and bond angles are kept 
fixed so that the internal coordinates reduce to the backbone 
dihedrals  and . The energy function of this model is sim-
ply given by the sum: 

E = Edih + Eexcl + Ehb + Ehp 

of a dihedral term, an excluded-volume term, a hydrogen 
bonding energy and a potential of interaction between hy-
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drophobic residues. The dihedral potential embodies the 
standard three-fold symmetry: 

 

Fig. (15). Structural representation of a protein residue within the 
Irbäck model. Adapted for figure 1 of Ref. [115]). 

 

Edih =
2

(1+ cos3 ) +
i 2

(1+ cos3 )
 

 The excluded-volume Eexcl energy also has the standard 
( ij/rij)

12 

distance dependence: it involves pairs of hydropho-
bic C s and ij = i + j + ij . The radii of the atoms hard-
core , in the latter expression, have been determined mostly 
by trial and error and values of ij greater than zero prevent 
a possible clash of C  atoms with backbone atoms. 

 The hydrogen bonding term is the product of a distance-
dependent Lennard-Jones-like and an orientation-dependent 
factor designed to favor the Donor-Hydrogen-Acceptor 
alignment: 

Ehb = hb u(rij )v( ij, ij )
ij

 

where: 

u(r) = 5 hb

r
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v( , ) =
cos2 cos2 if , > /2

0                elsewhere

 
 
 

 

 The above equations refer to hydrogen bonds between 
the N H and C=O groups of the backbone and ij and ij des-
ignate respectively angles NHO and HOC’. The force-field is 
completed by a hydrophobicity term in the classical Len-
nard-Jones form:  

Ehp =
hp

rij
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 The most striking feature of this model is its remarkable 
simplicity, especially if compared with the sophisticated 
formulations of the other models of the same family re-
viewed in this section. However, it must be considered that 
this model was parametrized by trial and error so as to re-
produce the features of a specific set of proteins under inves-
tigation. Application to other proteins may therefore require 
a re-adjustment of the parameters. The model was success-
fully applied to a fragment of the four-helix bundle protein 
designed by Regan and De-Grado [118]. The three-helix 
bundle topology was correctly reproduced and the two-state 
folding mechanism as well [115,117].  

CONCLUSIONS 

 We surveyed several coarse-grained (CG) protein models 
without any claim to be exhaustive, rather we preferred to 
select models that, in our opinion, marked the historical evo-
lution of the field. 

 The principle of coarse-grained modeling amounts to 
grouping together atoms of side-chains and even a complete 
residue into simple units (virtual atoms) which absorb most 
of the molecular details. This approach stems from the ne-
cessity to link atomistic and mesoscopic space and time 
scales, the choice of a certain CG model being generally 
guided by the scales of interest and the problem addressed. 

 If the objective of the research is the structural prediction 
of a protein, then knowledge-based methods such as thread-
ing and homology modeling, constitute the best strategy. In 
fact, the availability of templates with more than 50% se-
quence identity yields predictions with about 1Å-RMS error 
for main chain atoms, which is comparable to the accuracy 
of a medium-resolution NMR experiment [6]. However, 
when no template with sequence identity higher than 30% is 
available, the accuracy of knowledge-based methods drops 
dramatically due to alignment errors [6], requiring the resort 
to de novo physics-based models. 

 It has been estimated [119] that no fewer than 16000 
structures should be deposited in the PDB to provide tem-
plates for 90% of the protein structural families. Moreover, 
there exist proteins with similar structures but no sequence 
homology, which represent difficult targets for knowledge-
based methods [120,121]. 

 However, the application of physics-based models is not 
restricted just to structural prediction as they aim at a deeper 
understanding of the basic interactions and dynamics that 
govern protein properties. Physics-based models in fact, al-
low the exploration of processes not pertaining to bioinfor-
matics such as: conformational changes (e.g. allosteric tran-
sitions and induced fit), the action mechanism of proteins 
(e.g. enzyme catalysis) and the dependence of protein struc-
ture and function on environmental conditions (temperature, 
pH, salts, denaturants). For examples, Ising-like (binary) 
models were successfully used to study -helix and -
hairpin formation [37,122]. In these simple protein systems, 
binary models allowed a straightforward calculation of 
physical properties such as folding rates, sometimes bridging 
the gap between theory and experiment. The discovery of a 
correlation between the contact order and the experimental 
folding rates [23] led to the suggestion that Ising-like models 
could be generally applicable to any protein fold. The con-
tact order, in fact, is just the mean loop length of a protein, 
and since loops are similar to -hairpins whose folding could 
be correctly reproduced by binary models, it was deduced 
that Ising-like models could be used to study complex globu-
lar proteins. A deeper analysis, however [123], revealed that 
Ising-like models systematically impose the nucleation-
condensation folding mechanism i.e. folding starts with the 
formation of a nucleus composed by residues far away along 
the protein sequence, and then the formation of secondary 
and tertiary structure occurs almost simultaneously. This 
mechanism, however, cannot be applied to all proteins. An-
other common mechanism, in fact, is described by the diffu-
sion-collision process according to which secondary struc-
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tural elements form first and then they self-assemble into the 
correct tertiary structure. This mechanism cannot be repro-
duced by Ising-like models because their formalism does not 
allow the representation of intermediates where secondary 
structures are formed but tertiary ones are not. Assume that a 
protein is formed by two -helices packed against each other 
and connected by a loop. According to the diffusion-
collision model, there will be an intermediate with two heli-
ces connected by a disordered loop. This structure has no 
representation in the binary formalism since the string 
111100001111 corresponds to a situation where the helices 
are natively packed. The limits of Ising-like models are even 
more evident in the light of the recently proposed zipping 
and assembly (ZA) mechanism [124]. The basic idea is that a 
global optimization problem can be solved by combining a 
set of locally optimal solutions. A polymer chain can then be 
divided into small fragments that rapidly fold into metastable 
structures such as -helical turns, -turns or small loops. 
These structures can be stabilized through interactions with 
other structured fragments. The process is then iterated with 
the formation of larger and larger complexes until the protein 
is completely folded. Ising-like models can then be used 
when there are reasons to think that the protein will fold 
through a nucleation-condensation mechanism, and in any 
case, many physical observables such as -values will only 
be reproduced qualitatively. 

 When the topology of native states strongly influences 
the folding process, Go models and more in general topol-
ogy-based models turn out to be more useful in predicting 
folding mechanisms. 

 Experimental support to the applicability of such ap-
proaches is well summarized in the review by [125]: i) muta-
tions not affecting the overall native state topology of a pro-
tein, have weak influence on its folding rate; ii) the transition 
states of proteins with similar structures are similar too, al-
most irrespective to sequence variation; iii) folding rates of 
small proteins correlate with simple topological indicators, 
such as contact order. 

 G  models, by rewarding only native contacts, posit the 
existence of a minimally frustrated energy funnel that war-
rants the stability and fast foldability of natural proteins. G  
models have been successfully used for the sampling of the 
Transition State Ensemble in view of the -value computa-
tion, from which, on turn, folding rates and mechanisms can 
be explored [62,63, 67,126]. G  models have been employed 
in a wide range of applications from the study of mechanical 
unfolding [127,128] to biomolecular machines [129] and 
from the analysis of influence on folding of macromolecular 
crowding and confinement [130,131] to the determination of 
the action mechanism of some enzymes [132]. The minimal 
frustration principle, however, is a zero-th order approxima-
tion, and recent studies point out the spread and relevance of 
energetic frustration in real proteins. For instance, the occur-
rence of -values larger than one usually indicates the pres-
ence of native contacts that stabilize the transition state 
without being present in the native one. This experimental 
evidence is supported by all-atom simulations with the 
CHARMM force field, according to which non-native con-
tacts account for 20-25% of the transition state energy [133]. 
The ideal funnel scenario implied by Go-model approach 
may sometimes conflict with the evolutionary pressure to 

optimize biological function [134]. Indeed a statistical sur-
vey of the Protein Data Bank using a quantitative parameter 
for localizing frustration, showed that 15% of contacts are 
highly frustrated, and they cluster near ligand binding sites 
so that a functional role may be suggested. Moreover, as 
suggested by Plotkin and Clementi a moderate amount of 
frustration reduces the free energy barriers and increases 
folding rates [135]. This apparently counterintuitive mathe-
matical result, was confirmed by numerical simulations on 
the src SH3 protein and by the experimental finding that a 
strengthening of the non-specific hydrophobic stabilization 
of -spectrin SH3 domain sped up the folding process [136]. 
In agreement with these observations, recent implementa-
tions of the Go-model, such as those by Karanicolas and 
Brooks [72] and by Das, Matysiak and Clementi [74], make 
use of moderately frustrated funneled landscapes allowing 
more realistic simulations. 

 Another challenge for G  models is the inclusion of se-
quence effects. In G  models the folding is driven by the 
topology of the native state, but it is the sequence that deter-
mines the topology. In this context, the precise role of the 
sequence in folding remains to be understood. A common 
strategy to account for sequence effects is to use heterogene-
ous contact energies that may be chosen using different crite-
ria. Karanicolas and Brooks [72] used the statistical poten-
tials derived by Miyazawa and Jernigan [81], while Dok-
holyan [137] rescaled the energy couplings based on a set of 
critical contacts identified through an all-atom calculation. 
All-atom G  models also implicitly adopt heterogeneous 
couplings since larger residues will establish a larger number 
of atom-atom contacts [127,138]. The introduction of het-
erogeneous energy couplings in G  models is equivalent to 
the increase in the number of flavours in sequence-based 
models. The key idea of these models is that the hydrophobic 
effect is the main driving force of folding so that the attrac-
tion between hydrophobic beads and the repulsion between 
hydrophobic and polar ones is a basic ingredient. The energy 
landscape generated by these force fields however, is not 
funnel-like but rather rugged, with many degenerate global 
energy minima. 

 As a consequence, with these models, proteins do not 
fold to a unique native conformation, but rather to a large set 
of ground state structures. In two dimensions, short-chain, 
exhaustive simulations with the HP model showed that the 
fraction of sequences that have a unique ground state is only 
2.5% [139], and maximally compact 3D 48-mer designed 
sequences exhibited more than 103 structurally heterogene-
ous global minima [140]. This problem was still present in 
the model proposed by Honeycutt and Thirumalai [54] de-
spite the off-lattice geometry and the increase of the number 
of flavours from two to three. According to Shakhnovich the 
uniqueness of the native state stems from the existence of a 
sufficiently large energy gap between the ground state and 
the lowest-energy decoys [39]. The size of the gap depends 
on the total number of chain conformations and on the diver-
sity of interactions that depends on the diversity of the amino 
acid alphabet. The soundness of this remark seems to be con-
firmed by the historical evolution of sequence-based models 
from a lattice to an off-lattice geometry and from the two 
flavors of the HP model [41] to the three flavors of the HT 
model [54] and the four flavors of the latest release of the 
Sorenson/Head-Gordon model [61]. The latter model in par-
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ticular, seems to have significantly reduced the level of 
glassiness with respect to the previous versions, yielding for 
Protein G a folding temperature well above the glass transi-
tion temperature (Tf/Tg 2.3). This good performance, how-
ever, was attained at the expense of further strengthening the 
reliance on the secondary structural information, placing the 
model somewhere between G -models and sequence-based 
models. It must also be noted that an excessive bias towards 
native secondary structures may artificially enforce a diffu-
sion-collision reaction mechanism. From this point of view, 
thus, the SHG model can have a problem opposite to the one 
highlighted for Ising-like models that impose a nucleation-
condensation folding mechanism [123]. Moreover, the effi-
cient application of the SHG model requires a sequence de-
sign procedure that, according to its position in the protein 
structure, might assign different flavors to the same residue. 
This reflects the difficulty of including in just a few parame-
ters the effects of the residue size and geometry that lead to 
highly anisotropic, multimodal interactions critically influ-
enced by the biochemical environment. These limits there-
fore suggest the opportunity to increase the number of beads 
per residue to increase the specificity of the interactions. 

 The two-bead models, initially introduced by Michael 
Levitt and later developed by Scheraga [11] and Kolinski and 
Skolnick [96], had a common difficulty in reproducing sec-
ondary structures. Levitt model could correctly fold BPTI 
only starting from a conformation with a pre-formed -helix 
[10]. By contrast, the KS2 model was successful in folding 
of -helical proteins such as Protein A and ROP, but it per-
formed very poorly on the Crambin benchmark due to the 
presence of a -sheet [92]. This limitation motivated a trend 
towards a more detailed representation of the backbone re-
sulting in an improved modeling of hydrogen bonds. The 
detailed backbone representation, however, needs to be com-
bined with a careful parametrization, as testified by Irbäck 
model whose parametrization by trial and error limits its 
applicability to helical proteins [117]. The history of the 
UNRES model is somehow different. The original version of 
the model was incapable of promoting the formation of -
sheets [13], but instead of modifying the representation of 
the backbone, the authors chose to introduce cooperativity 
through a complex cumulant expansion technique [108]. 
Also in this case, however, parametrization played a key role 
as testified by the good achievements in the CASP contests 
only after the parameters were fine-tuned through a funnel 
sculpting approach [113]. One of the most effective multi-
bead models is currently represented by the CABS model 
[99,100]  i.e. the evolution of KS2 model [96]. CABS is 
based on a compromise between the computational effi-
ciency offered by the lattice geometry and an accurate mod-
eling through statistical potentials. The price paid for com-
puting speed, however, is a non protein-like geometry that 
must be corrected through a number of non physical as-
pecific potentials. 

 In extreme synthesis, if the problem at hand is just struc-
ture prediction, knowledge-based methods represent the op-
timal tool. On the other hand, G  models, possibly including 
moderate frustration and heterogeneous couplings are the 
best tool for the study of folding mechanism. Sequence-
based single-bead models are currently not particularly reli-
able while the extreme complication of multi-bead schemes 
is disproportionately high with respect to their performance. 

This by no means implies that this research line has to be 
abandoned: the folding problem will be solved only with the 
development of sequence-based models yielding a funnel-
like, minimally frustrated landscape. Finally, the application 
of Ising-like models is recommended for simple proteins 
folding through a nucleation-condensation mechanism. 
However often the agreement with experimental data re-
mains only qualitative. 

 After critically discussing the advantages and drawbacks 
of the simplified protein models currently available, we be-
lieve it is essential to underscore in general the merits of 
coarse-grained models with respect to atomistic ones. The 
simplifying approach is at the heart of modern physics and it 
dates back to Galileo who laid the foundations of modern 
mechanics deliberately neglecting friction although this force 
plays an essential role in almost every aspect of our everyday 
experience. Physicists were perfectly aware that they were 
studying an idealized world as it emerges from the words of 
Evangelista Torricelli (1608-1647): 

"Qui studieremo il moto di quelli oggetti soggetti alla forza 
di gravità trascurando l'attrito; e se le vere palle di can-
none non seguono queste leggi, loro danno: vorrà dire 
che non parleremo diesse".  

 (We will study the motion of those bodies subject to 
gravity, neglecting friction; and if real cannonballs do not 
follow these laws, so much the worse for them: we will 
not talk about them).  

 The best known advantage of coarse-grained models is 
that they accelerate the simulations, making relevant biologi-
cal phenomena accessible. However as the CG dynamics is 
considerably faster than that of atomistic models, we cannot 
a priori exclude that inference and reconstruction of the true 
biological mechanism could be partially altered.  

 CG schemes however, are not just computational tricks to 
by-pass the limitations of current computational resources. In 
fact, their ability to correctly reproduce some experimental 
patterns shows that not all the molecular degrees of freedom 
are equally important. In other words, the coarse-graining 
approach allows to single out the relevant driving for interac-
tion among the multitude of chemical details of macromole-
cules. 
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[*] The single sequence approximation prescribes to consider only 
conformations with a contiguous stretch of native bonds, thus 
significantly narrowing the conformational space. However, this 
approximation has been shown to underestimate free energy barri-
ers in Ref. [15] and Ref. [17]. 
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