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We study the asymptotic and preasymptotic diffusive properties of Brownian particles in channels whose
section varies periodically in space. The effective diffusion coefficient Deff is numerically determined by the
asymptotic behavior of the root mean square displacement in different geometries, considering even cases of steep
variations of the channel boundaries. Moreover, we compared the numerical results to the predictions from the
various corrections proposed in the literature to the well known Fick-Jacobs approximation. Building an effective
one-dimensional equation for the longitudinal diffusion, we obtain an approximation for the effective diffusion
coefficient. Such a result goes beyond a perturbation approach, and it is in good agreement with the actual values
obtained by the numerical simulations. We discuss also the preasymptotic diffusion which is observed up to
a crossover time whose value, in the presence of strong spatial variation of the channel cross section, can be
very large. In addition, we show how the Einstein’s relation between the mean drift induced by a small external
field and the mean square displacement of the unperturbed system is valid in both asymptotic and preasymptotic
regimes.
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I. INTRODUCTION

The diffusive transport across nonhomogeneous chan-
nels [1–5] is one of the most interesting examples of dynamics
influenced by the geometrical properties of the surrounding
environment. Many important phenomena and applications
are related to constrained diffusion, such as the flow in porous
materials [6,7], the separation of DNA fragments moving
in narrow channels [8,9], the emergence of a preasymptotic
subdiffusive transport in spiny dendrites [10], and nuclear
magnetic resonance measurements in tissues of complex
morphology [11,12].

An interesting feature is the slowdown of the diffusion due
the trapping mechanism of molecules within compartments
and dead-end regions offering the possibility of a geometrical
control of transport rates.

The most common theoretical approach involves the Fick-
Jacobs (FJ) approximation [13] and its generalizations [4,14].
This method, mainly applicable to structures with strong
lateral confinement, amounts to a dimensional reduction where
the diffusion within two- or three-dimensional channels is
projected onto their centerline, obtaining processes which
obey an effective one-dimensional diffusion equation. The
validity of the FJ approach in the unbiased [2,4,15] and
biased [5] case was extensively studied. In particular, one of
the main questions related to the unbiased diffusion in the
asymptotic regime is the derivation of the effective diffusion
coefficient Deff along the longitudinal direction as a function
of the external geometrical parameters [4]. The constant Deff

controls the rapidity of the mass spreading, thus affecting, for
example, the rate at which the molecules hit certain target
regions [16]. In this respect, the theoretical knowledge can be
crucial to design nanodevices with certain desirable transport
properties.

In this paper we focus on the properties of diffusive motion
within two-dimensional spatially periodic channels. We study

the asymptotic as well as the preasymptotic regime using both
analytical and numerical techniques.

Using a Markovian approximation within a coarse-graining
procedure, we derive a simple estimation of Deff without
resorting to the FJ theory. Then we compare the theoretical
predictions with numerical data from Brownian dynamic
simulations within the channels and with other known ap-
proximations from the literature. As we discuss in this paper,
a derivation of Deff that is alternative to the FJ approach
is particularly important in all the cases where the channel
boundaries are multivalued functions of the longitudinal
coordinate.

We devote a special attention to relationship between the
average mean square displacement of the unbiased diffusion
across the channels and the average drift of the biased
diffusion: Einstein’s fluctuation-dissipation relation (FDR).
The analytical expression of the asymptotic nonlinear mobility
was worked out by several authors [5,17]; however, it is natural
to wonder if the FDR still holds true also in the preasymptotic
(transient) regime. We show that a generalized FDR also
applies to the preasymptotic diffusion.

The paper is organized in the following way. In Sec. II,
we recall the principal results and approximations used to
characterize the diffusion within periodic channels. In Sec. III,
we derive an analytical formula for Deff comparing our
analytical results with numerical simulations and the FJ
approach. We highlight the benefits and limitations of our
approach, showing how we can estimate Deff also when the
FJ approach does not apply. Section IV is devoted to the
analysis of preasymptotic diffusion properties. In Sec. V
we study the response to a constant external field applied
along the channel longitudinal direction, analyzing both
the asymptotic and the preasymptotic dynamical regimes.
Finally, Sec. VI contains a summary of the main results
and the conclusions. The Appendix shows some technical
details.
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FIG. 1. (Color online) Sketch of the periodic structures consid-
ered in this work. (a) Smooth channel (Sm); (b) sharp channel (Sh).
We identify H regions (humps) of the channel such that R/2 <

|y| � ω(x) and the S region (shaft) |y| � R/2. Diffusion regimes
inside these channels depend on the ratio Q = A/R controlling the
importance of the H regions over the S region. When not specified,
we consider channels with fixed shaft parameters L = 10, R = 4,
whereas, the size of the H regions is changed to obtain stronger or
weaker lateral particle trapping.

II. RECALLING THE DIFFUSION EQUATIONS
IN CONFINED SYSTEMS

We consider the dynamics of particles in a two-dimensional
spatially periodic channel (Fig. 1) forming a sufficiently
diluted gas well described by the single particle approximation.
Each particle evolves in the presence of a possible external
potential V (r) according to the overdamped Langevin equa-
tion [18,19],

dr
dt

= −∇V (r)

η
+

√
2kBT

η
ξ (t), (1)

where kB is Boltzmann’s constant, η and T are, respectively,
the viscous friction coefficient of the fluid filling the channel.
The stochastic term ξ (t) is a Gaussian white noise:

〈ξ (i)(t)〉 = 0, 〈ξ (i)(t)ξ (j )(t ′)〉 = δij δ(t − t ′) i,j = x,y.

The Fokker-Planck equation [20] for the probability density
P(r,t) corresponding to the stochastic process (1) reads

∂tP(r,t) + ∇ · J(r,t) = 0,
(2)

J(r,t) = −
[∇V (r)

η
+ D0∇

]
P(r,t),

where D0 = kBT /η denotes the microscopic diffusion coeffi-
cient. Moreover, the no-flux boundary conditions have to be
imposed to take into account the impenetrable nature of the
channel walls,

J(r,t) · n̂(r) = 0, r ∈ channel walls, (3)

with n̂(r) being the local unitary normal to the channel walls.
In the following we refer to the case with no external field
[V (r) = 0]. Such a system is trivial only for a channel with
constant section, for which we have the asymptotic behavior
〈[x(t) − x(0)]2〉 = 2D0t . When the channel section varies as

in Fig. 1, we still expect a large-time standard diffusion, but
with a renormalized constant,

〈[x(t) − x(0)]2〉 = 2Deff t,

the value of Deff is smaller than D0 and depends on the
variation of the channel section σ (x). Therefore, one of the
main issues is determining Deff once the geometrical shape
of the channel is assigned. Let us assume that the channel
is parallel to the x axis and its cross section σ (x) varies
periodically on the longitudinal direction. It is convenient to
introduce the marginal density [4,21,22] G (x,t), defined by

G (x,t) =
∫ +ω(x)

−ω(x)
dy P(x,y,t), (4)

where we considered a symmetric channel along its longitudi-
nal axis described by the boundary profile y = ±ω(x); thereof,
the cross section is σ (x) = 2ω(x).

Rather general procedures of the multiscale technique
suggest the validity at large time of a parabolic equation
governing the diffusion along the x direction [13,23,24] given
by

∂G (x,t)

∂t
= ∂

∂x

{
σ (x)D(x)

∂

∂x

[
G (x,t)

σ (x)

]}
. (5)

Jacobs in his book on diffusive processes [13] used the drastic
approximation

DFJ(x) = D0, (6)

assuming that in narrow-enough channels the distribution of
particles in any cross section becomes swiftly uniform (local
equilibrium).

Several authors [23,25] argued that deviations from
transversal homogeneity are not negligible and need to be
taken into account by a diffusion coefficient D = D(x) varying
with the longitudinal coordinate. The specific expression of
D(x) depends on the channel boundaries and guessing the
appropriate functional form for given geometry is a central task
of this kind of problems. Zwanzig, for example [23], derived
a perturbative expression for D(x) in a two-dimensional
channel,

DZw(x) = D0

[
1 + 1

12

(
dσ

dx

)2
]−1

, (7)

which holds under the hypothesis |σ ′(x)| � 1.
Instead, Reguera and Rubı́ (RR), using a heuristic argu-

ment [1], proposed the expression

DRR(x) = D0

[
1 + 1

4

(
dσ

dx

)2
]−1/3

. (8)

Finally, Kalinay and Percus (KP) performing an elegant
perturbative treatment in order to expand D(x) in σ (x) and
its derivatives [21,24,26,27] obtained, for a two-dimensional
channel, to the lowest order the expression

DKP(x) = D0
arctan

[
1
2

dσ (x)
dx

]
1

2

dσ (x)

dx

. (9)
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It is easily to verify by a series expansion in |σ ′(x)| that, to
the lowest order, all the functional forms coincide DKP(x) =
DRR(x) = DZw(x) ≈ D0[1 − σ ′(x)2/12].

Once an explicit expression of D(x) has been established,
Eq. (5) provides the values of Deff through the Lifson-Jackson
(LJ) formula [28],

Deff = 1

〈σ (x)〉〈 1
D(x)σ (x)

〉 , (10)

where the angular brackets denote the spatial average over a
period L of the channel,

〈f (x)〉 = 1

L

∫ x0+L

x0

dx f (x),

with f (x) = f (x + L).
Once the asymptotic diffusion process has been reduced

to the effective one-dimensional partial differential equation
(PDE) (5), the problem can be also recast into the correspond-
ing one-dimensional Langevin equation

dx

dt
= −dV (x)

dx
+

√
2D(x)ξt ,

with an effective potential

V (x) = −kBT ln σ (x),

where V (x) is a periodic function depending on σ (x) and
represents an entropic potential [16].

The perturbative approach of Refs. [23,27,29] fails to
describe the most interesting cases, where A � R,L or
becomes particularly involved [30] when dealing with not
differentiable boundaries of the channel (see Fig. 1).

III. ASYMPTOTIC DIFFUSION

Let us introduce a simple argument to derive an approx-
imation to the effective coefficient Deff of the longitudinal
diffusion.

Of course, the trapping mechanism due to the humps
implies that Deff < D0. With reference to Fig. 1, we dub
“humps” (H ) and “shaft” (S) the sets of the channel such
that

H = {(x,y) ∈ R2|R/2 < |y| � ω(x)},
S = {(x,y) ∈ R2||y| � R/2}. (11)

Within the H region the particles spend a certain amount of
time before coming back to the S region, where they contribute
to the transport along the x direction.

We consider two types of structures sketched in Fig. 1. The
first [Fig. 1(a)] is defined by the smooth boundary,

ωSm(x) = R + s(γ )A
2

+ A
2

sinγ

(
2πx

L

)
, (12)

where γ is an integer tuning the shape of the humps: The
larger γ , the sharper are the sinusoidal humps and s(γ = 2n) =
0, s(γ = 2n + 1) = 1. The the extra term, s(γ )A/2, when γ

turns from even to odd values is necessary to avoid the upper-
and lower-boundary overlap and to keep the S region width
fixed to R. Analogously, the period of the “even” and “odd”

profiles changes from L/2 to L. Hereafter, this channel is
referred to as the smooth channel (Sm).

The other structure that we name sharp channel (Sh),
Fig. 1(b), is characterized by the steplike profile

ωSh(x) =
{R+A

2
L
4 − 


2 � |x| < L
4 + 


2 ,

R
2 elsewhere.

(13)

The period of this channel is L/2. More complicated bound-
aries are taken into account in the following. Unless otherwise
stated, throughout the text and in all simulations, we consider
channels with fixed shaft parameters: L = 10, R = 4, whereas,
the parameters controlling the size and the shape of the H

regions, such as A, γ , and 
, are tuned to obtain different
degrees of dead-end trapping.

We introduce a phenomenological Markov process to
estimate Deff . Let us observe that in the long time limit,
the motion along the transverse direction becomes stationary.
Thus, the probabilities PH (t) and PS(t) = 1 − PH (t) to be in
the H and S regions, respectively, become constant at large
times,

lim
t→∞ PS(t) = P

eq
S = μ(S)

μ(H ) + μ(S)
, (14)

where μ(S) and μ(H ) are the areas (measure) of the S and H

regions, respectively, within a single period of the channel.
Since we are interested only in the longitudinal transport
process, we can approximate the particle motion as a random
walk on a 1D “lattice,” where the walkers can jump to the left or
to the right with probability μ(S) or they can sit on the same site
with probability μ(H ). In this coarse-grained representation
which mimics the longitudinal diffusion process, Deff can be
expressed in the form

Deff = D0P
eq
S . (15)

Notice that the result coincides with the one proposed in
Refs. [31,32].

Equations (14) and (15) when applied to the Sm chan-
nel (12) provide the result

Deff

D0
=

⎧⎨
⎩

R

R+ 1
π

B( 1
2 ,

γ+1
2 )A if γ = 2n,

R
R+A if γ = 2n + 1,

(16)

where B(a,b) = �(a)�(b)/�(a + b) is the Euler’s β function.
The dependence of Deff on even γ ’s at R and A fixed is

determined by the behavior of the function B[1/2,(γ + 1)/2],
which monotonically decreases with γ and asymptotically
scales like B ∼ √

2/(πγ ). This implies that Deff approaches
D0 at large even γ ’s, which is not a surprising situation if
one considers that a very large γ determines inaccessible
narrow humps in the profile (12); consequently, the particles
are constrained to perform a free diffusion along the shaft
region.

For odd γ , the area cancellation in μ(H ) yields a result that
is independent of the hump’s shape and the γ value as well.
This peculiarity makes the applicability of the areas’ formula
critical to “odd” channels, as we discuss later.

For the sharp channel (13), we obtain

μ(S) = RL, μ(H ) = 2A
,
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and the effective coefficient reads

Deff

D0
= RL

RL + 2A

. (17)

Equations (16) and (17) can be recast in a common form
highlighting the relevant dependence on the ratio Q = A/R,

Deff

D0
= 1

1 + gHQ
, (18)

where gH is a coefficient depending on the finer details
of the hump regions; in particular, gH = 1 (γ odd), gH =
B[1/2,(γ + 1)/2]/π (γ even) for a Sm channel, while gH =
2
/L in a Sh channel.

It is interesting to remark that Eq. (17) is amenable to
an alternative derivation suggested by the general multiscale
techniques [33], where the concept of an effective diffusion
equation along the channel centerline naturally arises, namely,

∂tP (x,t) = ∂x{D̃(x)∂xP (x,t)} (19)

note that now D̃(x) embodies all the inhomogeneities of the
problem and thus does not coincide with D(x) of Eq. (5).
Equations (5) and (19) need not be related in a direct math-
ematical way as they provide only an equivalent mesoscopic
representation of the same asymptotic process: The large time
diffusive behavior when the transversal homogenization has
been achieved.

The above formulation has the advantage that the result (17)
can be still recovered through (10), providing one assumes a
local diffusion coefficient such that

D̃(x) =
{

D0
R

A+R
L
4 − 


2 � |x| < L
4 + 


2 ,

D0 elsewhere.
(20)

Such a proposal can be rationalized as follows. A particle can
fully contribute to the diffusion only when its y coordinate lies
in the S region. Accordingly, if the particle is in the S region,
its diffusion occurs with a free coefficient D0, whereas in the
H region the diffusion coefficient is depressed by a factor
R/(A + R). Now from expression (20) we can compute the
effective diffusion coefficient as

Deff = 1〈
1

D̃(x)

〉 .

This approach, in a philosophy similar to the homogeniza-
tion technique, amounts to considering a flat channel while
shifting its inhomogeneity to the diffusion coefficient and it
has the advantage to be also applicable to not differentiable
boundary profiles.

In order to test the quality of the approximation (18), we
performed numerical simulations by integrating the Langevin
equation (1) with V (r) = 0. The no-flux condition has been
implemented both via a simple rejection algorithm and via an
elastic-reflection method in the collision of a particle against
the wall. The results were independent of the method and we
opted for the rejection method which is faster and of easier
implementation. We simulated N = 7 × 104 independent par-
ticle trajectories via a standard Euler’s scheme with D0 = 1
and a time step 
t = 0.005τ , where τ = R2/2D0 and R is the
fixed cross section of the shaft region (see Fig. 1). Hence, for
each time step, the mean step length 
� = √

2D0
t � 0.07R
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FIG. 2. (Color online) Plot of Eq. (18) vs Q = A/R (black
line) together with the simulated Deff data obtained by the slope
of 〈
x2(t)〉 in the linear regime. Symbols correspond to values
Q = 2−2,21,23, . . . 213; circles refer to the Sm channel with L =
10,R = 4,γ = 10, while squares refer to the Sh channel with L =
10,R = 4,
 = 1.23. Since the channels are equivalent (same area),
the data from both structures are supposed to collapse onto each
other. The percentage error is within 4%; the inset instead shows
the deviation |Deff (th) − Deff (sim)| of the black line from the open
circles in the main panel. For a further comparison, we report the Deff

of the Sm channel computed by Eq. (10) using the local diffusion
coefficients mentioned in the text: DRR(x) (red), DKP (x) (green),
DZw(x) (blue), and DFJ (x) (orange).

turns out to be reasonably smaller than the typical geometrical
length of the channel but large enough to avoid excessively
long simulation runs.

The numerical results are shown in Fig. 2, where for-
mula (18) is compared to the simulation data obtained from the
asymptotic behavior of the longitudinal MSD in the Sm and
Sh channels at different values of Q = A/R. We have chosen
L = 10 and R = 4 for both structures and set γ = 10 for the
smooth boundary and 
 = B(1/2,11/2)L/π = 1.23 for the
sharp boundary in order to have a unique gH in Eq. (18),
which means equivalent channels (i.e., with the same area).
The dashed lines in Fig. 2 show the values of Deff of the
Sm channel obtained by the LJ formula (10) via a numerical
evaluation of the integrals for various expressions of the local
diffusion coefficient.

The LJ formula cannot be applied to the Sh channel, as
ωSh(x) is not differentiable everywhere. In this case, another
approximation which can be very useful is based on the
boundary homogenization [34–36]. The method was applied
by Berezhkovskii and co-workers [22] to the calculation of
Deff for the Sh channel; however, their result is valid under
the restriction 2
 � 2A + R, which is not assumed here. The
formula of geometrical areas (15) reveals some inaccuracy
in predicting the Deff behavior for the Sm channel with odd
γ ; indeed, the case γ = 1 reported in Fig. 3 shows that the
agreement between Eq. (18) (solid line) and the simulation
data (symbols) dramatically worsens in the range of large
Q = A/R.

This discrepancy can be justified by observing that Eq. (18)
remains a reliable approximation of Deff as long as the channel
partitioning in H and S regions is not ambiguous. Actually,
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FIG. 3. (Color online) Comparison between simulated data of
Deff (circles) and the theoretical prediction (18) (black line) for
the unbiased diffusion in a Sm channel, with γ = 1 and the other
parameters as in Fig. 2. The percentage error on simulation data
is within 4%. The accuracy of Eq. (18) worsens at increasing
Q = A/R. Dashed lines represents the predictions of Deff yielded
by the generalized FJ approach involving the same D(x) expressions
of Fig. 2.

the S and H distinction is not always physically meaningful,
just like in the case of the Sm channel with odd γ . The crucial
difference between odd and even γ is apparent in Fig. 4. When
γ is odd, the S domain turns out to be ill defined as it shrinks
to pointlike regions (marked by P s in the figure). Conversely,
the H regions are so large that produce a negligible trapping
mechanism. The resulting structure is virtually equivalent to
a “septate channel” [37] of section R + A, namely, an array
of compartments connected by holes in the separating walls
(dashes shape in Fig. 4). As discussed in Ref. [5], the derivation
of Deff in septates requires a different approach from the one
leading to Eq. (18).

Apart from the peculiarity of the septates, Eq. (15) is rather
general as it works well in a variety of geometries. For instance,
it is able to predict the Deff associated with the complex
channels Sh-T1 and Sh-T2 sketched in Fig. 5. This can be
appreciated from the results in Fig. 6 showing a comparison of
Deff from Brownian simulations in Sh-T1 and Sh-T2 (symbols)
to its theoretical prediction based on Eq. (15) (dashed line).
The different sets of data refer to structures with different

PPP

FIG. 4. Sketch of a Sm channel with even (solid) and odd (shaded)
γ . Notice the concavity change of the profile when γ turns from
even to odd. For γ odd, the H region of the channel becomes
predominant, whereas the S domain remains ill identified as it is
restricted to pointlike regions marked by the letter P . In this case,
the structure becomes equivalent to a septate channel [37] of section
R + A (dashed lines) for which Eq. (15) fails.
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FIG. 5. (Color online) Examples of sharp channels Sh-T1 and Sh-
T2 with a boundary profile ω(x) which is a multivalued function of the
longitudinal position; in that case, the generalized FJ approximation
cannot be used. In both structures, the parameters, h,
,�1,�2 are
tuned such that μ(H ) coincides with the hump area of the boundaries
used to generate Fig. 2.

10-1 100 101 102 103

Q = μ(H)/(RΔ)

0.0

0.2

0.4

0.6

0.8

1.0

D
ef

f/D
0

Sh-T1  (Δ = 1.23)
Sh-T2  (Δ = 1.23)
Sh-T1  (Δ =  2.0)
Sh-T2  (Δ =  2.0)
Eq.(15)

FIG. 6. (Color online) Plot of Deff/D0, theory (dashed line) and
simulation data (symbols) vs Q = μ(H )/(R
) referred to the
structures Sh-T1 and Sh-T1 drawn in Fig. 5. We considered channels
with two 
 values and tuned the other parameters (h,�1,�2) to
maintain the same hump area in both structures. For this reason
different data sets collapse onto each other. The agreement between
theory and simulation results is convincing despite the geometric
complexity of the channels. The percentage error on data is about 4%
leaving the bars well below the symbol size.
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profiles but the same hump area μ(H ). The perfect collapse of
the different data onto the same theoretical curve confirms the
great accuracy of Eq. (18).

This example clearly indicates that, when the S-H partition
of a channel is not ambiguous and the H regions perform a suf-
ficient trapping action on the particles, the area’s formula (18)
is able to catch the right dependence of Deff on the channel
geometry, despite the complexity of the section.

IV. PREASYMPTOTIC DIFFUSION

Generally, the study of preasymptotic or transient regimes is
important to gain information about a possible trapping mech-
anism and memory effects in a dynamical processes [38,39]. In
the specific case of corrugated channel, the temporary trapping
of particles within the H regions can induce a transient
behavior which generally depends on the system preparation
and it could be characterized by nonlinear growth of the mean
square displacement [31,40]. There exists a crossover time τ‖
separating the preasymptotic and the asymptotic motion that
is affected by the initial particle distribution in the channel,
τ‖ = τ‖(r0), r0 being a shorthand notation for the initial
position of all the particles. We considered three types of
initial conditions in the channel of Fig. 1(b): (i) a uniform
distribution of particles in the S region of a single unitary cell,
r0 ∈ S; (ii) the particles uniformly distributed in one period of
the H region, r0 ∈ H ; and finally (iii) a uniform distribution
over the whole unit cell r0 ∈ S ∪ H . The “local equilibrium”
assumption [4,23] requires that the typical relaxation time
τ⊥ after which the particle distribution becomes uniform in
each cross section is much smaller than τ‖ � τ⊥, where τ⊥ is
estimated assuming a flat final y distribution on each section
[−ω(x),ω(x)],

τ⊥ = 〈[y(∞) − y(0)]2〉
2D0

= supx{ω2(x)}
6D0

+ 〈y2(0)〉
2D0

;

the angular brackets indicate the double average over the
final and initial distributions. In the first term, supx{ω2(x)} =
(R + A)2/4 for both Sm and Sh channels, the value 〈y2(0)〉
depends on the starting particle distribution. In particular, for
the distributions (i)–(iii) just mentioned, we have

τ⊥(r0) = τR

⎧⎪⎪⎨
⎪⎪⎩

(1 + Q)2 + 1 r0 ∈ S,

(1 + Q)2 + (1+Q)3−1
Q

r0 ∈ H,

2(1 + Q)2 r0 ∈ S ∪ H,

(21)

with τR = R2/(12D0). Taking Q sufficiently large, τ⊥ can be
made so arbitrarily long that the transversal homogenization
becomes considerably slow and the assumption of a sharp scale
separation τ⊥ � τ‖ certainly fails. This very slow transversal
homogenization induces a delay on the onset of the standard
longitudinal diffusion that can be observed in Fig. 7, where
we plot the relaxation of longitudinal and transversal MSD in
a sharp channel for a moderate Q = 27 and large Q = 215.
In both cases, the vertical homogenization established later
than the occurrence of the normal diffusion along the channel
axis. However, in the second case, the onset of a longitudinal
standard regime is strongly retarded by the lack of lateral
homogenization.

FIG. 7. Comparison between the relaxation of longitudinal
〈
x(t)2〉 and transversal 〈
y2(t)〉 diffusion for the same channel of
Fig. 8 with two different values of Q = 25 and Q = 213. The system
is prepared uniform over S ∪ H , but the large Q values prevents the
fast lateral homogenization. In the case Q = 25, the homogenization
takes place at times τ‖ < τ⊥, while for Q = 213 the homogenization
becomes particularly slow (τ⊥ � 39) and it delays the onset of the
standard diffusion along the x axis, τ⊥ � 103. Moreover, as long as
t < τ⊥, the lateral diffusion satisfies 〈
y2(t)〉 = 2D0t , supporting the
derivation of Eqs. (24) and (25). The horizontal dashed line marks
the value 2D0τ⊥(S ∪ H ) = R2(1 + Q)2/6 obtained from the last line
of Eq. (21).

Therefore, we focus on the preasymptotic diffusion in
channels with large enough Q, where, more likely, the local
equilibrium condition is violated. Figure 8 shows the log-log
plot of the longitudinal MSD for the three initial distributions
(i)–(iii) defined above in the Sh channel (13) with Q = 25; the
inset reports the same data for Q = 22. The plot emphasizes
the transient nonlinear behavior of MSD and the dependence
of the dynamics on the initial condition. The different

100 101 102 103 104

t

100

101

102

103

104

105

〈Δ
x2 (t)

〉

r0∈S
r0∈H
r0∈S∪H
2 Defft

100 102

100

102

〈Δ
x2 (t)

〉

A = 23

ν ≈ 0.7

Q = 25

t

2D 0
t

FIG. 8. (Color online) Log-log plot of 〈
x2(t)〉 in a Sh channel
with Q = 25 as a function of the time for the system starting from
three initial conditions: r0 ∈ H (squares), r0 ∈ H ∪ S (triangles),
r0 ∈ S (circles). Symbols refer to the simulation data, whereas the
dashed lines represent their fit by Eq. (25) upon tuning the free
parameter τ0. Parameters R,L,
 are as in Fig. 2. The inset shows the
same results for Q = 22.
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short-time behavior of the three sets of data can be explained as
follows. The particles initialized with r0 ∈ S perform a stage
of free diffusion (coefficient D0 = 1) until they are trapped
into the humps, accordingly their MSD initially grows like
〈
x2(t)〉 � 2D0t (circles). The opposite case corresponds to
all the particles initialized in r0 ∈ H . Their MSD remains
stacked to a small value (squares) due to the trapping of
humps until enough particles begin to escape. Obviously, the
MSD of particles uniformly initialized in r0 ∈ H ∪ S exhibits
a short-time behavior that is intermediate between the two
opposite cases.

The global behavior of 〈
x2(t)〉 as a function of the elapsed
time can be qualitatively understood by the following argu-
ment. The growth 〈
x2(t)〉 can be related to the occupation
probability PS(t) of the S region at time t [31],

〈
x(t)2〉 = 2D0

∫ t

0
du PS(u). (22)

In the Appendix, we show how Eq. (22), which generalizes
Eq. (15) to transient diffusion, can be justified by exploiting
some intuitive similarities between the diffusion in corrugated
channels and the unbiased random walks on a comb lattice with
finite side branches. Equation (22) is, of course, meaningful
only if the S and H regions can be unambiguously identified.
If so, we can define a coarse-grained description of the process
in terms of a two-state kinetic model, where the states S and H

have probabilities PS(t) and PH (t) = 1 − PS(t), respectively.
Let kS(t) and kH(t) be the transition rates from S to H and from
H to S, respectively, then the rate equation for PS(t) reads

dPS(t)

dt
= −kS(t)PS(t) + kH(t)[1 − PS(t)]. (23)

We consider the limiting case of large A, in which the strong
trapping mechanism delays the longitudinal equilibration
(homogenization); see Fig. 7. Accordingly, for t � τ⊥ the
diffusion in the y direction is still an ongoing process,
〈
y2(t)〉 ∼ t . In a first approximation, we can argue that kS(t)
and kH (t) are proportional to the typical spreading velocity of
the transversal diffusion; thus,

kS(t) ∼ a/
√

t, kH(t) ∼ b/
√

t,

where a and b are dimensional constants to be determined by
phenomenological considerations. Substituting the rates into
Eq. (23), we get the solution

PS(t) = PS(0)e−2(a+b)
√

t + b

a + b
(1 − e−2(a+b)

√
t ).

Now the parameters a and b can be expressed in terms of mean-
ingful physical quantities by setting 2(a + b) = 1/

√
τ0, where

τ0 is a free time scale to be adjusted, and b/(a + b) = Deff/D0,
which comes from the equilibrium condition PS(t) → P

eq
S .

After simple algebra we obtain a = (1 − Deff/D0)/
√

4τ0 and
b = Deff/(D0

√
4τ0).

Thus, the final expression for PS(t) reads

PS(t) = PS(0)e−√
t/τ0 + Deff

D0
(1 − e−√

t/τ0 ) (24)

and according to Eq. (22), we derive the MSD

〈
x(t)2〉 = 2Deff t + C{1 − e−√
t/τ0 (

√
t/τ0 + 1)}, (25)

with C = 4D0τ0[PS(0) − Deff/D0]. The phenomenological
expression (25) can be used to fit the MSD data of Fig. 8
by adjusting the τ0 value. The blue dashed line represents
Eq. (25) with the initial condition PS(0) = 1, corresponding to
all the particles in the S region. Since C is positive, the second
term in Eq. (25) contributes positively to the MSD and the
convergence to the asymptotic behavior 2Deff t is from above.
When the particles start in the H region, PS(0) = 0, Eq. (25)
corresponds to the dashed green line, in this case C < 0 and
the convergence to the slope 2Deff t is from below. Finally, if
the particles are initialized with a uniform distribution so that
PS(0) = P

eq
S = Deff/D0, the constant C in Eq. (25) vanishes

and the system achieves soon the expected standard diffusive
behavior (red dashed line). The agreement between simulation
data and the fitting curves is satisfactory considering that
Eq. (25) has only one free parameter and that its derivation
is based just on reasonable assumptions.

The regime with A comparable with all the other geometri-
cal sizes can be captured by a generalization of Eq. (24) where
the square-root dependence

√
t/τ0 is replaced by the power

law (t/τ0)ν , with ν being an additional fitting parameter. The
inset of Fig. 8 shows the example with A = 23, for which we
found τ0 ≈ 18 and ν ≈ 0.7.

V. EINSTEIN’S FLUCTUATION-DISSIPATION RELATION

We discuss the transport problem in the presence of small
external longitudinal field F = f x̂, i.e., f L/(2kBT ) � 1. In
particular, we are interested in possible generalization of the
Einstein’s FDR to regimes where the approach to the “transver-
sal equilibrium” is so slow that a robust transient behavior of
nonstandard longitudinal diffusion can be observed.

In the linear response regime, the asymptotic mean drift
induced by the field f is

〈
x(t)〉f = μefff t,

where μeff is the effective mobility, and since the asymptotic
MSD for f = 0 is given by

〈
x2(t)〉0 = 2Deff t,

the ratio

〈
x(t)〉f
〈
x2(t)〉0

= μeff

Deff

f

2
= const (26)

remains constant in time, assuming Einstein’s FDR Deff =
kBT μeff , the const is fixed to f/(2kBT ). Here we work in
units such that kBT = 1.

Previous studies [2,5,17,32] mainly focused on the validity
of FDR in the asymptotic regime and worked out analytical
expressions for the linear and nonlinear mobility μeff ; here
we test Eq. (26) when the diffusion is not yet asymptotic.
This analysis can be guided by the structural similarity that
channels with A/R � 1 share with the comb lattice with
long but finite side branches (Fig. 11 of the Appendix):
The backbone and teeth of the comb play the role of the S

and H regions of the channel. This similarity reflects also
on the transport properties; indeed, Fig. 9 shows that in
the limit A/R � 1 the diffusion along the channel becomes
anomalous 〈
x2(t)〉0 ∼ t2ν with the same exponent ν = 1/4
of the random walk on a comb [41–43]. This scenario is
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FIG. 9. (Color online) Log-log plot of the MSD versus the
elapsed time for the channel sketched in Fig. 1(b) with increasing
values of A. For A/R = 28, the diffusion is anomalous 〈
x2(t)〉0 ∼
t1/2 with the same exponent of the random walk on a comb, 2ν = 1/2,
supporting the view that the structure in Fig. 1(b) virtually behaves
as a comb at enough large A.

consistent with the behavior Deff ∼ 1/A at large A [see
Eqs. (16) and (17)], which is a physical consequence of the
trapping action exerted on particles by very long humps.
The Appendix shows that on a comb lattice such a regime,
though anomalous, does satisfy the FDR at any time due to an
accidental but exact cancellation in the ratio (26). We stress
that in the comb lattice, Eq. (26) is exact not only at any
times but also for any initial particle distribution. In analogy,
as long as the random walk on the comb constitutes a good
representation of the continuum process, we expect FDR to
maintain a certain validity for the diffusion in channels even in
nonasymptotic regimes and regardless of the initial particle
distribution, provided it is generic enough. To verify this,
we performed numerical simulations of diffusion driven by
different external fields and in channels with increasing A/R.

100 102 104 106

〈Δx2(t)〉0

10-2

100

102

104

106

〈Δ
x(

t)〉
f

f = 0.05
f = 0.10
f = 0.50
f = 1.00
f = 1.50

FIG. 10. (Color online) Check of the FDR for the diffusion in
Sh channels (13). Log-log plot of 〈
x(t)〉f vs 〈
x2(t)〉0; symbols
are the simulation results and dashed lines represent the theoretical
expectation (26), which is verified regardless of the A value and turns
out to be independent of the initial particle distribution within the
channel. The FDR is exactly satisfied also in smooth channels (not
shown).

The plot of 〈
x(t)〉f versus 〈
x2(t)〉0 for different values
of Q = A/R is shown in Fig 10, where symbols are the
numerical data and dashed straight lines represent the expected
behavior as predicted by taking the logarithm of both members
of Eq. (A6). The perfect alignment of data along the lines
confirms the exact proportionality between the MSD and the
mean drift according to Eq. (26).

We note that in systems governed by a one-dimensional
Fokker-Planck equation, Einstein’s relation holds exactly at
any time if the initial condition coincides with the invariant
probability distribution [44]. The same applies also to the
fractional Fokker-Planck equation [45] describing anomalous
diffusion.

In conclusion, although both 〈
x(t)〉f and 〈
x2(t)〉0

depend on the channel shape and on the initial system
preparation, their ratio remains constant in time in any explored
regime, generalizing “de facto” the Einstein relation to the
preasymptotic dynamics.

VI. CONCLUSIONS

This paper analyzed the diffusion in channels with nonuni-
form sections in conditions well beyond the range of ap-
plicability of the FJ approximation, which properly works
only for small deviations from the homogeneous channel.
We performed Brownian dynamics simulations in different
geometries considering even channels with steep variations
of the boundaries and computed numerically the effective
diffusion coefficient Deff from the asymptotic behavior of the
mean square displacement (MSD). We compared the numeri-
cal results to the predictions from the various corrections to the
FJ theory, suggested in the literature, that make use of a local
diffusion coefficient within the Lifson-Jackson formula. We
then focused on channel profiles which are not differentiable
(sharp channels) for which the FJ approximation and its
corrections turn out to be of difficult application. In these cases,
there exists a semiheuristic approach based on the large-time
limit of formula (22) which allows Deff to be expressed in
terms of the geometrical weight of region H , where particles
contribute to the longitudinal diffusion and dead-end region S,
where particles are temporarily trapped. We tested numerically
the applicability of Eq. (22) to different channel geometries
and we found that it works fine only when the partition of the
channel into S and H regions is unambiguous. In other words,
the trapping mechanism of the dead ends should be strong
enough to introduce a scale separation between moving and
trapped dynamics. When this scale separation does not occur
the theoretical prediction deviates from the numerical data.

In addition, we characterized the transient regime of the dif-
fusive transport by measuring nonlinear behavior of the MSD
before it attains the linear growth. These transients for specific
channel profiles can be made arbitrarily long and robust by
acting on the channel geometry. Also in this case we analyzed
the data according to formula (22) obtaining a satisfactory
description of the MSD growth in terms of the solution of phe-
nomenological rate equation for the probability to occupy the
S region. We proved that Einstein’s relation can be remarkably
established between the mean drift of the biased diffusion in a
small field along the channel axis and the MSD of the unbiased
diffusion, in both asymptotic and preasymptotic regimes.
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FIG. 11. Sketch of the regular comb lattice used for its analogy
to channels with narrow and long hump regions. The backbone plays
the role of the channel S region while the teeth act as H regions.

APPENDIX

This Appendix shows the derivation of formula (22) and
the response by exploiting the analogy between the diffusion
in a channel geometry with very large A and the random walk
on the comb lattice with finite length side branches (Fig. 11).

The comb lattice is composed of periodic arrangements
of transversal teeth of length L, attached to the backbone
of the structure, which represents the transport direction as
shown in Fig. 11. For simplicity, we consider here the case
of unitary spaced teeth. The side branches in comb lattice
mimics, to some extent, the trapping mechanism of “hump”
regions (H ) of the channel. The backbone corresponds to the
region “S,” where diffusion is not hindered and the drift is
efficient. Denoting by rt = {x(t),y(t)} the position vector of
a given particle, the total displacement up to time t along the
backbone is given by

x(t) − x(0) =
t∑

j=1

ξj δyj ,0, (A1)

where the random variable ξj takes values in {1,0, − 1},
respectively, with probability {1/4,1/2,1/4} [43]. The average
square displacement is (A1)

〈[x(t) − x(0)]2〉0=
t∑

j=1

〈(
ξj δyj ,0

)2〉+2
t∑

j=1

t∑
i>j

〈
ξj ξiδyj ,0δyi ,0

〉
.

(A2)

All the terms 〈(ξj δyj ,0)2〉 vanish if yj �= 0, i.e., if a walker
is out of the backbone; otherwise 〈(ξj δyj ,0)2〉 = 〈ξ 2

j 〉 =
1/2. On the other hand, 〈ξj ξiδyj ,0δyi ,0〉 = 0 if j �= i. We
can write

〈[x(t) − x(0)]2〉0 = 2tFB(t), (A3)

with FB(t) the mean percentage of time which a given walker
spends in the backbone B during the time interval [0,t]. We
assume that the last relation applies also to the diffusion within
the periodic channels when the H regions are long and narrow
enough. Writing

tFB(t) =
∫ t

0
duPS(u),

where PS(t) in the probability to be in the shaft region
(corresponding to the backbone) at time t , we extend the above
equation to the continuous time case,

1

2D0

d〈[x(t) − x(0)]2〉
dt

= PS(t), (A4)

from which, by an integration, we recover the expression (22).
The above reasoning can be repeated in the presence of

an imbalance in the jump probabilities along the backbone,
i.e., by considering that the random variable ξj takes values in
{1,0,−1}, respectively, with probability {1/4 − ε,1/2,1/4 +
ε}. Thus, a given walker experiences an external drift f =
2ε, with ε ∈ [0,1/4). Via a similar calculation used to derive
〈[x(t) − x(0)]2〉0, we get

〈
x(t)〉f = f tFB(t); (A5)

thus, on the comb lattice, we easily obtain

〈
x(t)〉f
〈
x2(t)〉0

= f

2
. (A6)

The last result which is exact for the comb lattice, how-
ever, can be a guide for the interpretation of diffusion
and linear response within periodic channels, as shown
in Fig. 10.

Let us conclude by noting that the relation (A6) not only
remains true for any time, i.e., in asymptotic and preasymptotic
regimes, but also for a generic initial distribution of walkers.
Such a conclusion is obvious by observing that Eqs. (A3)
and (A5) are both proportional to the same function FB(t)
which does depend on the initial distribution but simplifies in
the ratio (A6).
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