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Fuzzy transition region in a one-dimensional coupled-stable-map lattice
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A coupled-map lattice showing complex behavior in the presence of a fully negative Lyapunov spectrum is
considered. A dynamical phase transition from “frozen” disorder to chaoticlike evolution upon changing
diffusive coupling is studied in detail. Various indicators provide a coherent description of the scenario: the
existence of a finite transition region characterized by an irregular alternancy of periodic and chaotic evolution.
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I. INTRODUCTION phenomenon is the empirical evidence that the evolution of

. . . large enough systems appears to be irregular and stationar
Very often the approach to space-time chaos in spatlaII){n ?ime sogtha%/ it makegpsense to speagk of a “Lyapunov y

extended systems is based on the extension of concepts and, | .. . . :
i . ; stable” chaotic regime. In the following, we shall use the

tools developed for finiteflow-) dimensional systems. For . : . .
) S .shorthand notatiostable chao$SC) to identify this type of
instance, dynamical indicators such as the Kaplan-Yorke di: .
mension and the Kolmogorov-Sinai entrofly] have been behavior. , : .

. T R . . In a previous paper it has been shown that SC is a robust
turned into the corresponding intensive indicators, i.e., di

. d ities[21. Thi ; ‘phenomenon in the sense that it persists in finite regions of
mension and entropylensities[2]. This strategy is essen- ino narameter spadé] and it survives even if the disconti-

tially motivated by the hypothesis that the dynamics of chay,ities in the dynamical equations are remoy&d)]. Also

otic extended systems can be viewed as that of many, almogfe giscreteness of the time variable does not seem to be a
independent, finite-dimensional subsystems. Although thgeyere limitation as SC has been observed also in a chain of
existence of a limit Lyapunov spectruf8i] provides strong coupled Duffing oscillatorg7]. The only true limitation
support for such an idea, it is still rather unclear in whichseems to be the need for a synchronous external forcing of
sense the evolution of different pieces of, say, a chain ofhe oscillators.
maps is truly uncorrelated. SC can be partly understood by unveiling the analogy
Even more important is the observation that the infinitewith actual simulations of chaotic maps on digital computers.
dimensionality of the phase space can give rise to entirelyAny computer has a finite accuracy which is determined by
new features the understanding of which requires differenthe number of bits used in the internal representation of a
tools and perhaps will open new perspectives. One such exeal number. As a consequence, even a chaotic map sooner
ample that will be thoroughly studied in the present paper ior later must yield a periodic orbit. This apparent limitation
the occurrence of chaotic evolution in the presence of a negdras not prevented an effective use of digital computers in the
tive maximum Lyapunov exponent. This is indeed a phe-study of deterministic chaos. In fact, if the computer word is
nomenon that can exist only in an infinite-dimensional phaseufficiently long, the time required for observing the collapse
space, as can be shown with a simple argument based onoato a periodic cycle is so long that this “transient” regime
reductio ad absurdumAn aperiodic evolution requires that is almost indistinguishable from the truly stationary regime
the limit set of a generic trajectory contains infinitely many of the chaotic map. If one substitutes the length of the com-
points. If the evolution is confined to a bounded region, therguter word with the spatial length of a SC system, we can
must be at least one accumulation point. Now, since a suffirephrase the above arguments and thus provide indirect sup-
ciently small box centered around any accumulation poinport for the existence of a stationary chaotic regime in infi-
contracts in all direction&he maximum Lyapunov exponent nitely extended systems. However, it is honest to recognize
being negativk all trajectories in the vicinity of the accumu- that in the case of deterministic chaos there exists a well
lation point are asymptotically indistinguishable and theredeveloped theory1] which, starting from Smale horseshoe
can be at most a periodic cycle. This argument breaks dowand Anosov systems, predicts the occurrence of irregular be-
if we have to consider an infinite-dimensional phase spacéjavior in mappings over the real numbers. In this case, one is
since in this case the limit set can well be made of infinitelyfaced only with the problem of explaining why an actual
many points, all within a bounded region and yet a finitesimulation reproduces almost exactly the theoretical expec-
distance from one another. The above is not only a theoretations. Conversely, for what concerns SC, there is mainly
ical possibility, but a feature actually observed in severahumerical evidence and no theory stating that under some
models such as coupled mapk-6] and oscillatord 7], al-  specific circumstances one can expect a chaotic evolution in
though no detailed explanation of the underlying mechaan infinitely extended system. The only pieces of a theory
nisms has yet been provided. What is most striking about thisan be constructed at the expense of a further simplification
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which is, however, very enlightening. If one discretizes theber of parameters must or can be used: there are infinitely
continuous state variable in a chain of maps, it is very naturainany ways to construct automata upon increasing either the
to invoke an analogy with deterministic cellular automatainteraction range or the number of symbols. Accordingly,
(DCA). In fact, DCAs too can exhibit chaotic behavior only some shortcut is attempted in the hope of catching the main
in the infinite-size limit, the finiteness of the number of pos-features of the organization of all rules in the space of DCAs.
sible states (2for binary automatanecessarily implying the The most common approach consists in classifying DCAs
eventual convergence to some periodic orbit. The corresporaccording to the so-called activity parameter, i.e., the frac-
dence between chaotic DCAs and SC can be put on moréon of local configurations that are mapped onto the same
rigorous ground by first encoding the patterns originated by apecific symbolsee, e.g.[14—-186); a more refined classifi-
SC regime and then trying to reproduce them by some DCAsation has been proposed by determining several parameters
with a suitable range of interaction. The first step is nothingwhich result from various Markov approximation schemes
but an implicit statement regarding the existence of a genef-17]. However, both approaches suffer the same prob{em:
ating partition. The work done in low-dimensional systemsa continuous tuning of the parameters requires dealing with
has shown that rather coarse partitions can be constructeth infinite number of rules and this can be done in infinitely
which reproduce the dynamics of chaotic maps without lossnany ways whicha priori, are not equivalent. Moreover, in
of information[10,11]. Thus we do not expect this step to be the former case it is not even clear that different DCAs char-
particularly harmful in the context of SC, the only possible acterized by the same parameter do behave in the same man-
problem being the actual construction of a generating partiner, i.e., that the parametrization is meaningful. In the con-
tion in specific cases. text of SC, continuous parameters are naturally present in the
The second step is not obvious at all, since it is not knowroriginal model, thus allowing one to study the very same
to what extent a pattern with no local production of informa-question in a natural and unambiguous way.
tion can be reduced to a DCA. Let us start the discussion of In fact, the question of how we pass from a periodic to a
this issue by recalling that low-dimensional chaotic systemsghaotic regime in SC systems is perfectly legitimate, as re-
such as the Heon map, are equivalent to probabilistic au- vealed by simulations performed for different choices of the
tomata, where the probability of the next symbol effectively control parameter which show both chaotic and periodic evo-
depends on some previous symbdtheir number corre- lution. Accordingly, one can hope to shed light on the tran-
sponding to the order of the Markov procesEhe probabi- sition between these two regimes: is that a standard thermo-
listic character of the automaton is intrinsically related to thedynamic phase transition, or do we find the signature of
existence of an expanding direction and to the correspondintcomplexity”? Or is it even as simple as a “bifurcation”?
amplification of uncertainty. The coupling of chaotic maps, The order-to-chaos transition suggests also a comparison
as it occurs in spatially extended systems, leads naturally tith standard space-time intermitten€8TI) occurring in
probabilistic cellular automata: the probability of a symbol chaotic systemgl8]. The latter phenomenon has been shown
in a given place at a given time depends not only on the pagb be strictly related to directed percolation transitidrpos-
symbols in the same site as in the previous case, but also dariori, this is not very surprising since, on the one hand, a
the past symbols in the neighboring sites. locally chaotic evolution is reminiscent of probabilistic cel-
In the case of SC, there is no local amplification of un-lular automatdsee abovg while the ordered dynamical con-
certainty, so that it is tempting to conjecture that the futurefiguration can play the role of an absorbing state. However,
symbol is exactly determined, once the past history of althe analogy has been shown not to be a complete equiva-
previous symbols is known. This hypothesis has alreadyence between the two phenomena, since finite regions char-
been tested in several cases, finding that it would be moracterized by chaotic behavior cannot be assimilated to truly
appropriate to state that it is the whole new configuration tcstochastic domains. A reminiscence of the alternancy of
be predicted with almost no uncertainty. However, in someaegular and irregular behaviors—typical of low-dimensional
cases, it has been found that a DCA with a long enougisystems—indeed survives, leading to a more “exotic” evo-
space-time memory suffices to reproduce exactly the oblution on the ordered side of the phase transifib®. Now,
served pattern, while in other cases, the uncertainty of eachn order-to-chaos transition occurring in a SC system should
forecasted symbol decreases and presumably goes to zeswhibit even more striking deviations from a percolation
only in the limit of an infinite range of interactidi™]. There-  transition, basically because any finite “chaotic domain”
fore, it is definitely reasonable to affirm that DCAs representcannot be chaotic at all. This is a first indication that the
a subclass of SC systems and what is known about DCAgansition cannot be a “simple” equilibrium phase transition,
can be automatically translated into the language of SCas the studies described in this paper will confirm. However,
Leaving aside the question of whether SC encompasses sortle link with STI is more subtle than one could naively think.
type of behavior absent in DCA42,13,7, here we want to It was already shown that STI can be effectively described
stress the important advantage of SC over DCA: the exisby a sequence of DCA constructed by suitable discretization
tence of a tunable continuous control parameter. Such a posf the local dynamic$20]. In fact, any DCA can be seen as
sibility is particularly appealing in view of the conjectured a stepwise map: the smaller is the separation between con-
existence of “complex” behavior at the edge of chddd].  secutive steps, the more accurate is the reproduction of the
In fact, it has been suggested that a true richness of behavidynamics. Upon changing the control parameter, one passes
is observed whenever the underlying rule of a DCA is indiscontinuously from one to another rule. Thus, for any finite
some sense halfway between ordered and chaotic rulesesolution, in a finite number of stefshanges of rulg one
However, testing of the above idea requires a parametrizgpasses from ordered to chaotic behavior: no truly continuous
tion of all the rules and it is not obvious priori what num-  parametrization is recovered unless the limit of infinitely
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many symbols is taken, i.e., the continuous nature of theify a proper order parameter for the transition. In Sec. IV,
local variable is restored. However, given any stepwise repinformation-theoretic concepts are introduced for a supple-
resentation of the local dynamics, one could proceed in anentary investigation. Section V is finally devoted to discus-
different manner, tilting each of the steps of the local func-sions and conclusions.

tion. In this way, the continuous nature of the variable is

immediately restored and if the slopes of the various steps Il. A MODEL OF STABLE CHAOS

are not too large, the maximum Lyapunov exponent is
bounded to be negative. Qualitatively speaking, we have thgi
same phenomenon as in STI, a transition from ordered to
chaotic behavior. Quantitatively, in this paper we conjecture y. (¢4 1)=(1—2e)f(x;(t))+ e[ f(x_1(t))+ F(X;s ()],

that a “complex” region is expected to arise in parameter (1)
space of SC systems.

Finally, it is worth mentioning another similar transition, where £ €[0,1/2] is the coupling constant and periodic
extensively studied in the context of neural and Kauffmanboundary conditions are assumed over a lerigtfihe local
networks[21]. There, the state variable is discrétgpically = mapping has the form
binary) and the evolution rule is entirely deterministic ex-

The dynamical system considered in this paper is a one-
mensional lattice of diffusively coupled maps

actly as for DCAs. At variance with DCAs, there afie bx, 0<x<1/lb
guenched disorder: the updating rule operating in a given cell f(x)= (2
(synapsiy is randomly chosen; andi) lack of topology: a+c(x—1b), 1hb<x<l.

each cell interactéis connecteglwith a randomly chosen set
of other cells. In such a context, it has been found that upo®@ne can easily realize that this mapping can yield stable
decreasing, e.g., the correlation between synaptic couplinggeriodic dynamics for sufficiently small values ofIn what
(a continuous parameter in the thermodynamic hpattran- ~ follows, we fix the set of parameter valugs=0.07,b
sition occurs from a chaotic regime to frozen patterns. The=2.70,c=0.10 in such a way that, for any initial condition
transition appears to be a “standard” continuous order-tox#0, the attractor of the local mapping is a stable period-3
chaos transition located at a specific value of the controbrbit.
parameter. Within the paradigm of a meaningful complexity It is worth stressing that the stability of local dynami2s
occurring at the edge of chaos, it has been conjectured thimplies the stability of magl), whose maximum Lyapunov
the most meaningful choice of the parameters for the netexponent turns out to be negative for any valuesofAs a
work to be a realistic model of either gene regulation orconsequence, the long-time evolution of the diffusively
neural activity is close to criticality22]. coupled system is confined to a periodic attractor. Despite
Here, we investigate a similar order-to-chaos transitiorthis constraint, we are going to show that very different dy-
occurring in a one-dimensionélD) lattice of stable maps. namical regimes can be observed, depending on the coupling
Upon varying a control parameter, the system passes from &
frozen disorder phasé€FDP), characterized by a time- A space-time representation of the evolution can be ob-
periodic but spatially disordered evolution, to a chaotic phas¢ained by encoding the variablewith suitable gray levels.
(CP). The main difference with the behavior of neural net- Some typical patterns of the different regimes are reported in
works is that, here, the frozen patterns arise spontaneoushkig. 1. In some casefsee, e.g., Figs. (& and Xc)], the
notwithstanding the absence of any disorder in the updatingesulting pattern is basically a random arrangement of differ-
rule. The most important result of our investigations is thatent “stripes,” each stripe corresponding to a periodic dy-
the transition region is rather intricate, consisting of an ir-namics(frozen disordey; in other cases, there is no evidence
regular alternancy of periodic and chaotic evolutions. of either spatial or temporal ord¢see, e.g., Figs. () and
A somehow similar phenomenon has already been invest(d)].
tigated in a 2D lattice of stable maps, finding correspondence The global properties of a given pattern are governed by
with a nonequilibrium transition from weak to strong turbu- the behavior of the domain walls separating different time-
lence[23]. In such a case, it has been possible to reproducperiodic phases: if the domain walls do not move, then it is
the key features of the entire phenomenon by means of matural to expect a random arrangement of variable-size pe-
suitable stochastic equatidr24]. We suspect that such a riodic regions. Alternatively, one may have a “gas” of do-
transition is indeed close to a true stochastic process sincejain walls moving with different velocities and giving rise
even in the most orderd@veak turbulenceregime, there are to a chaotic evolution. The mutual scattering rules between
infinitely long interfaces which, in spite of the local stability, different domain walls thereby determine the properties of
can be characterized by a pseudorandom evolution. In fact, ihe chaotic phase. Even the reader vaguely acquainted with
is the infinite dimensionality of the phase space that makethe dynamics of DCA should have recognized in the above
possible the generation of an irregular behavior over an infisketched regimes the various classes of such md@éls
nite time lag. Therefore it is definitely tempting to use modél) for
This paper is arranged as follows. In Sec. Il we presenthecking the existence of a complex phase separating or-
the model, recalling the features of SC and giving a briefdered from chaotic motion.
overview of the phenomenology occurring for various values As has already been discussed in R§2§,5,27 a crite-
of the coupling strengtlfour control parameterin Sec. Il rion for distinguishing chaotic from ordered behavior is pro-
we study space-time correlation functions and perfornvided by the scaling properties of the transient duration with
damage-spreading analysis since they both allow us to iderthe chain length, starting from random initial conditions. No-
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FIG. 2. Average transient timeT,(L)) (a) and average period
(To(L)) (b) versuse. Both averages are performed over 200 ran-
dom initial conditions. Solid and dashed curves refer to a chain
lengthL =50, 40, respectively.

A global picture of the average transient tigiE (L)) is
FIG. 1. Four space-time patterns generated by the coupled-maghown in Fig. 2a) for different values ot. The strong varia-
lattice (1) for different values of the coupling constasat In all tions in the order of magnitude dfT,(L)) do confirm the
cases, time flows downwards and the patterns, @00 wide, are  vjsual impression of an irregular alternancy of ordered and
extracted from the evolution of a 3000-site lattice with the samechaotic regimes_ This is further strengthened by the Compari-
randomly chosen initial condition. Caé®) displays an ordered re- gon between the solid and the dashed cureesresponding
gime fore=0.2998; the more complex pattern(io) is obtained for  tg | =50 and 40, respectively that single out the chaotic
£=0.3004; (c) displays quasiordered pattern generated #or regions as those where the solid curve is consistently above
=0.3005; a totally disordered regime is shown (d) for & the dashed one.
=0.304. Before discussing the various approaches used for inves-
tigating the transition region, let us comment about another
tice that this approach is the same adopted in the charactesispect of the evolution of finite chains: the peribg(L) of
ization of the order-to-chaos transition occurring, for in-the asymptotic state. In principl&,(L)<T.(L); in practice,
stance, in neural network®8]. The transient duration is T,(L) can be much shorter, as seen in Figh)2where the
defined as the number of iterations necessary to observe tlawerage periodT,(L)) is reported versus, showing strong

first recurrence fluctuations, while it may remain rather “short” deeply in-
side the chaotic regions. It is worth stressing that this phe-
T, (L)=min{t|d({x}; {x},) < 8, 7<t}, (3) nomenology is completely different from that observed in

neural networks, where the chaotic phase is characterized
where d({x}.{x}.) is the distance between the configura- 2SO by periods as long as transiefig]. Nonetheless, in
model (1), one observes an accumulation of longer and

tions at timet and 7, respectively, computed using someI iods wh i tion i hed f th
specific norm(here we considered the maximum ngrrll “onger pe,:,rlo_ S when any transition IS approached from the
ordered” side.

the conclusions hereafter reported are independent of the a
tual value of the paramete;, provided it is small enough&
has been fixed to I¢ in all our simulations As was al-
ready noticed in Ref5], the chaotic regime can be identified  Direct inspection of Fig. 2 shows that the widest chaotic
by the exponential growth with of (T,(L)), where the region is approximately located in the intervad
averagd ) is performed over the ensemble of random initial €[0.3, 0.4. Incidentally, it is in this region that the first
conditions. evidence of SC was found in this model for1/3 (see Ref.

Ill. CHARACTERIZATION OF THE PHASE TRANSITION
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[5]). For this reason we have chosen to point our attention to L L B
the parameter region close ¢6=0.3. Transient analysis and
spatiotemporal patterns obtained from the simulations give

clear evidence that, sufficiently belol@bove £=0.3, there

is a whole range of values, where frozen disordéhaotic

dynamicg takes place. In other words, we are in the presence <)
of a phase transition between different dynamical regimes. In o
what follows we shall characterize it by analyzing the behav-

ior of some observables, aiming also to identify an order
parameter. More precisely, in the first subsection, we discuss

the properties of the spatiotemporal correlation functions,
finding that only the CP displays a temporal decay to zero. In

the second subsection, we study the propagation of initially j

localized perturbationsdamage-spreading analysishat is

found to drop to zero |n the FDP. A Careful appllcat|on Of the FIG. 3. Spatlal correlation fUnCtlm’S) for different values ok:
above tools has consistently revealed that there is not &2998(full line), 0.3005(dashed ling 0.3040(dot-dashed line
single threshold separating the two phases, but rather All th_e_ curves are _obtalned by averaging over 500 random initial
whole “fuzzy” region & e [0.3,0.3003, where periodic and ¢onditions and 1otime steps.

chaotic behaviors alternate in an apparently irregular manner. . ld tow latii . Fi indicat
We believe that the peculiarity of this transition should penential decay over a few lattice unitsee Fig. 3, indicating

attributed not only to the deterministic nature of the modelthat: Presumably, spatial long-range order does not occur at

(as in the case of STIbut also to the specific absence of athe transition. This is compatible with the qualitative picture
local source of chaoé suggested by the patterns, which all present spatial disorder.

This behavior makes doubtful the perspective of considering
the present phase transition as a nonequilibrium critical phe-
nomenon.

Space-time correlation functions are common tools for The evolution of modell) can be characterized by the
describing the statistical properties of the motion in spatiallybehavior of the temporal correlation function
extended systems. In fact, they provide a first quantitative
criterion apt to classify the various regimes observed in the Cr(7) = (X ()X (t+ 7)) — (X ())F . (6)
dynamics of mode(1). In particular, they allow one to check ) o . ]
whether the phase transition can be associated with the aff? order to improve the statistics, in the numerical simula-

A. Correlation functions

pearance of spatial long-range order. tions we have also performed an average over lattice sites
The spatiotemporal correlation function is defined as ~ Separated by a distance larger than the spatial correlation
length.
C(i,jt, 1) = (X (D)X 4 (t+ ))—(Xi(1))?, 4) At variance withCg(j), C1(7) shows a very sensitive

dependence oa, especially when approaching the fuzzy re-
where the averag¢ ) is performed over initial conditions gion, thus confirming the existence of different phases in the
made of independent, identically and uniformly distributedevolution of the system. The scenario can be summarized as
random variables;(0). follows. In the whole range of values that we have consid-

In view of the periodic boundary conditions and becauseered, C+(7) displays period-2 oscillations that appear to
of the translational invariance of the initial conditions, originate from the abundancy of stable period-2 orbits. dor
C(i,j;t,7) does not depend on Conversely, for what con- below the lower “threshold”e,(1)=0.3, Ct(7) does not
cerns the dependence tyrthere is no reasoa priori foritto  decay[see Fig. 4a)]. This confirms the presence of a well
be irrelevant. On the other hand, if the system approaches d@efined phase, corresponding to a time-periodic but spatially
stationary regime for sufficiently large this dependence is disordered dynamic&DP).
practically negligible. The only case where this does not oc- For values ofs inside the rangde.(1),e+(2)], C+(7)
cur is FDP, when the phase of the time periodicity still playsmay decay either to zero, as in (e below, or towards a
a role. As in the present investigation such a dependence isonzero asymptotic valléig. 4(b)], indicating the presence
not relevant, from here on we drop the dependence¢ on  of (temporal long-range order.

Eq. (4). For e=¢,(2)=0.3005,C+(7) decays to zerdsee, for

Moreover, since numerical simulations show the absencghstance, Fig. @l)]. A good observable for the characteriza-
of traveling structures in the asymptotic configurations, heraion of the transition from CP to FDP is represented by the
we can consider separately the spatial and temporal behavigbrrelation timef as determined from the asymptotic decay

of Eq. (4). of the temporal correlation function,
Upon these remarks, we define the spatial correlation
function as En{C+(7)}~exp(—7/6). W)
Cs(j) =(xi(t)xiﬂ(t))t—(xi(t))f, (50  Infact, # becomes very large as soonsaspproaches.(2)

from above, as can be seen in Table I. In this perspecfive,
where the subscrifitindicates that the average is performedis an appropriate order parameter, being finite in CP and
also over time. Independently ef Cg(j) exhibits an expo- consistently equal tee in the FDP. The delicacy of the nu-
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FIG. 4. Temporal-correlation functions for the same values of
considered in Fig. 1. For the sake of clarity (@ and(c), the points
are not connected by lines. In the ordered regimehe correlation
function does not decay and exhibits essentially period-2 oscilla-|
tions; in the complex patterfb), a slow decay to zero is observed,;
in the ordered regiméc), inside the fuzzy region, period-2 oscilla-
tions coexist with a temporal decay to a finite asymptotic value; in
the chaotic regiorid), period-2 oscillations modulate a much faster
decay than in cas).

C)

merical simulations is such that we cannot say anything
about the possible existence of a critical behavior, when the
upper bordek(2) of the fuzzy region is approached.

B. Damage-spreading analysis

The irregular dynamics observed in our model is pro-
duced by transport rather than by local production of infor-
mation, which is not present in view of a negative maximum
Lyapunov exponent. The similarity with DCA, discussed in
the Introduction, suggests that the main features of this trans-

FIG. 5. Damage-spreading patterns corresponding to the same
values considered in Fig. 1.

port mechanism can be analyzed by studying the propagation xi+6, [i—LI2<S
of finite disturbances. In DCA language, this is the so-called yi=
damage-spreading analydi®5]. In practice, it amounts to X elsewhere,

determine the effects produced on the pattern by localized

perturbations of the initial state. An unbounded growth of theWhere 5~0(1), such that nonlinearities can play an effec-

region affected by the perturbation is usually considered a3e role (the only nonlinearity present in our model is the

an indication of a chaotic evolutidi25]. In fact, this means discontinuity in the map L is the chain length, an8 is the

that disturbances arising at the boundaries can travel UTize of the region where the two configurations are initially
damped through the whole system.

A perturbation can be introduced in the following way. glfferent. Theng@ Is said to bela perturbac\jupn %fl' 'Ik']ypmal .
Let X,={x,.x %} and X,={y,.y v} repre- amage-spreading patterns close to and inside the transition
172y - - - LS 2711 Y20 - el region are shown in Fig. 5. Direct inspection indicates that
sent two initial configurations such that . ) : .
an effective spreading occurs in Csee Fig. &d)].

The transmission rate of information is then measured as
the average velocity of increase of the perturbation size. In
practice this can be defined by making reference to two dif-
ferent quantities{a) the position of the perturbation front;

TABLE |. The correlation timed for variouse values inside the
chaotic phase.

© o and(b) the distance between two configurations. In cage
0.301 (330@:200) one first defines the left and the right fronts of the perturba-
0.302 (313-80) tion
0.304 (160=40)
0.306 (236-40) Fi() =min{1<i<L:|x;(t)—y;(t)|>0},
0.308 (53:10)
0.310 (19-2)

F.(t)=maxX1lsi<L:|x;(t)—y;(t)|>0}. (8)
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FIG. 6. The damage-spreading velocités andVp vs €. The 0 IJ l 0 b N
inset amplifies the fuzzy regidre.(1),&.(2)], where periodic and 0.0 05 10 0.0 05 x 10

chaotic regimes irregularly alternate. . . . .
FIG. 7. Probability density?(x) of the site variable for the same

Insofar as the left-right spatial symmetry is not broken, as ir values considered in Fig. 1.

the present model, the two definitions are equivalent. The . . . .
corresponding front velocity is therefore more than 20 000 iterations. In particular, the transient has

been estimated from the relaxation properties of the en-
(F (1) semble average of the variabbes Moreover, we increased

V= Iim'f. (9) the system size until we found evidence that the velocity
does not depend oh. This means that in some “critical”

) ) ) cases we had to work with lattices of 6000 sites. Finally, the

In case(b) the distanced between two configurations of the gjmyations have been allowed to evolve for a sufficiently

system is given by long time (up to 1@ iterations to accurately determine the

t—o

1L asymptotic behavior.
_ = - It is interesting to note that in those ambiguous cases
D(®) L 21 X0 =iV (10 whereC+(7) was apparently decaying to a finite valuMg

and Vp are strictly zero. This confirms the conjecture that
(notice thaD is a straightforward generalization of the Ham- these are truly ordered regimes.
ming distance usually adopted in the study of DCA behav-
ior). Accordingly, the corresponding average damage-
spreading velocity reads

IV. INFORMATION-THEORETIC ANALYSIS

The different features of the patterns in the fuzzy region
. (D(1)) indi . : S -
Vp=lim ) (11  indicate that the underlying dynamical mechanism is associ
tow L ated to a sequence of structural changes of the phase space.
A proper method for quantifying this scenario amounts to
In both the above definitions,) denotes the average per- studying the probability distribution function of the state
formed over initial conditions. Positive valueséf andVy  variablex;’s,
indicate that any two nearby configurations tend to separate
in time. In this sense, damage-spreading analysis can be con-
sidered analogous to the Lyapunov stability analysis.

In numerical simulations we have averaged over 500 ini-
tial conditions in order to reduce fluctuations. The results
reported in Fig. 6 show tha¥r and Vy are equivalent wherep(xy, ... X_) represents the unknown invariant mea-
modulo a scale factor. This implies that the damage processure generated under the evolution lély. If one assumes
acting inside the propagation cone is uncorrelated with théhat p is defined by averaging over the usual ensemble of
front dynamics. The resulting scenario is the same as the onaitial conditions, then translation invariance is automatically
suggested by the correlation-function analysis: fer ensured and the choice of the non-dummy varidberex;)
<eg(1) [e>e.(2)] bothVE andVy are zeranonzerg. This  is irrelevant. The histograms &f(x), shown in Fig. 7, have
confirms that damage-spreading velocities are reliable orddreen obtained by averaging over 500 initial conditions and
parameters to distinguish between FDP and CP. over the whole time span of the simulatio@bviously, after

Inside the fuzzy regiofe.(1),e.(2)] both zero- and discarding a suitable transignin CP, where the damage-
nonzero-velocity regimes finely alternate without any apparspreading velocities are strictly positiv®,(x) exhibits a
ent regularity. We want to stress that velocity fluctuationspeaked distribution superposed to a continuous component
clearly visible in the inset of Fig. 6 are not an artifact fol- [see, e.g., Fig. (d)]. The peaks are located in correspon-
lowing from either statistical uncertainty or finite-size effect. dence to the values of some space-time periodic orbits,
In fact, the initial conditions have been taken after discardingvhich still turn out to play a role even in the chaotic regime.
a sufficiently long transient, which, in some cases, amount t@elow e,(2) the continuous component is negligible and

1 1
P(x)=f dxl--~f dx p(Xq1, ... X)) 8(X—Xy),
0 0
(12
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sence of a continuous component in the fuzzy region, evenif /& 1™ |
Ve andVp are positive, leaves open the question whether '
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More refined information can be obtained by partitioning log, A log,,A
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thereby computing the entropy
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only the peaked structure surviviese Figs. @-7(c)]. This ﬁ‘v‘! ¢) ; ] TR D,
occurs irrespectively of the velocity, that may be either very & 2 :M PN ,’“ *%\\;\ P
small[case(b)] or strictly zero[case(c)]. The effective ab- o {!lﬁ\%]” \\‘\f“ ; fl“' '|! “‘\j\". f
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FIG. 9. Effective dimensioD, vs log,A for embedding di-
mension E=1,2,3 (solid, dashed, and dot-dashed lines, respec-

__ . _ tively) for different values ok: 0.2998(a), 0.3004(b), 0.3005(c),
S(4) 2.: milnw, (13 53015(c), 0.302(6), and 0.304)
whereu; is the integral ofP(x) over theith subinterval. The _ fl o fl

scaling behavior 0B8(A) yields the information dimension P(Xy, ... Xg) o dXg i1 o dx p(Xg, -+« X0),

(15
Do= lim — % (14  and studying the corresponding fractal dimensions. Notice
a0 INA that for E=1, the above equation reduces to E#2). An
effective study ofP(x;, ... Xg) can be performed by inter-

which is a natural indicator quantifying the strength of thepreting a spatial configuration as a time series and thereby

apparent singularities. In CB, is steadily close to 1, con- applying embedding techniquésee, e.g.[2]). We have ap-

firming that on sufficiently fine scales the distribution is con-Pplied the Grassberger-Procaccia meth@8d] to configura-

tinuous (the distance from 1 is, indeed, not appreciable tions of lengthM = 10°. The technique consists in calculating

the fuzzy transition regior), exhibits irregular oscillations, the correlation integral

while belowe (1) one observes a smooth tip followed by a

sharp decaysee Fig. 8_According|y, in FDPD, cannot bg ME,A)= 2 E O(A—|x—xig), (16)

considered as a meaningful order parameter since the infor- M(M-1) = !

mation dimension can be as large as in CP. Note that the

origin of a strictly positive dimensioD,, even in FDP, Wwhere®(t) is the Heaviside function anf|/g is some norm

stems from the irregular spatial structure irregular alternancyn an E-dimensional space. The estimation of the correlation

of periodic stripes. In fact, when the time evolution of the dimensionD, can be obtained from the asymptotic behavior

coupled-map latticéCML) is periodic, one can imagine ob- of the effective dimension

taining the same invariant measure upon iterating in space

model (1), after imposing periodic boundary conditions in D.(E A :_M 17)

time. In this perspective, one can conjecture that, at variance 2(E.4) JlnA

with the time evolution, the spatial iteration yields a positive

Lyapunov exponent. Accordingl, should be read as the asA—0. The results for different values ef and embed-

fractal dimension of the corresponding strange repeller. Ading dimensiorE=1,2,3 are reported in Fig. 9. At variance

guantitative verification of these ideas, requiring special caravith the previous cases, this analysis reveals two well sepa-

in dealing with the escape rate from the repeller, will berated regimes. Above,=0.301,D, increases with the em-

performed elsewhere. bedding dimensiofiplease notice that the apparent decrease
Nonetheless, we have refined our analysis by projectingf the effective dimension observed in FiggePand 4f) at

the invariant measurg onto higher-dimensional spaces, small distances is an artifact following from a lack of suffi-



57 FUZZY TRANSITION REGION IN A ONE- ... 2711

cient statisticy while, below ey, the fractal dimension is periodic and chaotic evolution in the fuzzy region and yet
independent ofE [see Figs. @)—9(d)], irrespective of reveals that CP is qualitatively different from FDP. In fact, it
whether the evolution is actually periodic or chaotic. Thisis only inside CP that we have found fractal dimensions defi-
means that, in FDP, the invariant measure has a finite fractalitely larger than 1: this suggests that the chaotic evolution
dimension, which can be determined alreadyBer 1. This  observed in the fuzzy region is of a different type from the
is not so surprising as long as the temporal evolution is peevolution appearing inside CP. Does this mean that we are in
riodic; it is less obvious that the same behavior of the fractathe presence of even more than two phases?
dimension is found for the aperiodic regimes occurring in- It is very tempting to interpret the fuzzy region as evi-
side the fuzzy region. Another question that is left open bydence of the complex behavior conjectured to exist at the
the simulations is the actual dimension of the invariant meaedge of chaos, at least in the context of deterministic cellular
sure deeply inside CP: it is not clear whether the dimensiomutomata. In the past, this question has been approached in
is finite although very large, or if it is infinite as in standard two different ways:(i) by sampling the space of DCA rules
space-time chaos. Unfortunately, at present there are no theith a suitable metarulée.g., the so-called genetic algo-
oretical arguments that can help clarify this question: in partithms); (i) by suitably parametrizing the DCA and thereby
ticular, we cannot resort to the Kaplan-Yorke conjecture forstudying the resulting sequence of behaviors. Here we are
concluding that the dimension should be proportional to thehot primarily concerned with the former approach that we
system size and thus infinite in the thermodynamic limit. have mentioned mainly for the sake of completeness. We
limit ourselves to noting that it is related to the idea that life
V. CONCLUSIONS AND PERSPECTIVES is a process driving éiological system to this edge, which
) is the only place where it is conjectured that computational
A peculiar dynamical transition between a perio#®P)  tasks can be performed.
and a chaotic phaseCP) has been identified in a one-  |n the framework of the latter approach, we should men-
dimensional Lyapunov-stable CML model. Both the correla-tjon that a similar scenario has been observed and described
tion time 6 of C;(7) and the damage-spreading velocitiesin [20], while discussing various DCA approximations of
(Ve, Vp) allow one to clearly distinguish between the two spatiotemporal intermittency, but there it was only observed
phases: FDP is characterized by zero-velocity and long-rangey finite approximations, but it disappears in the continuous
time correlations, while a finit¥ and an exponential decay |imit. In [16] too, a blurred transition region has been iden-
of the correlations are observed in CP. Both indicators revealfied while studying the behavior of a large ensemble of
the existence of a finite transition region where either peripCAs, but one cannot exclude that the fuzziness is a conse-
odic or chaotic evolution arises, depending on the controfjuence of the parametrization introducedihocto study the
parameter. This scenario is vaguely reminiscent of the altefransition from periodic to chaotic rules. Apparently, it is
nancy of periodic windows and chaotic regimes in low-only in the context of stable chaos that this phase transition
dimensional systems such as the logistic map. However, he@nserves a nonstandard character and yet can be meaning-
the “bifurcation” diagram must be more complex in view of fully investigated. However, a more complete characteriza-
the (infinitely) many periodic dynamics that can be found tion of the various regimes is still required before drawing
along the lattice for a given parameter value. Accordingly, itdefinite conclusions. For the time being, we limit ourselves
is not even clear whether finite periodic windows must al-to conjecture that the absence of local sources of randomness
ways exist. In any case, numerical analysis alone cannot reeijther due to stochastic terms or to deterministic chaoat
veal whether infinitely many transition points are to be foundthe root of this complex scenario.
in the fuzzy region.
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