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Fuzzy transition region in a one-dimensional coupled-stable-map lattice
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A coupled-map lattice showing complex behavior in the presence of a fully negative Lyapunov spectrum is
considered. A dynamical phase transition from ‘‘frozen’’ disorder to chaoticlike evolution upon changing
diffusive coupling is studied in detail. Various indicators provide a coherent description of the scenario: the
existence of a finite transition region characterized by an irregular alternancy of periodic and chaotic evolution.
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I. INTRODUCTION

Very often the approach to space-time chaos in spati
extended systems is based on the extension of concepts
tools developed for finite-~low-! dimensional systems. Fo
instance, dynamical indicators such as the Kaplan-Yorke
mension and the Kolmogorov-Sinai entropy@1# have been
turned into the corresponding intensive indicators, i.e.,
mension and entropydensities@2#. This strategy is essen
tially motivated by the hypothesis that the dynamics of c
otic extended systems can be viewed as that of many, alm
independent, finite-dimensional subsystems. Although
existence of a limit Lyapunov spectrum@3# provides strong
support for such an idea, it is still rather unclear in whi
sense the evolution of different pieces of, say, a chain
maps is truly uncorrelated.

Even more important is the observation that the infin
dimensionality of the phase space can give rise to enti
new features the understanding of which requires differ
tools and perhaps will open new perspectives. One such
ample that will be thoroughly studied in the present pape
the occurrence of chaotic evolution in the presence of a ne
tive maximum Lyapunov exponent. This is indeed a ph
nomenon that can exist only in an infinite-dimensional ph
space, as can be shown with a simple argument based
reductio ad absurdum. An aperiodic evolution requires tha
the limit set of a generic trajectory contains infinitely ma
points. If the evolution is confined to a bounded region, th
must be at least one accumulation point. Now, since a s
ciently small box centered around any accumulation po
contracts in all directions~the maximum Lyapunov exponen
being negative!, all trajectories in the vicinity of the accumu
lation point are asymptotically indistinguishable and the
can be at most a periodic cycle. This argument breaks d
if we have to consider an infinite-dimensional phase spa
since in this case the limit set can well be made of infinit
many points, all within a bounded region and yet a fin
distance from one another. The above is not only a theo
ical possibility, but a feature actually observed in seve
models such as coupled maps@4–6# and oscillators@7#, al-
though no detailed explanation of the underlying mec
nisms has yet been provided. What is most striking about
571063-651X/98/57~3!/2703~10!/$15.00
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phenomenon is the empirical evidence that the evolution
large enough systems appears to be irregular and statio
in time, so that it makes sense to speak of a ‘‘Lyapun
stable’’ chaotic regime. In the following, we shall use th
shorthand notationstable chaos~SC! to identify this type of
behavior.

In a previous paper it has been shown that SC is a rob
phenomenon in the sense that it persists in finite region
the parameter space@5# and it survives even if the disconti
nuities in the dynamical equations are removed@8,9#. Also
the discreteness of the time variable does not seem to
severe limitation as SC has been observed also in a cha
coupled Duffing oscillators@7#. The only true limitation
seems to be the need for a synchronous external forcin
the oscillators.

SC can be partly understood by unveiling the analo
with actual simulations of chaotic maps on digital compute
Any computer has a finite accuracy which is determined
the number of bits used in the internal representation o
real number. As a consequence, even a chaotic map so
or later must yield a periodic orbit. This apparent limitatio
has not prevented an effective use of digital computers in
study of deterministic chaos. In fact, if the computer word
sufficiently long, the time required for observing the collap
onto a periodic cycle is so long that this ‘‘transient’’ regim
is almost indistinguishable from the truly stationary regim
of the chaotic map. If one substitutes the length of the co
puter word with the spatial length of a SC system, we c
rephrase the above arguments and thus provide indirect
port for the existence of a stationary chaotic regime in in
nitely extended systems. However, it is honest to recogn
that in the case of deterministic chaos there exists a w
developed theory@1# which, starting from Smale horsesho
and Anosov systems, predicts the occurrence of irregular
havior in mappings over the real numbers. In this case, on
faced only with the problem of explaining why an actu
simulation reproduces almost exactly the theoretical exp
tations. Conversely, for what concerns SC, there is ma
numerical evidence and no theory stating that under so
specific circumstances one can expect a chaotic evolutio
an infinitely extended system. The only pieces of a the
can be constructed at the expense of a further simplifica
2703 © 1998 The American Physical Society
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2704 57F. CECCONI, R. LIVI, AND A. POLITI
which is, however, very enlightening. If one discretizes t
continuous state variable in a chain of maps, it is very natu
to invoke an analogy with deterministic cellular automa
~DCA!. In fact, DCAs too can exhibit chaotic behavior on
in the infinite-size limit, the finiteness of the number of po
sible states (2L for binary automata! necessarily implying the
eventual convergence to some periodic orbit. The corresp
dence between chaotic DCAs and SC can be put on m
rigorous ground by first encoding the patterns originated b
SC regime and then trying to reproduce them by some DC
with a suitable range of interaction. The first step is noth
but an implicit statement regarding the existence of a ge
ating partition. The work done in low-dimensional system
has shown that rather coarse partitions can be constru
which reproduce the dynamics of chaotic maps without l
of information@10,11#. Thus we do not expect this step to b
particularly harmful in the context of SC, the only possib
problem being the actual construction of a generating pa
tion in specific cases.

The second step is not obvious at all, since it is not kno
to what extent a pattern with no local production of inform
tion can be reduced to a DCA. Let us start the discussio
this issue by recalling that low-dimensional chaotic syste
such as the He`non map, are equivalent to probabilistic a
tomata, where the probability of the next symbol effective
depends on some previous symbols~their number corre-
sponding to the order of the Markov process!. The probabi-
listic character of the automaton is intrinsically related to
existence of an expanding direction and to the correspon
amplification of uncertainty. The coupling of chaotic map
as it occurs in spatially extended systems, leads naturall
probabilisticcellular automata: the probability of a symbo
in a given place at a given time depends not only on the p
symbols in the same site as in the previous case, but als
the past symbols in the neighboring sites.

In the case of SC, there is no local amplification of u
certainty, so that it is tempting to conjecture that the futu
symbol is exactly determined, once the past history of
previous symbols is known. This hypothesis has alre
been tested in several cases, finding that it would be m
appropriate to state that it is the whole new configuration
be predicted with almost no uncertainty. However, in so
cases, it has been found that a DCA with a long enou
space-time memory suffices to reproduce exactly the
served pattern, while in other cases, the uncertainty of e
forecasted symbol decreases and presumably goes to
only in the limit of an infinite range of interaction@7#. There-
fore, it is definitely reasonable to affirm that DCAs repres
a subclass of SC systems and what is known about DC
can be automatically translated into the language of
Leaving aside the question of whether SC encompasses s
type of behavior absent in DCAs@12,13,7#, here we want to
stress the important advantage of SC over DCA: the e
tence of a tunable continuous control parameter. Such a
sibility is particularly appealing in view of the conjecture
existence of ‘‘complex’’ behavior at the edge of chaos@14#.
In fact, it has been suggested that a true richness of beha
is observed whenever the underlying rule of a DCA is
some sense halfway between ordered and chaotic ru
However, testing of the above idea requires a parametr
tion of all the rules and it is not obviousa priori what num-
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ber of parameters must or can be used: there are infin
many ways to construct automata upon increasing either
interaction range or the number of symbols. According
some shortcut is attempted in the hope of catching the m
features of the organization of all rules in the space of DC
The most common approach consists in classifying DC
according to the so-called activity parameter, i.e., the fr
tion of local configurations that are mapped onto the sa
specific symbol~see, e.g.,@14–16#!; a more refined classifi-
cation has been proposed by determining several param
which result from various Markov approximation schem
@17#. However, both approaches suffer the same problem~i!
a continuous tuning of the parameters requires dealing w
an infinite number of rules and this can be done in infinite
many ways which,a priori, are not equivalent. Moreover, in
the former case it is not even clear that different DCAs ch
acterized by the same parameter do behave in the same
ner, i.e., that the parametrization is meaningful. In the c
text of SC, continuous parameters are naturally present in
original model, thus allowing one to study the very sam
question in a natural and unambiguous way.

In fact, the question of how we pass from a periodic to
chaotic regime in SC systems is perfectly legitimate, as
vealed by simulations performed for different choices of t
control parameter which show both chaotic and periodic e
lution. Accordingly, one can hope to shed light on the tra
sition between these two regimes: is that a standard ther
dynamic phase transition, or do we find the signature
‘‘complexity’’? Or is it even as simple as a ‘‘bifurcation’’?

The order-to-chaos transition suggests also a compar
with standard space-time intermittency~STI! occurring in
chaotic systems@18#. The latter phenomenon has been sho
to be strictly related to directed percolation transition.A pos-
teriori, this is not very surprising since, on the one hand
locally chaotic evolution is reminiscent of probabilistic ce
lular automata~see above!, while the ordered dynamical con
figuration can play the role of an absorbing state. Howev
the analogy has been shown not to be a complete equ
lence between the two phenomena, since finite regions c
acterized by chaotic behavior cannot be assimilated to t
stochastic domains. A reminiscence of the alternancy
regular and irregular behaviors—typical of low-dimension
systems—indeed survives, leading to a more ‘‘exotic’’ ev
lution on the ordered side of the phase transition@19#. Now,
an order-to-chaos transition occurring in a SC system sho
exhibit even more striking deviations from a percolati
transition, basically because any finite ‘‘chaotic domain
cannot be chaotic at all. This is a first indication that t
transition cannot be a ‘‘simple’’ equilibrium phase transitio
as the studies described in this paper will confirm. Howev
the link with STI is more subtle than one could naively thin
It was already shown that STI can be effectively describ
by a sequence of DCA constructed by suitable discretiza
of the local dynamics@20#. In fact, any DCA can be seen a
a stepwise map: the smaller is the separation between
secutive steps, the more accurate is the reproduction of
dynamics. Upon changing the control parameter, one pa
discontinuously from one to another rule. Thus, for any fin
resolution, in a finite number of steps~changes of rule!, one
passes from ordered to chaotic behavior: no truly continu
parametrization is recovered unless the limit of infinite
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57 2705FUZZY TRANSITION REGION IN A ONE- . . .
many symbols is taken, i.e., the continuous nature of
local variable is restored. However, given any stepwise r
resentation of the local dynamics, one could proceed i
different manner, tilting each of the steps of the local fun
tion. In this way, the continuous nature of the variable
immediately restored and if the slopes of the various st
are not too large, the maximum Lyapunov exponent
bounded to be negative. Qualitatively speaking, we have
same phenomenon as in STI, a transition from ordered
chaotic behavior. Quantitatively, in this paper we conject
that a ‘‘complex’’ region is expected to arise in parame
space of SC systems.

Finally, it is worth mentioning another similar transitio
extensively studied in the context of neural and Kauffm
networks@21#. There, the state variable is discrete~typically
binary! and the evolution rule is entirely deterministic e
actly as for DCAs. At variance with DCAs, there are~i!
quenched disorder: the updating rule operating in a given
~synapsis! is randomly chosen; and~ii ! lack of topology:
each cell interacts~is connected! with a randomly chosen se
of other cells. In such a context, it has been found that u
decreasing, e.g., the correlation between synaptic coupl
~a continuous parameter in the thermodynamic limit!, a tran-
sition occurs from a chaotic regime to frozen patterns. T
transition appears to be a ‘‘standard’’ continuous order-
chaos transition located at a specific value of the con
parameter. Within the paradigm of a meaningful complex
occurring at the edge of chaos, it has been conjectured
the most meaningful choice of the parameters for the n
work to be a realistic model of either gene regulation
neural activity is close to criticality@22#.

Here, we investigate a similar order-to-chaos transit
occurring in a one-dimensional~1D! lattice of stable maps
Upon varying a control parameter, the system passes fro
frozen disorder phase~FDP!, characterized by a time
periodic but spatially disordered evolution, to a chaotic ph
~CP!. The main difference with the behavior of neural ne
works is that, here, the frozen patterns arise spontaneo
notwithstanding the absence of any disorder in the upda
rule. The most important result of our investigations is th
the transition region is rather intricate, consisting of an
regular alternancy of periodic and chaotic evolutions.

A somehow similar phenomenon has already been inv
tigated in a 2D lattice of stable maps, finding corresponde
with a nonequilibrium transition from weak to strong turb
lence@23#. In such a case, it has been possible to reprod
the key features of the entire phenomenon by means
suitable stochastic equation@24#. We suspect that such
transition is indeed close to a true stochastic process si
even in the most ordered~weak turbulence! regime, there are
infinitely long interfaces which, in spite of the local stabilit
can be characterized by a pseudorandom evolution. In fa
is the infinite dimensionality of the phase space that ma
possible the generation of an irregular behavior over an i
nite time lag.

This paper is arranged as follows. In Sec. II we pres
the model, recalling the features of SC and giving a br
overview of the phenomenology occurring for various valu
of the coupling strength~our control parameter!. In Sec. III
we study space-time correlation functions and perfo
damage-spreading analysis since they both allow us to id
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tify a proper order parameter for the transition. In Sec. I
information-theoretic concepts are introduced for a supp
mentary investigation. Section V is finally devoted to discu
sions and conclusions.

II. A MODEL OF STABLE CHAOS

The dynamical system considered in this paper is a o
dimensional lattice of diffusively coupled maps

xi~ t11!5~122«! f „xi~ t !…1«@ f „xi 21~ t !…1 f „xi 11~ t !…#,
~1!

where «P@0,1/2# is the coupling constant and period
boundary conditions are assumed over a lengthL. The local
mapping has the form

f ~x!5H bx, 0,x,1/b

a1c~x21/b!, 1/b,x,1.
~2!

One can easily realize that this mapping can yield sta
periodic dynamics for sufficiently small values ofc. In what
follows, we fix the set of parameter values$a50.07,b
52.70,c50.10% in such a way that, for any initial condition
xÞ0, the attractor of the local mapping is a stable period
orbit.

It is worth stressing that the stability of local dynamics~2!
implies the stability of map~1!, whose maximum Lyapunov
exponent turns out to be negative for any value of«. As a
consequence, the long-time evolution of the diffusive
coupled system is confined to a periodic attractor. Des
this constraint, we are going to show that very different d
namical regimes can be observed, depending on the coup
«.

A space-time representation of the evolution can be
tained by encoding the variablex with suitable gray levels.
Some typical patterns of the different regimes are reporte
Fig. 1. In some cases@see, e.g., Figs. 1~a! and 1~c!#, the
resulting pattern is basically a random arrangement of dif
ent ‘‘stripes,’’ each stripe corresponding to a periodic d
namics~frozen disorder!; in other cases, there is no eviden
of either spatial or temporal order@see, e.g., Figs. 1~b! and
1~d!#.

The global properties of a given pattern are governed
the behavior of the domain walls separating different tim
periodic phases: if the domain walls do not move, then i
natural to expect a random arrangement of variable-size
riodic regions. Alternatively, one may have a ‘‘gas’’ of do
main walls moving with different velocities and giving ris
to a chaotic evolution. The mutual scattering rules betwe
different domain walls thereby determine the properties
the chaotic phase. Even the reader vaguely acquainted
the dynamics of DCA should have recognized in the abo
sketched regimes the various classes of such models@25#.
Therefore it is definitely tempting to use model~1! for
checking the existence of a complex phase separating
dered from chaotic motion.

As has already been discussed in Refs.@26,5,27# a crite-
rion for distinguishing chaotic from ordered behavior is pr
vided by the scaling properties of the transient duration w
the chain length, starting from random initial conditions. N
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2706 57F. CECCONI, R. LIVI, AND A. POLITI
tice that this approach is the same adopted in the chara
ization of the order-to-chaos transition occurring, for i
stance, in neural networks@28#. The transient duration is
defined as the number of iterations necessary to observe
first recurrence,

Tr~L !5min$tud~$x% t ,$x%t!,d,t,t%, ~3!

where d($x% t ,$x%t) is the distance between the configur
tions at time t and t, respectively, computed using som
specific norm~here we considered the maximum norm!. All
the conclusions hereafter reported are independent of the
tual value of the parameterd, provided it is small enough (d
has been fixed to 1024 in all our simulations!. As was al-
ready noticed in Ref.@5#, the chaotic regime can be identifie
by the exponential growth withL of ^Tr(L)&, where the
averagê & is performed over the ensemble of random init
conditions.

FIG. 1. Four space-time patterns generated by the coupled-
lattice ~1! for different values of the coupling constant«. In all
cases, time flows downwards and the patterns, 2003 300 wide, are
extracted from the evolution of a 3000-site lattice with the sa
randomly chosen initial condition. Case~a! displays an ordered re
gime for«50.2998; the more complex pattern in~b! is obtained for
«50.3004; ~c! displays quasiordered pattern generated for«
50.3005; a totally disordered regime is shown in~d! for «
50.304.
er-

the

c-

l

A global picture of the average transient time^Tr(L)& is
shown in Fig. 2~a! for different values of«. The strong varia-
tions in the order of magnitude of^Tr(L)& do confirm the
visual impression of an irregular alternancy of ordered a
chaotic regimes. This is further strengthened by the comp
son between the solid and the dashed curves~corresponding
to L550 and 40, respectively!, that single out the chaotic
regions as those where the solid curve is consistently ab
the dashed one.

Before discussing the various approaches used for in
tigating the transition region, let us comment about anot
aspect of the evolution of finite chains: the periodTp(L) of
the asymptotic state. In principle,Tp(L),Tr(L); in practice,
Tp(L) can be much shorter, as seen in Fig. 2~b!, where the
average period̂Tp(L)& is reported versus«, showing strong
fluctuations, while it may remain rather ‘‘short’’ deeply in
side the chaotic regions. It is worth stressing that this p
nomenology is completely different from that observed
neural networks, where the chaotic phase is character
also by periods as long as transients@28#. Nonetheless, in
model ~1!, one observes an accumulation of longer a
longer periods when any transition is approached from
‘‘ordered’’ side.

III. CHARACTERIZATION OF THE PHASE TRANSITION

Direct inspection of Fig. 2 shows that the widest chao
region is approximately located in the interval«
P@0.3 , 0.4#. Incidentally, it is in this region that the firs
evidence of SC was found in this model for«51/3 ~see Ref.

ap

e

FIG. 2. Average transient timêTr(L)& ~a! and average period
^Tp(L)& ~b! versus«. Both averages are performed over 200 ra
dom initial conditions. Solid and dashed curves refer to a ch
lengthL550, 40, respectively.
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57 2707FUZZY TRANSITION REGION IN A ONE- . . .
@5#!. For this reason we have chosen to point our attentio
the parameter region close to«50.3. Transient analysis an
spatiotemporal patterns obtained from the simulations g
clear evidence that, sufficiently below~above! «50.3, there
is a whole range of« values, where frozen disorder~chaotic
dynamics! takes place. In other words, we are in the prese
of a phase transition between different dynamical regimes
what follows we shall characterize it by analyzing the beh
ior of some observables, aiming also to identify an ord
parameter. More precisely, in the first subsection, we disc
the properties of the spatiotemporal correlation functio
finding that only the CP displays a temporal decay to zero
the second subsection, we study the propagation of initi
localized perturbations~damage-spreading analysis!, that is
found to drop to zero in the FDP. A careful application of t
above tools has consistently revealed that there is no
single threshold separating the two phases, but rathe
whole ‘‘fuzzy’’ region «P@0.3,0.3005#, where periodic and
chaotic behaviors alternate in an apparently irregular man

We believe that the peculiarity of this transition should
attributed not only to the deterministic nature of the mo
~as in the case of STI!, but also to the specific absence of
local source of chaos.

A. Correlation functions

Space-time correlation functions are common tools
describing the statistical properties of the motion in spatia
extended systems. In fact, they provide a first quantita
criterion apt to classify the various regimes observed in
dynamics of model~1!. In particular, they allow one to chec
whether the phase transition can be associated with the
pearance of spatial long-range order.

The spatiotemporal correlation function is defined as

C~ i , j ;t,t!5^xi~ t !xi 1 j~ t1t!& t2^xi~ t !&2, ~4!

where the averagê & is performed over initial conditions
made of independent, identically and uniformly distribut
random variablesxi(0).

In view of the periodic boundary conditions and becau
of the translational invariance of the initial condition
C( i , j ;t,t) does not depend oni . Conversely, for what con
cerns the dependence ont, there is no reasona priori for it to
be irrelevant. On the other hand, if the system approach
stationary regime for sufficiently larget, this dependence is
practically negligible. The only case where this does not
cur is FDP, when the phase of the time periodicity still pla
a role. As in the present investigation such a dependenc
not relevant, from here on we drop the dependence ont in
Eq. ~4!.

Moreover, since numerical simulations show the abse
of traveling structures in the asymptotic configurations, h
we can consider separately the spatial and temporal beha
of Eq. ~4!.

Upon these remarks, we define the spatial correla
function as

CS~ j !5^xi~ t !xi 1 j~ t !& t2^xi~ t !& t
2 , ~5!

where the subscriptt indicates that the average is perform
also over time. Independently of«, CS( j ) exhibits an expo-
to
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nential decay over a few lattice units~see Fig. 3!, indicating
that, presumably, spatial long-range order does not occu
the transition. This is compatible with the qualitative pictu
suggested by the patterns, which all present spatial disor
This behavior makes doubtful the perspective of consider
the present phase transition as a nonequilibrium critical p
nomenon.

The evolution of model~1! can be characterized by th
behavior of the temporal correlation function

CT~t!5^xi~ t !xi~ t1t!& t2^xi~ t !& t
2 . ~6!

In order to improve the statistics, in the numerical simu
tions we have also performed an average over lattice s
separated by a distance larger than the spatial correla
length.

At variance with CS( j ), CT(t) shows a very sensitive
dependence on«, especially when approaching the fuzzy r
gion, thus confirming the existence of different phases in
evolution of the system. The scenario can be summarize
follows. In the whole range of« values that we have consid
ered, CT(t) displays period-2 oscillations that appear
originate from the abundancy of stable period-2 orbits. Fo«
below the lower ‘‘threshold’’«c(1)50.3, CT(t) does not
decay@see Fig. 4~a!#. This confirms the presence of a we
defined phase, corresponding to a time-periodic but spati
disordered dynamics~FDP!.

For values of« inside the range@«c(1),«c(2)#, CT(t)
may decay either to zero, as in CP~see below!, or towards a
nonzero asymptotic value@Fig. 4~b!#, indicating the presence
of ~temporal! long-range order.

For «>«c(2)50.3005, CT(t) decays to zero@see, for
instance, Fig. 4~d!#. A good observable for the characteriz
tion of the transition from CP to FDP is represented by
correlation timeu as determined from the asymptotic dec
of the temporal correlation function,

Env$CT~t!%;exp~2t/u!. ~7!

In fact, u becomes very large as soon as« approaches«c(2)
from above, as can be seen in Table I. In this perspectivu
is an appropriate order parameter, being finite in CP a
consistently equal tò in the FDP. The delicacy of the nu

FIG. 3. Spatial correlation function~5! for different values of«:
0.2998 ~full line!, 0.3005~dashed line!, 0.3040~dot-dashed line!.
All the curves are obtained by averaging over 500 random ini
conditions and 105 time steps.
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2708 57F. CECCONI, R. LIVI, AND A. POLITI
merical simulations is such that we cannot say anyth
about the possible existence of a critical behavior, when
upper border«c(2) of the fuzzy region is approached.

B. Damage-spreading analysis

The irregular dynamics observed in our model is p
duced by transport rather than by local production of inf
mation, which is not present in view of a negative maximu
Lyapunov exponent. The similarity with DCA, discussed
the Introduction, suggests that the main features of this tra
port mechanism can be analyzed by studying the propaga
of finite disturbances. In DCA language, this is the so-cal
damage-spreading analysis@25#. In practice, it amounts to
determine the effects produced on the pattern by locali
perturbations of the initial state. An unbounded growth of
region affected by the perturbation is usually considered
an indication of a chaotic evolution@25#. In fact, this means
that disturbances arising at the boundaries can travel
damped through the whole system.

A perturbation can be introduced in the following wa
Let X15$x1 ,x2 , . . . ,xL% and X25$y1 ,y2 , . . . ,yL% repre-
sent two initial configurations such that

FIG. 4. Temporal-correlation functions for the same values o«
considered in Fig. 1. For the sake of clarity, in~a! and~c!, the points
are not connected by lines. In the ordered regime~a! the correlation
function does not decay and exhibits essentially period-2 osc
tions; in the complex pattern~b!, a slow decay to zero is observe
in the ordered regime~c!, inside the fuzzy region, period-2 oscilla
tions coexist with a temporal decay to a finite asymptotic value
the chaotic region~d!, period-2 oscillations modulate a much fast
decay than in case~b!.

TABLE I. The correlation timeu for various« values inside the
chaotic phase.

« u

0.301 (33006200)
0.302 (310680)
0.304 (160640)
0.306 (230640)
0.308 (53610)
0.310 (1962)
g
e

-
-

s-
on
d

d
e
s

n-

yi5H xi1d i , u i 2L/2u<S

xi elsewhere,

whered i;O(1), such that nonlinearities can play an effe
tive role ~the only nonlinearity present in our model is th
discontinuity in the map!; L is the chain length, andS is the
size of the region where the two configurations are initia
different. Then,X2 is said to be a perturbation ofX1. Typical
damage-spreading patterns close to and inside the trans
region are shown in Fig. 5. Direct inspection indicates t
an effective spreading occurs in CP@see Fig. 5~d!#.

The transmission rate of information is then measured
the average velocity of increase of the perturbation size
practice this can be defined by making reference to two
ferent quantities:~a! the position of the perturbation front
and ~b! the distance between two configurations. In case~a!
one first defines the left and the right fronts of the pertur
tion

Fl~ t !5min$1< i<L:uxi~ t !2yi~ t !u.0%,

Fr~ t !5max$1< i<L:uxi~ t !2yi~ t !u.0%. ~8!

-

n

FIG. 5. Damage-spreading patterns corresponding to the sam«
values considered in Fig. 1.
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Insofar as the left-right spatial symmetry is not broken, as
the present model, the two definitions are equivalent. T
corresponding front velocity is therefore

VF5 lim
t→`

^Fl ,r~ t !&
t

. ~9!

In case~b! the distanceD between two configurations of th
system is given by

D~ t !5
1

L (
i 51

L

uxi~ t !2yi~ t !u ~10!

~notice thatD is a straightforward generalization of the Ham
ming distance usually adopted in the study of DCA beh
ior!. Accordingly, the corresponding average dama
spreading velocity reads

VD5 lim
t→`

^D~ t !&
t

. ~11!

In both the above definitions,̂ & denotes the average pe
formed over initial conditions. Positive values ofVF andVD
indicate that any two nearby configurations tend to sepa
in time. In this sense, damage-spreading analysis can be
sidered analogous to the Lyapunov stability analysis.

In numerical simulations we have averaged over 500
tial conditions in order to reduce fluctuations. The resu
reported in Fig. 6 show thatVF and VD are equivalent
modulo a scale factor. This implies that the damage proc
acting inside the propagation cone is uncorrelated with
front dynamics. The resulting scenario is the same as the
suggested by the correlation-function analysis: for«
,«c(1) @«.«c(2)# bothVF andVD are zero~nonzero!. This
confirms that damage-spreading velocities are reliable o
parameters to distinguish between FDP and CP.

Inside the fuzzy region@«c(1),«c(2)# both zero- and
nonzero-velocity regimes finely alternate without any app
ent regularity. We want to stress that velocity fluctuatio
clearly visible in the inset of Fig. 6 are not an artifact fo
lowing from either statistical uncertainty or finite-size effe
In fact, the initial conditions have been taken after discard
a sufficiently long transient, which, in some cases, amoun

FIG. 6. The damage-spreading velocitiesVF andVD vs «. The
inset amplifies the fuzzy region@«c(1),«c(2)#, where periodic and
chaotic regimes irregularly alternate.
n
e

-
-

te
n-

i-
s

ss
e
ne

er

r-
s

.
g
to

more than 20 000 iterations. In particular, the transient
been estimated from the relaxation properties of the
semble average of the variablesxi . Moreover, we increased
the system size until we found evidence that the veloc
does not depend onL. This means that in some ‘‘critical’’
cases we had to work with lattices of 6000 sites. Finally,
simulations have been allowed to evolve for a sufficien
long time ~up to 105 iterations! to accurately determine th
asymptotic behavior.

It is interesting to note that in those ambiguous ca
whereCT(t) was apparently decaying to a finite valueVF
and VD are strictly zero. This confirms the conjecture th
these are truly ordered regimes.

IV. INFORMATION-THEORETIC ANALYSIS

The different features of the patterns in the fuzzy reg
indicate that the underlying dynamical mechanism is ass
ated to a sequence of structural changes of the phase s
A proper method for quantifying this scenario amounts
studying the probability distribution function of the sta
variablexi ’s,

P~x!5E
0

1

dx1•••E
0

1

dxLr~x1 , . . . ,xL! d~x2x1!,

~12!

wherer(x1 , . . . ,xL) represents the unknown invariant me
sure generated under the evolution law~1!. If one assumes
that r is defined by averaging over the usual ensemble
initial conditions, then translation invariance is automatica
ensured and the choice of the non-dummy variable~herex1)
is irrelevant. The histograms ofP(x), shown in Fig. 7, have
been obtained by averaging over 500 initial conditions a
over the whole time span of the simulations~obviously, after
discarding a suitable transient!. In CP, where the damage
spreading velocities are strictly positive,P(x) exhibits a
peaked distribution superposed to a continuous compo
@see, e.g., Fig. 7~d!#. The peaks are located in correspo
dence to the values of some space-time periodic orb
which still turn out to play a role even in the chaotic regim
Below «c(2) the continuous component is negligible a

FIG. 7. Probability densityP(x) of the site variable for the sam
« values considered in Fig. 1.
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only the peaked structure survives@see Figs. 7~a!–7~c!#. This
occurs irrespectively of the velocity, that may be either ve
small @case~b!# or strictly zero@case~c!#. The effective ab-
sence of a continuous component in the fuzzy region, eve
VF and VD are positive, leaves open the question whet
this is due to an insufficient spatial resolution.

More refined information can be obtained by partitioni
the unit interval into subintervals of equal lengthD and
thereby computing the entropy

S~D!52(
i

m i lnm i , ~13!

wherem i is the integral ofP(x) over thei th subinterval. The
scaling behavior ofS(D) yields the information dimension

D05 lim
D→0

2
S~D!

lnD
, ~14!

which is a natural indicator quantifying the strength of t
apparent singularities. In CP,D0 is steadily close to 1, con
firming that on sufficiently fine scales the distribution is co
tinuous~the distance from 1 is, indeed, not appreciable!. In
the fuzzy transition region,D0 exhibits irregular oscillations
while below«c(1) one observes a smooth tip followed by
sharp decay~see Fig. 8!. Accordingly, in FDP,D0 cannot be
considered as a meaningful order parameter since the in
mation dimension can be as large as in CP. Note that
origin of a strictly positive dimensionD0, even in FDP,
stems from the irregular spatial structure irregular alterna
of periodic stripes. In fact, when the time evolution of t
coupled-map lattice~CML! is periodic, one can imagine ob
taining the same invariant measure upon iterating in sp
model ~1!, after imposing periodic boundary conditions
time. In this perspective, one can conjecture that, at varia
with the time evolution, the spatial iteration yields a positi
Lyapunov exponent. AccordinglyD0 should be read as th
fractal dimension of the corresponding strange repeller
quantitative verification of these ideas, requiring special c
in dealing with the escape rate from the repeller, will
performed elsewhere.

Nonetheless, we have refined our analysis by projec
the invariant measurer onto higher-dimensional spaces,

FIG. 8. Information dimensionD0 of the single variable invari-
ant measure vs«.
y

if
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A
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P~x1 , . . . ,xE!5E
0

1

dxE11•••E
0

1

dxLr~x1 , . . . ,xL!,

~15!

and studying the corresponding fractal dimensions. No
that for E51, the above equation reduces to Eq.~12!. An
effective study ofP(x1 , . . . ,xE) can be performed by inter
preting a spatial configuration as a time series and ther
applying embedding techniques~see, e.g.,@2#!. We have ap-
plied the Grassberger-Procaccia method@29# to configura-
tions of lengthM5105. The technique consists in calculatin
the correlation integral

N~E,D!5
2

M ~M21! (
i , j

Q~D2ixi2xj iE!, ~16!

whereQ(t) is the Heaviside function andi iE is some norm
in anE-dimensional space. The estimation of the correlat
dimensionD2 can be obtained from the asymptotic behav
of the effective dimension

D2~E,D!52
] lnN
] lnD

~17!

as D→0. The results for different values of« and embed-
ding dimensionE51,2,3 are reported in Fig. 9. At varianc
with the previous cases, this analysis reveals two well se
rated regimes. Above«d50.301,D2 increases with the em
bedding dimension@please notice that the apparent decre
of the effective dimension observed in Figs. 9~e! and 9~f! at
small distances is an artifact following from a lack of suf

FIG. 9. Effective dimensionD2 vs log10D for embedding di-
mension E51,2,3 ~solid, dashed, and dot-dashed lines, resp
tively! for different values of«: 0.2998~a!, 0.3004~b!, 0.3005~c!,
0.3015~d!, 0.302~e!, and 0.304~f!.
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cient statistics#, while, below «d , the fractal dimension is
independent ofE @see Figs. 9~a!–9~d!#, irrespective of
whether the evolution is actually periodic or chaotic. Th
means that, in FDP, the invariant measure has a finite fra
dimension, which can be determined already forE51. This
is not so surprising as long as the temporal evolution is
riodic; it is less obvious that the same behavior of the frac
dimension is found for the aperiodic regimes occurring
side the fuzzy region. Another question that is left open
the simulations is the actual dimension of the invariant m
sure deeply inside CP: it is not clear whether the dimens
is finite although very large, or if it is infinite as in standa
space-time chaos. Unfortunately, at present there are no
oretical arguments that can help clarify this question: in p
ticular, we cannot resort to the Kaplan-Yorke conjecture
concluding that the dimension should be proportional to
system size and thus infinite in the thermodynamic limit.

V. CONCLUSIONS AND PERSPECTIVES

A peculiar dynamical transition between a periodic~FDP!
and a chaotic phase~CP! has been identified in a one
dimensional Lyapunov-stable CML model. Both the corre
tion time u of CT(t) and the damage-spreading velociti
(VF , VD) allow one to clearly distinguish between the tw
phases: FDP is characterized by zero-velocity and long-ra
time correlations, while a finiteV and an exponential deca
of the correlations are observed in CP. Both indicators rev
the existence of a finite transition region where either p
odic or chaotic evolution arises, depending on the con
parameter. This scenario is vaguely reminiscent of the a
nancy of periodic windows and chaotic regimes in lo
dimensional systems such as the logistic map. However,
the ‘‘bifurcation’’ diagram must be more complex in view o
the ~infinitely! many periodic dynamics that can be foun
along the lattice for a given parameter value. Accordingly
is not even clear whether finite periodic windows must
ways exist. In any case, numerical analysis alone canno
veal whether infinitely many transition points are to be fou
in the fuzzy region.

An important step towards a more detailed compreh
sion of this phenomenon will be performed when the bord
of the transition region will be accurately determined. The
one can hope to find a true critical behavior, such as
period doubling phenomenon in the context of lo
dimensional chaos. The difficulty of the task is, howev
attested to by the results of the fractal-dimension anal
performed on spatially embedded configurations. This is
only analysis which is blind to the irregular alternancy
t.
tal
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periodic and chaotic evolution in the fuzzy region and y
reveals that CP is qualitatively different from FDP. In fact,
is only inside CP that we have found fractal dimensions d
nitely larger than 1: this suggests that the chaotic evolut
observed in the fuzzy region is of a different type from t
evolution appearing inside CP. Does this mean that we ar
the presence of even more than two phases?

It is very tempting to interpret the fuzzy region as ev
dence of the complex behavior conjectured to exist at
edge of chaos, at least in the context of deterministic cellu
automata. In the past, this question has been approache
two different ways:~i! by sampling the space of DCA rule
with a suitable metarule~e.g., the so-called genetic algo
rithms!; ~ii ! by suitably parametrizing the DCA and thereb
studying the resulting sequence of behaviors. Here we
not primarily concerned with the former approach that
have mentioned mainly for the sake of completeness.
limit ourselves to noting that it is related to the idea that l
is a process driving a~biological! system to this edge, which
is the only place where it is conjectured that computatio
tasks can be performed.

In the framework of the latter approach, we should me
tion that a similar scenario has been observed and descr
in @20#, while discussing various DCA approximations
spatiotemporal intermittency, but there it was only observ
for finite approximations, but it disappears in the continuo
limit. In @16# too, a blurred transition region has been ide
tified while studying the behavior of a large ensemble
DCAs, but one cannot exclude that the fuzziness is a con
quence of the parametrization introducedad hocto study the
transition from periodic to chaotic rules. Apparently, it
only in the context of stable chaos that this phase transi
conserves a nonstandard character and yet can be mea
fully investigated. However, a more complete characteri
tion of the various regimes is still required before drawi
definite conclusions. For the time being, we limit ourselv
to conjecture that the absence of local sources of random
~either due to stochastic terms or to deterministic chaos! is at
the root of this complex scenario.
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