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Abstract.  In the framework of the problem of finding proper reaction 
coordinates (RCs) for complex systems and their eective evolution equations, 
we consider the case study of a polymer chain in an external double-well 
potential, experiencing thermally activated dynamics. Langevin eective 
equations describing the macroscopic dynamics of the system can be inferred 
from data by using a data-driven approach, once a suitable set of RCs is chosen.

We show that, in this case, the validity of such choice depends on the stiness 
of the polymer’s bonds: if they are suciently rigid, we can employ a reduced 
description based only on the coordinate of the center of mass; whereas, if the 
stiness reduces, the one-variable dynamics is no more Markovian and (at 
least) a second reaction coordinate has to be taken into account to achieve a 
realistic dynamical description in terms of memoryless Langevin equations.
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1. Introduction

The study of many interesting phenomena often faces severe diculties due to the 
presence of a large amount of degrees of freedom and of very dierent time scales. As 
important examples, we can mention protein dynamics and climate physics: the time 
scale of vibrations of covalent bonds is O(10−12) s, while the protein folding time may 
range from milliseconds to even hours for the largest and most complex polypeptides 
[1–3]. In the case of climate dynamics the characteristic times may range from days 
(for the atmosphere) to O(104) years (for the deep ocean and ice shields) [4]. In such 
classes of systems, numerical simulations are certainly a very powerful and useful tool 
to investigate the dynamics, but the enormous amount of information contained in 
each single trajectory can be considered somehow redundant if one is interested in 
a description of the processes occurring on a given range of time and spatial scales. 
Therefore, the opportunity to use computational methods cannot be seen as a ‘pana-
cea’ able to explain everything, because the presence of high-dimensional phase-space 
strongly limits the possibilities to identify and extract a simple representation of the 
relevant processes.

The proper approach in multi-scale systems is the introduction of suitable eective 
equations describing the slow dynamics in terms of ‘slow observables’, generally referred 
to as ‘reaction coordinates’ (RC). RCs are a proper class of observables which are able 
to characterize, in a reduced way, the progress of a reaction in terms of a sequence 
of chemical events (or states) [5]. This methodology is rather useful both at practical 
level and from a conceptual point of view: eective equations are able to catch cer-
tain general features and to reveal dominant behaviors which could remain hidden in 
the fully detailed description [5, 6]. Let us also note that the use of the RCs, which 
compress (project) the multi-dimensional dynamics on a strongly reduced phase-space, 
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produces a drastic loss of information; but this loss is compensated by an immediate 
and compact picture of the possible regimes or collective behaviors taking place during 
the system evolution.

The problem of finding eective equations for multi-scale phenomena has a long 
history in Science, in particular in Mathematics and Physics: as prototype examples 
we can mention the averaging method in mechanics [7] and the Langevin equations for 
colloidal particles [8].

In few lucky cases, the eective equations can be derived from first principles. A 
remarkable example is the approach dating back to Smoluchowski to obtain, using 
kinetic theory, the Langevin equation for a heavy particle in a dilute gas of light par-
ticles [9]. Another important attempt was suggested by several authors in the 60’s 
[10–13] and later by Zwanzig [14], which amounts to rigorously deriving Langevin 
equations for an heavy particle interacting with a chain of light harmonic oscillators.

In the study of the dynamical behavior of complex systems with a multi-scale struc-
ture, the first (and perhaps most dicult) step in the derivation of the eective equa-
tions, either from first principles or from data analysis, is the identification of suitable 
RCs. This task is far from being trivial and remains conceptually challenging. We can 
remind the caveat by Onsager and Machlup in their seminal work on fluctuations and 
irreversible processes [15]: ‘how do you know you have taken enough variables, for it to 
be Markovian?’

There are several systematic methods to partially answer the caveat by Onsager 
and Machlup. The most widely used is principal component analysis (PCA) [16], which 
searches for independent linear combinations of available observables with maximal 
variance. Dynamic mode decomposition (DMD) [17], variational approach of conforma-
tion dynamics (VAC) [18], time-lagged independent component analysis (TICA) [19] are 
some of the many, related, techniques used to project the evolution of the coordinates 
describing the full system into a smaller set of relevant RCs [20]. This is usually done 
by considering linear combinations of the original variables and exploiting the methods 
of linear algebra. In recent years, neural networks and deep learning techniques have 
been applied to enhance such algorithms; specifically, they can select combination of 
nonlinear functions (from libraries of possible candidates) to encode original data into 
the reduced RC space [21, 22].

For sure artificial intelligence methods [23] are useful tools in this perspective. 
However they should not be viewed as automatic or unsupervised protocols [24–27]: 
we cannot disregard the physical intuition and the (partial) knowledge of the studied 
systems for selecting the correct RCs and avoiding ‘bad’ choices, which could neglect 
or hide relevant phenomenologies occurring in the dynamics.

Even in the lucky case in which the proper RCs are already identified, and we 
know that the relevant features of the system can be modeled by Markovian evolution 
equations for these RCs only, the problem of finding the form of such equations can be 
non-trivial. Some methods attempt to extrapolate from data the most suitable drift and 
diusivity terms [27–29] for memoryless generalized Langevin equations. This strategy 
has been successfully used to describe the slow dynamics in several contexts, such as 
turbulence [30, 31], granular media [32] and polymer physics [33, 34].

In this work, we revisit the Kramers’ problem for a polymer in a double well [35, 
36] by using the evolution equations of proper RCs characterizing the slow dynamics 
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of the chain. We model the polymer as a one-dimensional harmonic chain (the so-called 
Rouse chain).

The most natural RCs for our polymer are its center of mass Q and its end-to-end 
distance L. We try to derive their evolution equations with a data-driven approach: 
starting from long time series of data, we apply a well-established procedure to infer the 
right functional forms of the Langevin terms appearing in the dynamics. We then ana-
lyze the validity of such description by comparing the behavior of the inferred model 
to that of the original system.

The conceptual issues related to the usage of such data-based protocol are discussed. 
We shall see that the eective Langevin equations for such RCs depend crucially on the 
stiness of the polymer bonds: if the polymer is suciently rigid, only the evolution of 
Q can be taken into account, while in the regime of low stiness, we need to enlarge 
the phase space by considering also another coordinate (L in our case) to achieve a 
satisfactory picture of the jump dynamics over the barrier. In other words, this second 
coordinate allows the Markov property of the Langevin equations to be preserved.

The outline of the paper is as follows: in section 2 we describe the model; section 3 
reports the results about the reconstruction of the Langevin equations obtained by the 
numerical extrapolation procedure, in the case of one RC (Q) and in that of two RCs 
(both Q and L); finally section 4 contains our conclusions and remarks.

2. Model and simple remarks

Let us consider the problem of a polymer crossing the barrier of a double-well energy 
profile, which is related to the transport of biomolecules accross nano-scale pores [37–
42]. In many practical situations channels are so narrow that the transport dynamics 
of biopolymers and ions occurs on a single axis, thus, as a matter of fact, it can be con-
sidered one-dimensional [43–46]. In this crude approximation, the polymer is composed 
by a chain of N beads (point particles), interacting via nearest-neighbors forces and 
subjected to a thermal noise at temperature T.

The nanopore is portrayed as a region of the translocation axis where the polymer 
feels the eect of an energy barrier, which acts independently on each particle and 
separates the left-side and right-side of the pore [41, 47, 48], see figure 1. As custom-
ary, in this kind of phenomenology we can assume the evolution of each monomer to be 
accessible on time-scales long enough to neglect the eect of inertia. Accordingly, the 
polymer monomers are governed by the overdamped Langevin dynamics:

γẋ1 = −V ′(x1) + U ′(x2 − x1) + ξ1

γẋi = −V ′(xi) + U ′(xi+1 − xi)− U ′(xi − xi−1) + ξi

γẋN = −V ′(xN)− U ′(xN − xN−1) + ξN

 

(1)

with i = 2, . . . ,N − 1, where xj  is the position of the j th bead. V  represents here the 
external potential, due to the nanopore action on the chain. U is the nearest-neighbor 
interparticle potential that is chosen to be an even and convex function of xi − xi−1 − σ, 
where σ is the equilibrium distance between consecutive particles. Each ξi is a Gaussian 
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noise, with average 〈ξi(t)〉 = 0 and correlation 〈ξi(0)ξj(t)〉 = 2γTδijδ(t), where γ is a 
dimensional constant, that we will put equal to 1 in the following.

Let us notice, however, that our interest is not in the behavior of this particular 
model per se: we are indeed concerned with the general problem of finding proper RCs 
and their eective evolution equations from data. In this respect, model (1) should be 
meant as a ‘generator’ of time series. The analysis is not restricted to this specific sys-
tem, and the same conceptual scheme could be applied to more complex models as well.

As discussed in the Introduction, in order to study the collective dynamics of the 
polymer we need to identify proper reaction coordinates that describe the state of the 
system, and then we have to infer eective equations for their evolution.

A natural choice seems to be the center of mass Q of the polymer, which roughly 
indicates the spatial position of the chain:

Q =
1

N

N∑
i=1

xi. (2)

Its dynamical equation is obtained by just summing up equation (1) for all the particles 
and dividing by N,

Q̇ = − 1

N

N∑
i=1

V ′(xi) +

√
2T

N
ηQ (3)

where the reciprocal elimination of internal forces has been taken into account, as well 
as the mutual independence of the noises {ξi} that combine into a delta-correlated 
Gaussian noise with zero mean and such that 〈ηQ(0)ηQ(t)〉 = δ(t).

By posing xi = Q+ ui, equation (3) can be recast as

Q̇ = − 1

N

∑
i

V ′(Q+ ui) +

√
2T

N
ηQ. (4)

The above equation is formally exact, but it is not very useful in this form, since it 
depends on all the ui terms.

Figure 1. Cartoon of the translocation process of a polymer from CIS to TRANS 
side of a narrow nanopore. The double-well potential is a caricature of the two-
state free energy landscape associated to the translocation.
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The roughest approximation that can be done to achieve a closed form for equa-
tion (4) is to assume that the force term due to the external potential can be written as 
a (possibly complicated) function of Q only. If this is the case, a one-variable, memory-
less model of the kind

dQ

dt
= F (Q) +

√
2DηQ, (M1)

should catch the relevant features of the macroscopic evolution of the system, where 
D  =  T/N. Assuming that the above approximation holds, the specific form of F (Q) can 
be inferred from data, as will be discussed in the following.

Let us notice that equation (M1) describes a Markovian stochastic process for the 
variable Q, and it is expected to give a reasonable approximation of the real dynamics 
only when the knowledge of Q suces to determine the macroscopic state of the sys-
tem. For instance, equation (M1) gives a good approximation of the real dynamics in 
the limit of high-rigidity chain, as it will discussed in the following for a particular case.

In general, however, the above one-variable model will not be valid, meaning that 
it will not be possible to find any form of F (Q) able to reproduce the dynamical 
properties of the original system in an accurate way. This is due to the fact that the 
dynamics of Q, in general, is not Markovian: in order to achieve a satisfactory coarse-
grained description, one possibility is to modify equation (M1) by introducing memory-
dependent terms, which in some cases can be found analytically by mean of projection 
methods [14, 49, 50]. To avoid such dependence on memory kernels, which are often 
dicult to manipulate, the only possibility is to search for (at least) a second RC of the 
system, such that the vector composed by Q and this new variable obeys a Markovian 
dynamics.

The additional RC can be individuated through the methods briefly mentioned in 
the Introduction, or it can be suggested by physical intuition. For instance, one can 
study a simplified version of the considered problem in order to understand what are 
the relevant variables. In our case, if the bond fluctuations are large enough, it is rea-
sonable that the elongation L = xN − x1 have a role in the macroscopic dynamics. In 
appendix A we discuss our system under a strong approximation, which allows a simple 
analytical treatment: in this context the role of L is transparent. We can then guess an 
eective model of the form:




dQ
dt

= FQ(Q,L) +
√

2DQ ηQ

dL
dt

= FL(Q,L) +
√
2DL ηL.

 (M2)

Again, assuming that the dynamics of (Q,L) is fairly described by a Markov process, 
the best choices for FQ, FL, DQ, DL can be found with data-driven approaches as the one 
used in this paper. However, one has then to verify that the chosen RCs are actually 
‘valid’ macroscopic variables, i.e. that the coarse-grained dynamics (M2) reproduces 
the macroscopic features of the original system.

In the remaining part of this paper, we will try to implement this program in a 
specific case. In particular we will show that, as expected, the stiness of the polymer 
plays an important role in the choice of the right set of RCs.
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3. Polymer in a double well

We consider now the case in which the external potential V (x) in equation (1) is a double-
well. This simple model allows us to study some properties of thermally activated barrier 
crossing as, for instance, the dependence of the jump rate r on the physical parameters.

The general problem of activated dynamics has been extensively studied since 
the seminal works by Kramers, and the reaction-rate theory provides many analytic 
methods to compute jump times in dierent contexts (see [51] and reference therein). 
Important results have been derived also for polymeric chains [35, 36, 42]. We want to 
stress that our aim here is not to improve such results: we are interested in analyzing 
the ability of a data-driven approach to reconstruct an activated dynamics. In par-
ticular, we will focus on the role of the chain stiness on the activated dynamics and, 
more importantly, on its relevance for the description in terms of the RCs.

The external potential reads, in this case,

V (x) =
B2

4
(x2 − A2)2 (5)

where A and B are suitable constants. The typical dynamics of the center of mass, 
Q(t), is therefore characterized by jumps over the barrier separating the two minima 
of the potential (two-state model). For the interaction potential we choose the form 
U(r) = K(r − σ)2/2.

In the following, we will always consider the limit Nσ � A, i.e. the case in which 
the equilibrium length of the polymer is comparable to the half distance between the 
well minima: it is reasonable to expect that in these conditions the value of the bond 
rigidity aects the qualitative behavior of the chain in a relevant way.

Our aim is to show that for high values of K the model described by equation (M1) 
suces to reproduce the quantitative macroscopic behaviour of the system; whereas, 
as soon as K becomes comparable to B2A2/σ, the evolution of Q is no more Markovian 
and any attempt to describe it through model (M1) is doomed to fail. However, if the 
phase-space is expanded by including a suitable additional RC, it is still possible that 
the evolution of the new RCs vector turns out to be Markovian, so that a dynamical 
description based on equation (M2) can be accurate enough.

The validity of such scenario can be tested by using the data-driven approach 
mentioned in the Introduction and detailed in appendix B. We first perform numerical 
simulations of the whole system by using a Stochastic Runge–Kutta algorithm [52] and 
measuring the relevant RCs of the system at every time step. As a first attempt, from 
long time-series of such data we build an eective stochastic equation for Q only, in 
the form of equation (M1); then we apply the extrapolation procedure to the dynamics 
of the two-dimensional vector (Q,L), obtaining an M2-like model. The ‘goodness’ of 
M1 and M2 is tested by measuring the Kramers’ transition times of the reconstructed 
models and comparing the corresponding jump rates to the original ones.

3.1. 1-variable model

Before applying the mentioned extrapolation method to infer numerically the func-
tional form of the terms appearing in equation (M1), let us derive analytically an 
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eective equation for Q for the high-stiness limit, K � B2A2/σ. In this case we can 
assume that the position of two consecutive beads is fixed and equal to σ. Due to the 
simple form of the external potential V (x), the drift term in equation (4) can be exactly 
computed in this case:

− 1

N

N∑
i=1

V ′(Q+ ui) = −B2

N

N∑
i=1

[
(Q+ ui)

3 − A2(Q+ ui)
]

= −B2

N

N∑
i=1

[
3Qu2

i +Q3 − A2Q
] 

(6)

where we have used the fact that, due to the rigidity of the polymer, 
∑

i u
3
i =

∑
i ui = 0.

Now we substitute the explicit expression for the relative positions of the polymer 
beads, ui = (2i−N − 1)σ/2, and after straightforward algebra we get

− 1

N

N∑
i=1

V ′(xi) = −B2Q

(
Q2 − A2 +

σ2

4
(N + 1)(N − 1)

)

= −B2Q
(
Q2 − A2

eff

) 
(7)

with

Aeff = A

√
1− L2(N + 1)

4A2(N − 1)
, (8)

where we have used the definition of the polymer length for the rigid case, L = (N − 1)σ. 
Let us notice that the above drift corresponds to an eective potential

Veff(Q) =
B2

4
(Q2 − A2

eff)
2, (9)

i.e. a ‘rescaled’ version of the original external potential (5).
We can now use the theory of escape times [53] to estimate the jump rate r for the 

eective potential (9). The average waiting time between two consecutive jumps can be 
computed through the formula [53]

τ =
1

D

∫ A

−A

dy eV (y)/D

∫ y

−∞
dz e−V (z)/D

=
1

D

∫ A

−A

dy e
B2

4D [y4−2A2
effy

2]
∫ y

−∞
dz e−

B2

4D [z4−2A2
effz

2]
 

(10)

where D  =  T/N is the diusivity associated to Q. The jump rate r is then found as

r =
1

τ
. (11)

The above equations, which are only valid in the rigid-rod limit, will be a useful touch-
stone to evaluate the level of accuracy of the model inferred numerically.

We apply now the extrapolation procedure mentioned in the Introduction and 
detailed in appendix B to infer the right functional forms for the terms of the Langevin 
equation (M1), assuming that the dynamics of Q is Markovian and a 1-variable 
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description in the form of model (M1) holds. We find that D (not shown here) is 
always almost constant and equal to T/N, as it would be expected if the process was 
Markovian, while the drift shows a more complex shape (figure 2(A)); we fit the data 
by a 9th degree, odd polynomial, then we integrate the resulting function in order to 
get an eective potential, which is reported in figure 2(B) for several values of K. In 
the large-K limit, as expected, we recover a quartic eective potential: terms of higher 
order become relevant when the bond stiness is low, and their eect is to flatten the 
potential barrier between the two wells.

As mentioned above, the validity of equation (M1) relies on the assumption that 
the evolution of Q is Markovian, which has to be checked. First, one can define and 
measure the following quantity:

ζ(t) = Q̇(t)− F (Q(t)),
 

(12)

which represents the ‘noise’ of equation (M1), if the dynamics of Q is Markovian. We 
can compare the autocorrelation time of ζ(t) and verify that it is much shorter than any 
characteristic time-scale of the dynamics of Q. In our case, ζ(t) always decorrelates on 
the scale of the time-step of the integration algorithm, dt (see figure 3(A)).

This first check assures that there is a clear time-scale separation between the 
dynamics of the center of mass and its ‘noise’. However, this does not imply that the 
original dynamics of Q has to be Markovian: in order to check that, we also have to 
verify the consistency with the original dynamics. If the one-variable description is able 
to catch the relevant features of the whole system, we can conclude, a posteriori, that 
the evolution of Q was Markovian also in the complete dynamics; if not, a dierent 
description has to be taken into account.

Figure 3(B) shows, for several values of the rigidity, the jump rates measured in 
the original dynamics and those observed in the reconstructed model, using a standard 
stochastic integration algorithm (the one discussed in [54], up to order dt3/2). In the 
high-K limit the simple rigid-rod approximation (10) holds, there is no dependence on 
K and the agreement between the jump rates of M1 and of system (1) is excellent. As 
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Figure 2. (A): drift term F (Q) of model (M1) as reconstructed from data (points) 
and fitted with a 9th degree odd polynomial (solid lines), for three dierent values 
of K. (B): eective potential obtained by integration of F (Q). Parameters for the 
simulations of the complete system: A  =  10, B  =  0.1, T  =  30, σ = 1, N = 10, using 
a time-step dt = 10−5. Simulations on model (M1) have been run with a time-step 
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the polymer becomes softer, even if a significant improvement on equation (10) can be 
observed, the relative error between M1 and the true dynamics exceeds 30%: this is 
a clear hint that a 1-variable description, even if inferred directly from data, cannot 
reproduce all the relevant features of the dynamics. This is due to the fact that our 
implicit assumption on the Markovianity of the process is wrong.

3.2. 2-variables model

The failure of model (M1) for small values of K, revealed by the discrepancies between 
the reconstructed and the original jump rate, suggests to go beyond a single variable 
description in order to achieve satisfactory results. As discussed in section 2, a reason-
able attempt to recover a Markovian dynamics is to consider the elongation of the 
polymer, L, as a second RC for our model, and we postulate the validity of an evolution 
equation of the form (M2).

The requirement of a variable accounting for the elongation of the polymer can be 
easily understood by looking at figure 4 reporting three scatter plots of the original 
dynamics in the (Q,L) plane, for dierent bond rigidity, where L = xN − x1. When 
K is high, and the system is well approximated by the rigid-rod model, the region of 
the phase space explored by the dynamics is a thin strip around the equilibrium value 
L � (N − 1)σ. As soon as the rigidity condition is relaxed, and the system is allowed 
to vary its length in a significant way, a two-lobe distribution takes place: L tends to 
be smaller than the rest length of the chain when the polymer occupies one of the two 
minima of the double-well potential, while it significantly increases during the trans-
ition across the barrier. This particular shape of the scatter plot indicates that the 
typical pathways in the space (Q,L) include a non-negligible deformation in L, which 
can be straightforwardly interpreted as follows: when the rigidity K is low, the trans-
ition across the barriers of the polymer occurs with a concomitant stretching of the 
bonds, presumably those that instantaneously lay on top the barrier. As a consequence, 
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any Markovian eective description involving only the center of mass is completely 
insucient to fairly approximate the dynamics of the system.

Following again the strategy discussed in appendix B, we provide numerical values 
for FQ, DQ, FL and DL in the (Q,L) space, which have to be fitted using suitable func-
tional forms. Due to the symmetries of the system, FQ(Q,L) has to be odd with respect 
to the variable Q, while FL(Q,L) should be even. Figure 5 shows the results obtained by 
fitting the following polynomial form:

FQ(Q,L) = Q
[
c
(Q)
10 + c

(Q)
12 L2 + c

(Q)
13 L3

]

+Q3
[
c
(Q)
30 + c

(Q)
32 L2 + c

(Q)
33 L3

]

FL(Q,L) = c
(L)
00 + c

(L)
01 L+ c

(L)
03 L3 + c

(L)
21 Q2L.

 

(13)

The agreement between the actual data and the proposed functional form is good 
enough to hope that the guessed model catches the most relevant features of the 
dynamics. The diusivity terms DQ and DL are again fitted by constant functions. Once 
model (M2) is determined, we can check the reliability of its stochastic evolution by a 
direct comparison with the original dynamics.

A first, important benchmark is given by the ability of the model to reproduce the 
static properties of the system, namely the joint probability distribution in the (Q,L) 
space. This test is reported in figure 6 for dierent values of K, showing a reasonable 
qualitative agreement even in the non-trivial case of low bond stiness: in particular, 
the stretching occurring when the polymer crosses the barrier is clearly reproduced. 
The improvement of our eective description when also L is taken into account can be 
fully appreciated by looking at dynamical observables as the jump rate r. Figure 7 dis-
plays the relative errors between the values of r obtained in the reconstructed models 
M1, M2 and in the original dynamics. As already discussed, the 1-variable model fails 
when the polymer is soft, while the accuracy of M2 does not seem to be aected in this 
limit. Let us notice, on the other hand, that for K � A2B2/σ the reconstructed model 
(M2) is less reliable than the 1-variable version: this is probably a consequence of the 

Figure 4. Scatter plot of the end-to-end distance L versus Q (total integration time: 
106). Green dots: K  =  4; blue dots: K  =  20; red dots: K  =  600. Other parameters 
as in figure 2.
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larger number of parameters involved, which leads to a lower degree of precision on 
their determination with the discussed method.

3.3. Remarks on the structure of the eective equations

The procedure for the reconstruction of a model in the form (M2) that we used in the 
previous subsection is based on a ‘dynamical’ analysis, which builds the coecients of 
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Figure 5. Reconstructed drift terms of Q and L in the model (M2), case K  =  4. 
Points are extrapolated from data (see appendix B); the surface is obtained by 
fitting the polynomial (13). Other parameters are as in figure 2.
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the guessed stochastic model by looking at the time evolution of suitable observables 
of the original system (see appendix B). One could wonder whether such procedure is 
really needed in order to get a realistic description of the studied process; for example, 
in analogy with many statistical mechanical problems, one may expect that the follow-
ing recipe works:

 1.  Measure the stationary p.d.f. ρ(Q,L) from long time series of data; 

 2.  Deduce an eective 2-variable ‘potential’, also known as ‘potential of mean force’ 
in chemical and biophysical contexts:

WS(Q,L) = − log[ρ(Q,L)]. (14)
 3.  Define FQ ≡ −c∂QWS and FL ≡ −c∂LWS, where the constant c has to be deter-

mined.

Let us notice that in many practical situations the multidimensional free-energy land-
scapes obtained by simulations or experiments are assumed to be generated by a sys-
tem with a gradient (or gradient-like) structure and, using this hypothesis, Langer’s 
formula [51, 55] is applied to derive the transition rates over saddles.

The above procedure is a completely ‘static’ analysis, because it involves only 
quanti ties measured in equilibrium conditions. Leaving apart the problem of finding 
the right multiplicative constant c and the noise terms, this approach has a major issue: 
it is not sure, a priori, whether the dynamics of the chosen reaction coordinates can be 
described by a potential, even if the complete system actually can; in other words, there 
is in general no reason to expect that the model is a gradient system in the reduced 
phase space.

The knowledge of WS alone is not sucient to obtain the drift; additional informa-
tions on the dynamics need to be taken into account. A possibility is the theoretical 
approach discussed in [56], which also involves the transport coecients. Our numer-
ical method, instead, exploits the dynamical information by computing suitable condi-
tioned moments of the RCs, as discussed in appendix B.
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Figure 7. Relative errors of the jump rates r in the two reconstructed models, 
varying K. For other parameters, see caption of figure 2.
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In order to show that in our case the simplifying assumption of a gradient struc-
ture for the (Q,L) dynamics is wrong, let us determine WS using equation (14). In 
figure 8(A) we fit such ‘potential’ with a 2-variables polynomial (4th order in both Q 
and L), getting a nice superposition.

If the 2-variable system were gradient, FQ(Q,L) should be equal to c∂QWS , for some 
value of c; therefore the ratio ∂QWS/FQ should be constant all over the phase-space. 
Figure 8(B) shows instead that, in our case, such function strongly depends on Q and 
L. Just for comparison, figure 8(C) displays the ratio

ε = F
(2)
Q /FQ

where F
(2)
Q  represents here the expression from the fitting (13): not surprisingly, this 

function is constant and equal to one almost everywhere, meaning only that we have 
made sensible choices for the polynomial functions to use in the fit. In figures 8(D) and 
(E) the same comparison is done for the drift of the end-to-end distance L.

This simple check clearly shows that the simplified 2-variables system is not gradi-
ent, and therefore a static analysis is not sucient to infer reasonable eective equa-
tions for its evolution.
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4. Conclusions

We studied the dynamics of a 1-dim polymer whose monomers are subjected to a 
double-well external potential. Under certain conditions, the phenomenology is char-
acterized by thermally activated barrier crossing (classical Kramers’ problem). We 
addressed the issue of describing this complex high-dimensional dynamics in terms of 
few suitable observables, the reaction coordinates (RCs). In our system the center of 
mass, Q, and the end-to-end distance, L, are the most natural candidates.

These RCs evolve according to eective Langevin equations that are generally 
dicult to be derived via a systematic procedure. The proper reconstruction of the 
eective stochastic equations for Q and L is achieved via a data-driven numerical 
method that extrapolates the drift and diusion terms from a long trajectory of the 
original system. Let us stress that this method allows us to find nonlinear terms for the 
reconstructed Langevin equation; this is an important dierence, e.g. from the standard 
Mori-Zwanzig approach, where the complexity of the problem is shifted into the shape 
of the memory kernels [49]. The reliability of the reconstructed dynamics is tested on 
the way it fairly reproduces some essential properties of the original dynamics, such as 
a correct estimate of the jump rate over the barrier.

From our study it emerges that the description level in terms of RCs strongly 
depends on the bond stiness K. More precisely: if the bonds are rigid enough, we are 
allowed to consider the evolution of Q only, given by model (M1), to fully characterize 
the jump dynamics. However, when K decreases, the internal motion of the chain can-
not be neglected and also the dynamics of L has to be considered, so that a satisfactory 
description can only be obtained in the plane (Q,L) through the model (M2). On a 
more mathematical perspective, lowering K can be regarded as a loss of Markovianity 
of the one-variable description. A second coordinate is necessary to recover the Markov 
property.

Our work shows how subtle is the procedure of reducing the dynamics of a many-
dimensional system to a low-dimensional model, even in the simplest cases where the 
physical intuition leaves little ambiguity to the choice of the RCs. In fact, the choice of 
an RC can be correct in certain regimes but not sucient in others. Specifically in our 
case, we can only know a posteriori that it is the stiness of the polymer to determine 
whether one or two RCs are needed.
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Appendix A. The homogeneous chain approximation

In this appendix we discuss the ‘homogeneous chain approximation’ (HCA), which 
amounts to assuming that the distances between nearest-neighbor particles, at each 
time t, are all equal:

xi+1(t)− xi(t) = xj+1(t)− xj(t), ∀i, j.
 (A.1)
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Under such approximation we can derive closed analytical expressions for both 
models (M1) and (M2); HCA is very unphysical, and it only holds true if the polymer 
bonds are almost rigid. However, a simple analysis of this limit can give us some insight 
on the general case. Even under such simplifying hypotheses, as soon as K is large 
enough, model (M1) is not sucient to describe correctly the dynamics, and a (M2)-
type model is needed.

First, let us consider the case of high intra-chain forces acting on each monomer. 
Specifically, the bonds are much stronger than: i) the external forces due to the action of 
the potential V (x) and ii) those induced by the thermal fluctuations. Under conditions 
i) and ii) our polymer reduces to a rigid rod with fixed distances among its elements, i.e.

xi+1(t)− xi(t) = const ∀i. (A.2)
Equation (4) can be written as

Q̇ = −
∫
duρ(u)V ′(Q+ u) +

√
2T

N
ηQ (A.3)

where we have introduced the density, ρ(u) = 1/N
∑N

i=1 δ(u− ui), to pass from the sum 
to an integral. Here

ρ(u) � 1

L
Θ(u2 − L2/4), (A.4)

where we also took the N � 1 limit. The total length of the polymer is constant, 
L = (N − 1)σ.

In this simple case, we can straightforwardly apply the fundamental theorem of 
calculus and get:

Q̇ =
1

L
[V (Q− L/2)− V (Q+ L/2)] +

√
2T

N
ηQ. (A.5)

Notice that the above equation is of the form of model (M1).
Let us consider now the idealized situation in which the inter-particle distances do 

fluctuate, but the approximation (A.5) still holds because the polymer undergoes homo-
geneous deformations. In this limit, the end-to-end distance L defined as

L = xN − x1 (A.6)
is no longer constant and equation (A.5) should be complemented by a new equa-
tion describing the dynamics of L. Now L is a necessary second RC, so the phase space 
is enlarged to the plane (Q,L).

Under this hypothesis, we can derive a second equation, by writing L̇ = ẋN − ẋ1 
from equation (1) and then approximating each xi − xi−1 � L/(N − 1). The final result 
for the drift expressions is

FQ(Q,L) =
1

L

[
V

(
Q− L

2

)
− V

(
Q+

L

2

)]

FL(Q,L) = −2U ′
(

L

N − 1

)
+ V ′

(
Q− L

2

)
− V ′

(
Q+

L

2

)
.

 

(A.7)
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The above phenomenological discussions suggest that there are two regimes depend-
ing on the polymer stiness:

 •	  Sti chain: the polymer dynamics can be characterized by a single reaction coor-
dinate Q, for which a closed evolution equation can be found; 

 •	  Soft chain: also a second variable, for instance the end-to-end distance L, is 
needed to close the evolution equations.

Notice that in the above discussion the introduction of L as a second RC emerges quite 
naturally. This can be a clue on the relevant variable to choose also in the more general 
case where assumption (A.1) does not hold.

Appendix B. Extrapolating Langevin equations from data

In this appendix we briefly recall the basic aspects of the extrapolation procedure that 
we use to infer the parameters of eective Langevin equations from long-time series of 
data (in this case, produced by numerical simulations). An extensive discussion of the 
method can be found in [27, 28] and reference therein. See also [32] for a case in which 
the study of a multi-dimensional system is considered.

Let us assume that each component of the vector variable X obeys the following 
Langevin’s equation:

Ẋi = Fi(X) +
√

2Di(X)ξi (B.1)

where each ξi is a white noise with unitary variance. For the sake of simplicity, here 
we assume that the coecients Fi and Di do not depend on time. It can be proved [57] 
that the following relations hold:

Fi(x) = lim
∆t→0

1

∆t
〈∆Xi|X(0) = x〉

Di(x) = lim
∆t→0

1

2∆t
〈(∆Xi − Fi(x)∆t)2 |X(0) = x〉

 

(B.2)

where ∆Xi = Xi(∆t)−Xi(0). Due to the stationarity of the process, we can compute 
the ensemble averages (B.2) as temporal averages over long-time series of data.

The ∆t → 0 limit has to be interpreted in a proper physical way: for every real 
phenomenon, a stochastic description holds only for some not-too-small time scales. It 
is customary to define a typical time-scale of the considered problem, usually referred 
to as the ‘Markov–Einstein time’ τME, such that the Langevin equations hold true only 
if one considers time scales larger than τME. In order to get a reasonable esteem of the 
above limits, a good strategy is that of plotting the conditioned moments on the rhs 
of equation (B.2) as functions of ∆t, then to individuate a suciently regular region 
that allows for a ∆t → 0 extrapolation. In our case, however, the separation of time-
scales is a consequence of the fast decorrelation times of the quantity ζ(t) defined by 
equation (12), which is in turn due to the overdamped nature of the original dynamics 
we are considering. As a consequence, it is sucient to take ∆t � dt, where dt is the 
time-step of the integration algorithm. Let us notice once again that such time-scale 
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separation does not imply the Markovianity of the considered process, and the validity 
of such approximation can be only checked a posteriori.

In figure B1 we show a typical case of reconstruction of the drift and diusivity 
terms of model (M1), for several values of the center of mass.
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