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Diffusion in waveguides with spatially modulated profiles is an important topic in modern electromag-
netics and optics. Wave dynamics in the high-frequency asymptotics are governed by classical ray 
dynamics which can be characterised by looking at the diffusion of particles throughout the channel. 
We study the transport of particles (rays) in a channel with a sinusoidal profile at different values of the 
corrugation amplitude. We find that below a certain corrugation level the transport is ballistic, beyond 
this threshold, a diffusion-like behaviour emerges in the asymptotic limit of large times. In this regime 
particle transport slows down due to the trapping mechanism in the corrugated regions of the channel. 
We use the analogy with correlated random walks to discuss the observed transport regimes.

Crown Copyright © 2019 Published by Elsevier B.V. All rights reserved.
1. Introduction

Diffusion of waves in corrugated channels is a subject of great 
interest in optics [1], plasma physics [2] and microwave technol-
ogy [3]. This problem is relevant in the engineering community 
to study the effects of spatial modulation of boundaries on wave 
guides [4]. In optics, understanding and controlling the flow of 
light is of crucial importance for photonic devices. Photonic crys-
tals and optical fibers exhibit a rich classical dynamics that can 
be characterised by studying the ray diffusion constant and re-
lated phase-space structure [5,6]. The study of particle trajectories 
is meaningful as they evolve according to geometrical optics (GO) 
similarly to waves in the high frequency limit.

Classical wave simulations have been proven to be success-
ful for predicting the average energy distribution in both vibro-
acoustics [7] and electromagnetic systems [8]. In vibro-acoustics, 
the so called dynamical energy analysis (DEA) is used to trans-
port classical phase-space distributions along geodesic lines and it 
provides an estimate of the average vibrational energy of complex 
built-up structures [8,9]. In this work, we study the deterministic 
diffusion of particles in channels with sinusoidal profile of arbi-
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trary depth, i.e., beyond the perturbative regime, as a proxy to 
understand the dynamics of wave diffusion in the high frequency 
regime, where ray tracing predictions neglects phase information 
and therefore energy distribution is predicted without accounting 
for interference.

Billiards with a channel geometry, beside their practical appli-
cation to the area of optical fibers and waveguides, can be regarded 
as natural candidates to explain the classical ballistic transport of 
carriers in quasi-1D dimensional structures [10]. One can also use 
such models to study the heat conduction in 1-D systems in con-
nection with mass transport [11,12].

Billiard channels also offer the possibility to study the de-
terministic diffusion in peculiar wall geometries: dispersive walls 
[13–19] and non-dispersive (i.e. flat) walls such as in polygonal 
channels [20–22].

Moreover, low-dimensional billiards are Hamiltonian systems 
simple enough to test fundamental problems of statistical mechan-
ics, for instance, the relationship between microscopic dynamics 
and transport properties. In this context, a particular emphasis 
was devoted to track the role of chaos in the deterministic dif-
fusion and to find the origin of possible anomalous behaviours at 
low dimensionality. In particular, several works on polygonal bil-
liards [20,21] contributed to further clarify the scenario for which 
even non-chaotic systems (with zero Lyapunov exponent) are able 
to display robust normal diffusion. [23,24].
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Fig. 1. Pictorial representation of a periodically corrugated channel geometry. Thick 
vertical dashed lines delimit the fundamental cell around the origin. The lines with 
the arrows indicate the specular reflection of the trajectories with respect to the 
normal n. In this picture, the cell size (period) is L = 3, we set w0 = 1 and the 
corrugation parameter δ = 2. In the following, only δ will be varied.

In general, billiard channels are neither completely chaotic nor 
integrable systems, so regions of regular and chaotic motion co-
exist in their phase-space, it is, thus, interesting to study the dif-
fusion in the presence of KAM tori that constitute impenetrable 
barriers to the motion [25].

The channel we consider here extends existing works on cor-
rugated channels [17–19] to the extreme regime of high corru-
gations: a situation where particles/rays may experience relevant 
trapping effects.

The knowledge gained by the dynamical system analysis of 
waveguide structures in the ray approximation (wavelength of light 
λ much smaller than all the geometrical parameters of the system) 
is useful to select the optimal geometrical properties of waveguide-
based resonators, micro lasers and multiply interconnected cavi-
ties.

The paper is organized as follows. Sec. 2 describes the corru-
gated channel and the billiard dynamics of the particles and the 
possible transport regimes. Simulation results and their interpreta-
tion are presented in Sec. 3. Finally Sec. 5 is devoted to conclusions 
where we give some remarks on the infinite horizon and its impli-
cation on our results.

2. Model, geometry and transport regimes

In this section we derive the map of particles/rays traveling 
through a channel with an arbitrary corrugation amplitude. The 
system we study is depicted in Fig. 1, and it consists of a corru-
gated channel where independent point particles travel ballistically 
until they undergo specular reflections from the boundaries. Colli-
sions off the transverse modulation profile scatter the trajectories 
and generate longitudinal spreading of particles. The geometry of 
the channel is defined such that the bottom boundary is flat and 
placed at y = 0, whereas, the top boundary is the periodic profile

w(x) = w0 + δ

2

[
1 + cos(kx)

]
, (1)

where, k = 2π/L, with L being the channel period (longitudinal 
size of the unit cell), w0 is the minimal channel, δ determines 
the corrugation amplitude. The channel is open, in the sense that 
particles can escape to the infinity along the x-direction (infinite 
horizon).

Consider the case where the velocity modulus is |v| = 1, and 
particles experience reflections from the flat bottom wall at y = 0
and the rippled top wall w(x).

Both, the position xn = x(tn) and the velocity vn = v(tn) of a 
particle are updated after each collision with the walls according 
to the mapping
xn+1 = xn + vnhn, (2)

vn+1 = vn − 2 (vn · en+1) en+1 (3)

where, hn is the time between two consecutive impacts of the par-
ticle trajectory with the boundaries. Whereas, the en denotes the 
unitary normal evaluated at the impact point either on flat bound-
ary e(x) = (0, 1) or on the corrugated profile (1)

e(x) =
[

w ′(x)√
1 + w ′(x)2

,
−1√

1 + w ′(x)2

]
, (4)

w ′(x) stands for dw(x)/dx. The (time) hn is found by solving the 
transcendental equation

yn + bnhn = w(xn + anhn) , (5)

with (xn, yn) and (an, bn) denoting the positions and the veloc-
ity components emerging from the (last) n-th collision. Eq. (5) has 
been solved numerically by using a bisection algorithm with an 
absolute error tolerance 10−14.

It is more practical to reformulate the elastic reflection of ve-
locities after the impact in a linear algebra notation

v ′
α = vα − 2 eα

∑
β

vβeβ,

with Greek subscripts denoting x, y components and v ′ the post-
impact velocity. The above expression can be recast as

v ′
α =

∑
β

Mαβ vβ,

where the matrix, Mαβ = δαβ − 2 eαeβ , according to Eq. (4) takes 
the simple expression

M =

⎡
⎢⎢⎣

2

1 + m2
− 1

2 m

1 + m2

2 m

1 + m2
1 − 2

1 + m2

⎤
⎥⎥⎦ , (6)

we set m = w ′(x). The matrix formulation of collision is particu-
larly easy to be numerically implemented as, for each given x, only 
two elements need to be assigned, that is Mxx = −M yy = c − 1
and Mxy = M yx = cm, with c = 2/(1 + m2). By setting m = 0, one 
obtains the reflection rule with the flat boundary.

The symplectic character of the mapping (3) reflects onto its 
transport properties which will be certainly related to the KAM 
structure of the phase-space especially for small δ: δ � w0, [17,
26,18,19].

The case δ = 0, corresponding to the integrable limit, leads to 
the trivial map

xn+1 = xn + h cot(θn), θn+1 = θn ,

implying the conservation of the horizontal velocity in the n−th 
flight v cos(θn+1) = v cos(θn) and the inversion of transversal ve-
locity. This behaviour is characterized by a purely ballistic trans-
port σ 2(t) ∼ t2.

An even small corrugation, δ � w0, introduces a perturbation 
of the integrable system leading to a more complex map

xn+1 = xn + 	xn, θn+1 = θn + 	θn , (7)

where both 	xn and 	θn depend on the position of the colli-
sion on the boundaries, and they are determined numerically via 
Eqs. (5). In this case, the investigation needs the direct simulation 
of dynamics (3).

The limit of small δ has been addressed by many authors [17,
26,18] who were able to work out the explicit form of the map (7). 
These papers, mainly addresses the KAM properties of the phase 
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space and escape statistics, however, did not consider the explicit 
exploration of diffusion-like behaviours.

The situation becomes more complex when the corrugation is 
enough to allow multiple inversion of the vx component.

The role of the parameter δ in the dynamics can be summarized 
as follows. Once the profile (1) is recast in the dimensionless form 
ω(ξ) = 1 + d cos(ξ), with d = 1/(1 + 2w0/δ) and ξ = kx, the ratio 
w0/δ not only controls the deviation from the non-integrability 
of the system but it also weights the importance of the horizon 
effects. Small w0/δ implies the “dominance” of the corrugated re-
gions (traps) over the rectangular corridor where transport takes 
place. In our discussion, w0 is kept fixed to w0 = 1.

In the next section we will focus on the regime δ � δc , which, 
to our knowledge, is poorly covered by the literature, trying to es-
tablish the dependence of the coefficient Deff on δ.

3. Simulation results

We study the transport properties of a large ensemble of M
independent particles whose dynamics along the channel has been 
obtained by iterating the dynamics (3).

The particles are initialized in the state (x0, y0, θ0) such that: 
x0 is extracted from a uniform distribution in [−L/2, L/2], y0 = 0
and velocities |v| = 1. The angle, θ0, that any initial velocity forms 
with the channel axis is uniformly drawn in the interval [θa, θb], 
where θa = arctan[1/(x0 − L/2)] and θb = π − arctan[1/(x0 + L/2)]. 
In practice, the particles are launched from the flat boundary of 
the fundamental cell toward its corrugated wall (see Fig. 1). This 
choice guarantees that particles undergo the first collision in the 
initial cell so to avoid, at least at the beginning, extremely long 
collision-free paths due to the infinite-horizon condition.

The simulations were performed in a spirit closer to the molec-
ular dynamics, where particles are advanced with a time step 
δt sufficiently small. When a particle exits the channel, it is re-
injected according to the mirror symmetry with respect to the 
tangent line of the profile at the impact point taken as symme-
try axis. If a particle after the symmetry operation is still outside 
the channel the procedure is repeated till the particle lies inside.

We start from the computation of the mean collision time 〈τ 〉
of two successive elastic collisions with the boundary walls of 
the channel; in our case of unitary velocity, 〈τ 〉 coincides with 
the mean-free path. Such information allows us to understand the 
scale of times (lengths) involved in the bouncing ball dynamics 
when parameter δ is varied. It is also a check for the accuracy of 
the simulation code. According to Refs. [27,28], 〈τ 〉 can be derived 
from a simple geometric formula

〈τ 〉 = π
A

P
, (8)

with P being the collision perimeter, and A the accessible area 
of the billiard table. In the case of our channel, the area and the 
perimeter of a fundamental cell are respectively, A = L(1 + δ/2)

and

P = L + 2

L/2∫
0

dx
√

1 + w ′(x)2 ,

in the above expression, we used the arc-length formula along the 
corrugated profile.

After a simple manipulation P is expressed as

P = L + 2L

π

π/2∫
dz

√
1 + ε2 sin2(z) ,
0

Fig. 2. Behaviour of the mean collision time (mean free-path) with δ. Points indicate 
simulation data, obtained for a system of M = 2 × 104 independent particles; the 
curve represents the theoretical prediction from Eq. (9) in striking agreement with 
simulations. Inset: the same plot in log-linear scale.

Fig. 3. Log–log plot of the mean square displacement σ 2 behaviour with time at 
δ = 0.2, 0.3, 0.4, 0.5, from top to bottom. The figure shows the crossover from a 
transient ballistic motion to a diffusive one. Of course, the crossover time t∗ , see 
Eq. (11), depends on the corrugation parameter δ.

where ε = πδ/L and the integration is a complete elliptic integral 
of the second kind E(−ε2) [29]. The final result reads

〈τ 〉 = π
2π + L ε

2π + 4 E(−ε2)
. (9)

The dependence of the mean collision time 〈τ 〉 on δ is shown in 
Fig. 2 which illustrates the agreement between simulation data 
(points) and the exact expression (9) (line). The match is quite 
striking also considering that no parameters have to be tuned.

The impact of δ on the transport along the channel axis is evi-
dent by the behaviour the mean square displacement,

σ 2(t) = 〈[x(t) − x(0)]2〉,
where, 〈· · · 〉 denotes an ensemble average over initial conditions. 
Simulations show that for a channel with w0 = 1 and L = 3,
there are basically two regimes. For δ smaller than a certain 
threshold approximately located around δc 	 0.07, there is a cer-
tain dominance of motions characterized by a ballistic asymptotics 
σ 2(t) ∼ t2. On the contrary, for δ > δc chaotic behaviour is prevail-
ing, therefore we observe a diffusion-like behaviour

σ 2(t) ∼ 2Defft . (10)

The value of δc can be obtained only numerically. Fig. 3 shows 
σ 2(t) for δ slightly above δc . The coexistence of ballistic motion 
(associated to KAM islands) and irregular (chaotic) motion reflects 
into the two regimes
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Fig. 4. Poincaré sections on the surface y = 0 for δ = 0.05 (top) at which simulations 
indicate that ballistic behaviour is prevailing; the phase portrait is characterized 
by the presence of many periodic islands responsible for ballistic motion. While at 
δ = 0.07 (bottom), the presence of a non negligible chaotic sea allows for irregular 
motions which can give rise to diffusive-like behaviour. We can consider δ = 0.07 a 
crossover value for the corrugation separating ballistic and diffusion-like behaviour.

σ 2(t) ∼
{

t2 for t < t∗(δ)
t for t > t∗(δ)

, (11)

where the crossover time t∗ is a function of δ which diverges as 
soon as δ is close to the threshold δc .

The presence of the critical value δc can be also “visually” ver-
ified by plotting, the Poincaré section [xn, vn = cos(θn)] generated 
by the collisions of the trajectories with the border y = 0 (Fig. 4).

If the ripple of the channel is around δc , the phase-space por-
trait is overwhelmed by the periodic islands corresponding to the 
regular “bouncing ball” orbits in the transverse direction, these de-
termine the ballistic behaviour of σ 2(t).

When δ > δc , the emergence of a not negligible chaotic-sea sur-
rounding the periodic islands is responsible for onset of the linear 
growth of σ 2(t).

The diffusive transport of the particle in the channel directions 
can be quantified by the effective coefficient Deff referring to an 
initially localized ensemble of particles. Deff is computed by fitting 
the asymptotic behaviour 10.

Fig. 5 reports the variation of Deff as a function of the corruga-
tion depth δ. Deff turns out to be a monotonic decreasing function 
of δ showing two qualitatively different trends at small and rela-
tively large corrugation. In the region of small corrugation, δ < 0.5, 
Deff is very sensitive to the variation of δ and it seems to develop 
a divergence-like behaviour for small values, which can be roughly 
estimated from the data as

Deff ∼ (δ − δc)
−2 , (12)

indicated by the first dashed line in Fig. 5. This is consistent with 
the presence of the threshold δc below which the contribution of 
Fig. 5. Behaviour of the effective diffusion coefficient Deff against channel corruga-
tion degree δ in log–log scale. An overall monotonic decrease with increasing δ re-
sults in a crossover between two different behaviours. For δ > 1, Deff ∼ 1/(b0 +b1δ), 
with b0 	 0.0964 and b1 	 0.0954. Whereas for δ < 0.5 the coefficient seems to de-
velop a divergence which can be roughly estimated as Deff ∼ a0(δ − δc)

−2, with 
a0 = 1.05 and δc 	 0.09. For a comparison, we plot the prefactor D0 = 〈τ 2〉/(2〈τ 〉)
in Eq. (19) (black triangles), in the jargon, corresponding to the random phase ap-
proximation RPA or quasilinear approximation, QLA. The inset shows the same data 
plotted in the reciprocal y-axis to assess the linear trend b0 + b1δ of the denomi-
nator.

a small fraction of ballistic trajectories is sufficient to lead to a 
superdiffusive behaviour of the MSD.

This scenario somehow recalls the one occurring in the Stan-
dard Map (SM) wherein, for values of the control parameter below 
the threshold, k < kc ∼ 0.9716... , the variation of the momentum 
p is bounded by the presence of KAM tori. The diffusive growth 
〈p2〉 ∼ D0t is observed only for k > kc , when even the last KAM 
torus is destroyed and the chaotic motion can invade the phase 
space. Analogously in our channel, the presence of KAM tori for 
δ < δc corresponds to a ballistic motion, and normal diffusion oc-
curring above δc corresponds to the destruction of the last KAM 
tori. This picture is consistent with the Chirikov’s resonance overlap 
mechanism that provides a simple criterium to explain the arising 
of chaotic zones in the phase space [30]. In the case of SM, the 
Chirikov’s criterion enables to provide a theoretical estimate of the 
threshold value, however in our case, the criterion is of difficult ap-
plicability, so we had to obtain δc only by numerical simulations, 
which suggest a value δc ≈ 0.07.

The main panel of Fig. 5 and the inset show that in the regime 
of higher corrugation (δ > 1) the diffusion coefficient decreases 
with a law

Deff = 1

b0 + b1δ
. (13)

This behaviour can be explained via an heuristic argument which 
will be presented in the next section. Of course for lower range 
of δ, Deff can also depend on the finer details of the profile w(x), 
therefore in these cases, the expression of Deff is not expected to 
be as simple as Eq. (13).

4. Interpretation of results

In order to understand the behaviour of the coefficient Deff , it 
is reasonable to look at the motion in terms of persistence, which 
is a natural effect in the context of deterministic diffusion [31,32].

In fact, the correlation that necessarily exists among consecu-
tive free-paths cannot be neglected and confers a certain degree 
of persistence to the trajectories. Therefore, looking at particle tra-
jectories as correlated random walks [33,34] is particularly useful 
as we can adapt a derivation developed in Ref. [35] to obtain the 
well-known Taylor–Green–Kubo formula for Deff .
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After n-collisions with the walls, a single particle which started 
at x0, is found at the position

xn = x0 +
n∑

i=1

viτi ,

hence, the average MSD from the initial condition is

〈|xn − x0|2〉 	
n∑

i, j=1

〈τiτ j〉 〈vi · v j〉. (14)

This is only valid under the hypothesis of independence between 
velocity and time. Furthermore, the above sum can be easily rear-
ranged as it follows

〈|xn − x0|2〉 	
n∑

i=1

〈τ 2
i 〉 〈v2

i 〉 + 2
n∑

i, j>i

〈τiτ j〉 〈vi · v j〉 .

Now by taking into account that velocities have constant and uni-
tary modulus (v2

0 = 1), 〈vi · v j〉 = 〈cos(θ j − θi)〉 and by assuming 
that time correlations factorize 〈τiτ j〉 = 〈τi〉〈τ j〉, we obtain a sim-
plified but not trivial expression, that is

〈|xn − x0|2〉 = n〈τ 2〉 + 2〈τ 〉2
n∑

i, j>i

〈cos(θ j − θi)〉 . (15)

The above result is rather general but, as we will discuss later, 
anomalous or standard behaviour can arise in the limit n � 1, de-
pending on the asymptotic decay of the Velocity Autocorrelation 
Function (VACF) to zero. Since the diffusion coefficient is

Deff = lim
n→∞

〈|xn − x0|2〉
2 n〈τ 〉 ,

one obtains

Deff = 1

2

〈τ 2〉
〈τ 〉 + 〈τ 〉

∞∑
k=1

〈cos(θk − θ0)〉 . (16)

As shown in Appendix A, the hypothesis that angles formed by two 
consecutive velocities φk = θk+1 − θk are independent and identi-
cally distributed variables leads to the final expression in closed-
form

Deff = 1

2

〈τ 2〉
〈τ 〉 + 〈τ 〉 α(1 − α) − β2

(1 − α)2 + β2
, (17)

where we set α = 〈cos(φ)〉, β = 〈sin(φ)〉 and

D0 = 1

2

〈τ 2〉
〈τ 〉 (18)

being the independent free-path contribution, also known as ran-
dom phase approximation (RPA) or quasilinear approximation 
(QLA) [36,37]. The variation of D0 with δ is represented by the 
black triangles in Fig. 5.

It is clear that the particular shape of the profile enters in the 
values of the constants α, β that are functions of δ. A simple esti-
mate of α, β can be found at the end of the Appendix A leading to 
the approximated formula

Deff = D0 + 〈τ 〉 μ(2 − √
1 + ε2)

(1 + μ)
√

1 + ε2 − 2μ
, (19)

with 〈τ 〉 taken from Eq. (9) and μ = 〈cos(2θ)〉 where θ is the angle 
that the particle velocity forms with channel axis.

Although formula (19) is derived upon strong simplifying as-
sumptions, it is able to catch the basic dependence of the diffusion 
Fig. 6. (Colour online.) Comparison of Eq. (19) (dot-dashed) to simulation data (cir-
cles), at different values of the parameter μ = 〈cos(2θ)〉. Despite the simplifications, 
Eq. (19) qualitatively reproduces the behaviour of the simulated Deff.

constant on the parameter δ, as it can be seen in Fig. 6. The ap-
proximation is expected to reasonably works in the range δ > 0.5
where the corrugation is able to produce enough shuffling in the 
velocity directions that their correlations can be considered weak.

The correction to D0 depends parametrically on μ which, ei-
ther can be left as a free adjustable parameter or it can be esti-
mated from the simulations. Anyway, as Fig. 6 testifies, for δ > 0.5
the dependence on μ is quite weak, and a reasonable agreement 
is achieved between simulations and theoretical approximation 
of Deff.

Formula (17) allows also interesting considerations about the 
diffusion-like mechanism. The second term, accounting for corre-
lations of free-paths before and after a collision, is expected to 
become relevant as soon as the dynamics develops persistence, 
for instance when long ballistic flights have a non negligible role. 
A simple, but not trivial scenario is the following: each trajectory 
is characterized by a certain persistence, for which it undergoes 
many forward collisions and few backward ones so that the angu-
lar distribution can be considered approximately bimodal

p(φ) = pδ(φ) + (1 − p)δ(φ − φ0) (20)

with p probability of a forward scattering and 1 − p the probability 
to get a backward scattering of an angle φ0 �= 0

α = 〈cos(φ)〉 = p + (1 − p) cos(φ0)

β = 〈sin(φ)〉 = (1 − p) sin(φ0).

Upon inserting the above expression in Eq. (17), one obtains after 
simple algebra,

Deff = D0 + 〈τ 〉 p − 1/2

1 − p
. (21)

In the regimes where the dynamics develops strong degree of per-
sistence, p 	 1, the second term becomes dominant and very large. 
This elementary argument explains the emergence of the singular 
behaviour observed in Fig. 5 for small δ.

The behaviour Deff ∼ 1/δ observed for large values of δ, 
Eq. (13), can be explained via a simple phenomenological argu-
ment discussed in [38–40]. With reference to Fig. 1, the channel 
can be separated into two regions: the corridor C and the hump 
region H. More precisely such regions are defined as

C = {(x, y) ∈ R | 0 < y < w0} (22)

H = {(x, y) ∈ R | w0 < y < w(x)} . (23)

Particles spend time both in C and H with certain probabilities, 
but only the time spent in the corridor C really contributes to 
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the transport. The msd of the particles that remain in C is given 
asymptotically by σ 2(t) ∼ 2Pt(C)t , where Pt(C) is the time depen-
dent survival probability in C .

Since in the long time limit the transverse motion becomes sta-
tionary, the occupation probability Peq(H) of H is

Peq(H) = μ(H)

μ(H) + μ(C)
, (24)

where μ(C) + μ(H) = L(w0 + δ/2) and μ(C) = Lw0 are the geo-
metrical areas within a single period of the channel. Accordingly, 
the occupation of C will have probability Peq(C) = 1 − Peq(H). 
Thus, the longitudinal motion of a particle can be regarded as a 
random walk jumping between C and H and vice-versa. Within 
this drastic approximation, the diffusion coefficient is

Deff ∼ Peq(C) = w0

w0 + δ/2
(25)

which explains the 1/δ behaviour as shown in Fig. 5 for large δ, 
and roughly justifies the fitting function (13).

It is interesting to notice that the approximation (19) for Deff
involves two terms; one is coming from the RPA, and the other 
from the VACF. For δ < 3, the VACF is positive and provides the 
largest contribution to Deff, especially for values δ near to δc . 
While for δ > 3 the contribution of the VACF is mainly negative 
and reduces the value Deff with respect to D0. Negative correla-
tions are associated with large number of reflections that a trajec-
tory undergoes, when it remains trapped in the large humps of the 
wavy profile.

Let us reconsider Eq. (19) which requires some important re-
marks, as it needs two conditions to be meaningful:

i) finiteness of the second moment of collision times, 〈τ 2〉;
ii) convergence of the infinite series 

∑
n〈v0 · vn〉.

In principle since our channel has an infinite horizon 〈τ 2〉 should 
logarithmically diverge as shown by [41,42] and discussed in [43]. 
At a practical level, the actual divergence depends on the chosen 
initial conditions of the particle ensemble. With the used initial 
condition the logarithmic divergence which is particularly weak, is 
not appreciable.

Once one accepts that 〈τ 2〉 has “finite” values, there is another 
delicate issue coming from the sum of velocity auto-correlation 
C(n) = 〈v0 · vn〉. There are two possibilities: i) C(n) decays fast 
enough to give a finite Deff ii) C(n) decays too slowly, this cor-
responds to anomalous super diffusion. The most common case 
(standard diffusion) corresponds to the validity of the central-limit 
theorem hypothesis. If VACF decays as C(n) ∼ n−β with β ≤ 1, 
the diffusion turns to be anomalous, specifically if β < 1 we have 
σ 2(t) ∼ t2−β and if β = 1, σ 2(t) ∼ t ln(t) which is a weak form of 
anomalous diffusion.

It is important to remark that the description of a process just 
in terms of the asymptotic behaviour of σ 2(t) is not always com-
plete, indeed it is meaningful only when the central limit theorem 
can be applied [44,45]. There are examples of more complex pro-
cesses that are fully characterized by the knowledge of the whole 
spectrum of moments 〈|x(t)|q〉 ∼ tqν(q) . This corresponds to a fail-
ure of the self-similarity [46] for which a single exponent is not 
enough to describe the diffusive properties of the system. This be-
haviour is called “strong anomalous diffusion”, it is not a mere 
curiosity and has been observed in several symplectic dynamics 
[47–49]. In our system, we have numerical evidence of the validity 
of the most common scenario, i.e. the standard Gaussian diffusion 
at least in high corrugation conditions. In contrast, several works 
[41,50–53] agree on the fact that the infinite horizon implies a cor-
relation decay 1/t leading to the so-called “marginal anomalous” 
behaviour σ 2(t) ∼ t ln(t). However, it is rather difficult to obtain 
a sufficiently clean simulation data confirming the presence of the 
logarithmic multiplier in agreement with the numerical results by 
Cristadoro et al. [54].

5. Conclusions

We studied numerically the diffusive transport of free particles 
in a infinite-long channel bounded by a flat and by a periodi-
cally corrugated wall; particles hitting the boundaries are mirror 
reflected. In particular, we investigated the effect of the periodic 
corrugation on the transport along the channel axis, by varying 
the parameter δ in the undulating profile (1).

For a large range of δ, we evolved an ensemble of particles ini-
tially localized at random along the boundaries of the fundamental 
cell around the origin. For this set of particles, we first computed 
the average collision time (mean-free path) making a comparison 
with the theoretical prediction derived by a simple geometrical ar-
gument [27,28].

We also studied the time-behaviour of the mean square dis-
placement σ 2(t) of the particles from their initial conditions 
which, despite the infinite horizon, exhibits an asymptotic be-
haviour which cannot be distinguished from a genuine diffusion. 
An effective diffusion coefficient Deff is obtained showing an inter-
esting dependence on the parameter δ. In fact, Deff has an overall 
monotonic decrease when δ increases, but there is a threshold δc

below which the ballistic motion of the particles prevails leading to 
a σ 2(t) ∼ t2 behaviour. Simulation results indicate that for moder-
ate and large δ, Deff decreases as 1/δ. The large corrugation regime 
enhances the trapping action of the humps, because the particles 
may frequently collide with the hump walls, this decreases the 
statistical occupation of the corridor thus reducing somehow the 
pathological effects of the infinite horizon.

Let us conclude with a comment the consequences of the in-
finite horizon, because the presence of the corridor allows free 
flights of arbitrary length. According to the works [41,49–51]
this condition is mathematically sufficient for a system to show 
“marginal anomalous diffusion” characterized by a msd σ 2(t) ∼
t ln(t) corresponding to a ill-defined diffusion coefficient which di-
verges as ln(t). Although our simulations evolved 2 × 104 particles 
for a time window T w = 106, we were not able to really appreciate 
logarithmic deviations from the standard diffusion.

Presumably such difficulty, discussed also in Ref. [54,55], can 
be primarily ascribed not only to the weakness of ln(t) cor-
rection, whose detection is easily shaded by finite time/size ef-
fects and by the selection of the initial conditions, but also to 
the “uncertainty” of the evolution algorithm due to the small 
but finite accuracy in the numerical solution of Eq. (5). Likely, 
these factors concur to the suppression of arbitrary long flights 
that soon or later turn to be re-absorbed. This situation virtu-
ally corresponds to the presence of a “external noise” that even-
tually regularizes the singularities of the second moment of the 
collision-time distribution as well as of the mean square displace-
ment.
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Appendix A

In this appendix we compute the sum over the angles in for-
mula (15)

Fn =
n∑

i, j>i

〈cos(θ j − θi)〉

expanding the double summation

Fn =
n−1∑
i=1

⎡
⎣ n∑

j=i+1

〈cos(θ j − θi)〉
⎤
⎦

and changing the index k = j − i, (1 ≤ k ≤ n − i),

Fn =
n−1∑
i=1

[
n−i∑
k=1

〈cos(θk+i − θi)〉
]

(A.1)

the argument of the cosine can be written as a sum of consecutive 
angular increments θl+1 − θl = φl

θk+i − θi =
i+k−1∑

l=i

(θl+1 − θl) =
k∑

l=1

φl

therefore we have

〈cos(θk+i − θi)〉 =
〈

cos

[
k∑

l=1

φl

]〉
.

The assumption that the angular increments, φl , are independent 
and identically distributed implies that the above expression can 
be re-written as

〈cos(θi+k − θi)〉 = 1

2

[
〈eiφ〉k + 〈e−iφ〉k

]
.

If we set z = 〈eiφ〉 and z = 〈e−iφ〉, the sum running on k in Eq. (A.1)
reduces to
n−i∑
k=1

〈cos(θk+i − θi)〉 =
n−i∑
k=1

1

2

(
zk + zk

)
,

then, using the geometric series formulas, we obtain

n−i∑
k=1

〈cos(θk+i − θi)〉 = 1

2

[
z

1 − zn−i

1 − z
+ z

1 − zn−i

1 − z

]
.

Finally developing the sum on i in Eq. (A.1),

Fn = z/2

1 − z

[
n − 1 − zn

1 − z

]
+ z/2

1 − z

[
n − 1 − zn

1 − z

]
(A.2)

In the limit of large n, the leading contribution is

Fn ∼ n

2

[
z

1 − z
+ z

1 − z

]
= n�

[
z

1 − z

]
where the coefficient F = � {z/(1 − z)}, after expressing z =
〈cos(φ)〉 + i〈sin(φ)〉, becomes

F = α(1 − α) − β2

(1 − α)2 + β2

and provides the result (17), with α = 〈cos(φ)〉 and β = 〈sin(φ)〉.
We now attempt an estimate of α and β . This can be achieved 

by considering the transfer matrix (6) which relates the pre-
collision velocity v = (cos θ, sin θ) to the post-collision one v′ = Mv. 
By definition α = 〈v · v′〉 = 〈v · Mv〉 and β = 〈v × v′〉.
Now, because the elements of each row of M are bounded be-
tween [−1, 1] and satisfy the condition M2

r,x + M2
r,y = 1, M can be 

easily re-parameterized as

M =
[

cosη sinη

sinη − cosη

]
, (A.3)

where we have set,

cosη = 2

1 + m2
− 1, and sinη = 2m

1 + m2
.

A simple algebraic manipulation gives α = 〈cos(η − 2θ)〉 and like-
wise β = 〈sin(η − 2θ)〉. As a consequence, the “angle” η is related 
to the angle φ (between two consecutive velocities) via the equa-
tion φ = η − 2θ .

Expanding the trigonometric expressions of α and β , and as-
suming the averages over η and θ to be factorized, we obtain

α = 〈cosη〉 〈cos(2θ)〉 + 〈sinη〉 〈sin(2θ)〉
β = 〈sinη〉 〈cos(2θ)〉 − 〈cosη〉 〈sin(2θ)〉.

In addition, due to the channel symmetry, we can set 〈sinη〉 =
〈sin(2θ)〉 = 0, thus

α = 〈cosη〉 〈cos(2θ)〉 and β = 0 .

According to the definitions (1), (6) and by assuming a uniform 
distribution of x on the unitary cell,

〈cosη〉 = 4

L

L/2∫
0

dx

1 + ε2 sin2(kx)
− 1

with ε = πδ/L, and after a simple integration, we obtain

〈cosη〉 = 2√
1 + ε2

− 1 = A , (A.4)

leading to the expression

F = A 〈cos(2θ)〉
1 − A 〈cos(2θ)〉 .

Finally by denoting μ = 〈cos(2θ)〉 = 〈cos2 θ〉 − 〈sin2 θ〉 and using 
(A.4), we arrive at the result

F = μ(2 − √
1 + ε2)

(1 + μ)
√

1 + ε2 − 2μ
, (A.5)

representing a correction to the RPA diffusion coefficient, D0, only 
due to the correlation between the velocity before and after a 
collision with the corrugated wall. The correction depends para-
metrically on μ, but as Fig. 6 shows, such a dependence is also 
weak. In the absence of reasonable guesses on the values of μ, it 
can be left as an adjustable parameter.
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