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Abstract We study the non equilibrium statistical proper-
ties of a one dimensional hard-rod fluid undergoing collisions
and subject to a spatially non uniform Gaussian heat-bath and
periodic potential. The system is able to sustain finite currents
when the spatially inhomogeneous heat-bath and the periodic
potential profile display an appropriate relative phase shift, φ.
By comparison with the collisionless limit, we determine the
conditions for the most efficient transport among inelastic,
elastic and non interacting rods. We show that the situation is
complex as, depending on shape of the temperature profile,
the current of one system may outperform the others.

Keywords Seebeck ratchets · One dimensional systems ·
Granular systems

F. Cecconi
Institute for Complex Systems, CNR, Via dei Taurini 19,
00182 Rome, Italy

G. Costantini
CNR-ISC, Università Sapienza, p.le A. Moro 2, 00185 Rome, Italy

G. Costantini
Dipartimento di Fisica, Università Sapienza, p.le A. Moro 2,
00185 Rome, Italy

U. M. B. Marconi (B)
Dipartimento di Fisica, University of Camerino,
Via Madonna delle Carceri, 68032 Camerino, MC, Italy
e-mail: umberto.marinibettolo@unicam.it

U. M. B. Marconi
INFN, Perugia, Italy

U. M. B. Marconi
CNISM, Camerino, Italy

1 Introduction

Recently there has been an upsurge of interest in the under-
standing of non equilibrium systems which even in the
absence of an applied bias can generate currents. Typical
examples are the thermal ratchets and Seebeck ratchet [1],
where an asymmetric potential and a non Gaussian noise
generate a directed motion.

Several authors [2,3] showed that a class of geometrically
asymmetric elastic objects undergoing some holonomic con-
straint and coupled to heat baths at different temperatures
can rectify thermal fluctuations and thus produce work. The
absence of a time-reversal symmetry invalidates the standard
detailed balance [4,5]. The directed motion of microscopic
systems of somehow different nature was also studied sev-
eral years ago by Landauer [6,7] who considered a bistable
potential with an hot heat reservoir placed at one side of the
potential peak and a cold reservoir on the other side and pre-
dicted a directed current of particles toward the colder side.
This is the so-called the blowtorch effect which has been
exploited in [8,9] to produce directed currents in periodic
non-isothermal systems.

In this paper, we study how the presence of interac-
tions, such as excluded volume and inelastic collisions
among Brownian particles, affects the blowtorch transport
mechanism. To the best of our knowledge only the case
of overdamped independent particles has been analyzed in
detail [10,11].

2 Model

The model consists of N impenetrable hard-rods of mass,
m, size σ and position xi(t) (i = 1, . . . , N ) evolving on a
segment of length L according to the dynamics [12,13]
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m
d2xi

dt2 = −mγ
dxi

dt
− dV (xi)

dxi

+ √
2mγT (xi) ξi(t)

+
∑

j

fij . (1)

We assume cyclic boundary conditions, so that particles
crossing with positive velocity the point x = L reenter at
the point x = 0 and vice-versa.

Equation (1) is based on the assumption that four kind of
forces act on the rods. These are:

(i) the frictional force, −mγdxi/dt , proportional to the
velocity;

(ii) the gradient of a time-independent spatially periodic
potential V (x) = V0 cos(2πx/w) of period w, tend-
ing to confine the particles near its minima;

(iii) the stochastic driving force, mimicking the action of
a heath bath with a spatially non uniform temperature
profile, has an intensity T (x) = Tc + Ths(x) with
s(x) = (1 + tanh[μ sin(2π/wx − φ)])/2 a periodic
smooth step-like function between 0 and 1, which
alternates cold Tc and warm Tc +Th regions of size w

in [0, L]. The values Tc, Th characterize the tempera-
ture jump amplitude and φ = 2πx0/w determines the
mutual shift of T (x) and V (x). All temperatures are
measured in units such that the Boltzmann constant is
kB = 1. As usual, ξi(t) is a zero mean and Gaussian
noise with auto-correlation 〈ξi(t)ξj (s)〉 = δij δ(t−s);

(iv) finally, the term
∑

j fij indicates the resultant of con-
tact impulsive forces acting on i due to the particles
j �= i. namely, the rods experience mutual inelastic
collisions occurring at contact |xi+1 − xi | = σ . After
each collision the velocities of a pair (i, j) change
according to the rule v′

i = vi − (1 + α)(vi − vj )/2
and v′

j = vj + (1 + α)(vi − vj )/2, where the prime
indicates post-collisional values and α is the coeffi-
cient of restitution.

3 Theory

In the limit γ → ∞ and mγ =const, the multiple time
scale analysis of [14,15] can be extend to the present case to
derive the evolution of the one-particle density ρ(x, t) from
the Kramers equation for the phase-space distribution func-
tion f (x, v, t) [16]:

∂ρ(x, t)

∂t
+ ∂J (x, t)

∂x
= 0 (2)

where the associated current reads:

J (x, t) = − 1

mγ

{ ∂

∂x

[
Tg(x)ρ(x, τ )

]
−F(x)ρ(x, t)

+ (1 + α)

2
ρ(x, t)

[
Tg(x + σ)g2(x, x + σ)

ρ(x+σ, t)−Tg(x−σ)g2(x, x − σ)ρ(x − σ, t)
]}

(3)

The first term represents the single particle contribution to
the current, whereas the second term, non linear in the den-
sity, accounts for the excluded volume effect. It contains
the pair correlation function g2(x, x′) evaluated at contact,
the coefficient of restitution α and the granular (or kinetic)
temperature Tg of particles related to the heat bath tempera-
ture by

Tg(x) = T (x)
{

1 − 1 − α2

2γ

√
T (x)

mπ

[
g2(x, x + σ)ρ(x + σ)

+g2(x, x − σ)ρ(x − σ)
]}

. (4)

In the high density limit, the above equations indicate that
inelasticity, temperature and density itself result intimately
connected to determine the system transport properties. On
the other hand, in the opposite limit, the latter term in Eq. (3)
can be neglected and analytical expressions of current J

and particle density ρ(x) can be explicitly worked out. We
remark that the system of non interacting particles provides
a meaningful comparison as it constitutes the low-density
regime extrapolation of interacting particle behavior. The non
interacting system admits two types of stationary solutions:
those corresponding to vanishing and non vanishing current
J respectively. The key quantity determining the presence of
a systematic flux is the “entropy” integral

S(x) =
x∫

0

dξ
V ′(ξ)

T (ξ)
.

Using the periodicity of the system, we obtain the stationary
current J0

J0 = 1

mγ

1 − eS(w)

ac − b[1 − eS(w)] (5)

in terms of three constants a, b, c related to S(x) by

a =
w∫

0

dx
e−S(x)

T (x)
, b =

w∫

0

dx
e−S(x)

T (x)

x∫

0

dξeS(ξ),

c =
w∫

0

dx eS(x). (6)

It can be easily verified that, when V (L) = V (0) (zero exter-
nal load) and T (x) is constant or φ = 0, the current automat-
ically vanishes. It is instructive to discuss how the current of
the non-interacting system depends on the temperature scales

123



Thermally induced directed currents in hard rod systems

Tc and Th. The current, for Tc fixed, grows as the temperature
step Th increases, for the jumps over the barrier to become
more probable. On the other hand, if Th is fixed, J does not
depend monotonically on the temperature Tc. Indeed, in the
limit Tc → 0, the particles have a small probability to escape
from the potential minima, so that the current must vanish. In
the opposite limit Tc � V0, the confining effect of the energy
barriers becomes negligible and the current must vanish too.
For intermediate values of Tc, a maximum in the current is
expected at a Tc-value which runs to zero as V0 is reduced.

4 Numerical results

The case of interacting particles is not so fortunate as not
amenable to analytic solution, therefore our study will be
based mainly on numerical simulations. The picture, indeed,
remains qualitatively but not quantitatively similar to that of
the non interacting case and reveals some interesting features.

When considering interacting systems, two main effects
come into play which may lead to a behavior deviating
from the non interacting system. First, the mutual repulsion
between particles induces dynamical correlations, either pro-
moting the exit from a potential well via energetic collisions
or forbidding a jump towards a too crowded well. A mean-
ingful parameter commonly used to take into account the
crowding degree of a granular system is the packing fraction
η = Nσ/L (0 ≤ η ≤ 1). Second, the granular temperature
of an inelastic system is generally lower than the temperature
of the elastic counterpart. Thus, thermally activated transport
is expected to be less efficient when dissipative collisions are
at work.

One may wonder on the specific influence of the model
parameters Tc/V0, Th/V0, φ, the packing η and inelasticity
α on the transport properties of the inelastic system (Inel).
For sake of shortness, here we discuss only temperature
effect choosing φ = π (which optimizes the current) and
we explore some significant regimes in η and α. Moreover
we compare the results of the inelastic system with the elas-
tic (El, α = 1) and non-interacting (NI, η → σ/L) ones, by
also analyzing the conditions for the efficient transport.

It is convenient to start the discussion by considering first
the stationary density profiles shown in Fig. 1. The inspec-
tion of profiles, indeed, provides a first indication on the way
particles react to parameter variation and how they distrib-
ute over the effective landscape generated by the potential
and temperature profiles. In the NI case, with Th 
 V0 and
Tc 
 V0, the combined effect of temperature and potential
profiles preferentially confines the particles in the narrow
region determined by the minimum of the potential and the
nearest colder temperature zone; in other words, the phase
difference between the minima of T (x) and V (x) produces
a sort of “cage” trapping the particles with small momenta.
This feature is clearly noticeable in the ρNI (x) structure of
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Fig. 1 (Color online) Density profiles of the systems at constant
Tc/V0 = 0.15, Th/V0 = 0.25 and increasing packing fraction η = 1/8
(orange), η = 1/4 (black), η = 1/2 (red) and η = 3/4 (blue). The
dashed curve corresponds to the NI system, while the closed circles
and open squares symbols correspond to the interacting systems with
α = 1 and α = 0.8 respectively. The other parameters are the following:
m = 1, σ = 1, μ = 4.0 and φ = π
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Fig. 2 (Color online) Particle current versus the rescaled temperature
Tc/V0 for four different values of the packing fraction η = 1/8 (green),
η = 1/4 (black), η = 1/2 (red) and η = 3/4 (blue). Open and full
symbols refer to inelastic and elastic system, respectively. For sake of
comparison to the low η regime also the NI current is plotted (dashed
curve)

Fig. 1 which develops peaks in the cage-region. The large
preferential confinement of the NI system is however impos-
sible to particles with excluded volume interaction whose
density profiles become soon broader and flatter on increas-
ing the average packing fraction η, see Fig. 1. This corre-
sponds to an effective decreasing of the barriers seen by the
interacting rods and such differences in the density profiles
translates into different transport properties.

We study thus the dependence of the currents JNI , JEl,

JInel on Tc (see Fig. 2) at different packing η and Th/V0 =
0.25 fixed. At low values of η = 0.125, the current of the
interacting systems (green symbols) behaves like the non
interacting one (dashed black) as expected. Increasing η, the
currents JEl and JInel while remaining very similar to each
other, strongly deviate from the corresponding JNI obtained
by multiplying for the appropriate number of particles, N ,
the single particle current J1. The currents of the interact-
ing systems start developing a maximum at lower Tc (around
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Fig. 3 (Color online) Granular temperature profiles of the systems for
two different value of Tc/V0: 0.7 (top) and 0.15 (bottom). Open and full
symbols correspond to inelastic and elastic system, respectively. The
dashed curve is the temperature profile for a NI system. Th/V0 = 0.25
and the other parameters are the same as in Fig. 1

Tc/V0 � 0.5 for η = 0.25 or Tc/V0 � 0.2 for η = 0.5). This
behavior can be explained by means of the excluded volume
effect that reduces the effective height of the barriers as the
mean packing of the wells increases. As a consequence the
maximum of the current versus Tc curve is located at smaller
temperatures with respect to the corresponding NI case. How-
ever, as the packing becomes sufficiently high a second effect
come into play which changes the above scenario. In this
regime, the effective barriers Ṽ0 become enough small to be
of the same order as the temperature step Th and the particles
can escape from the potential well even if Tc → 0. The cur-
rents JEl and JInel , for η = 0.75, show in fact a finite values
for small value of Tc/V0 (see blue symbols in Fig. 2). More-
over, increasing Tc, the particles become more energetic and
the rectifying effect is reduced determining a monotonically
decreasing trend of the currents.

Another aspect to consider is the influence of inelastic-
ity on the transport. The curves in Fig. 2 show that, for η

sufficiently high (e.g. η = 0.5), the inelastic system (open
symbols) becomes more efficient than the elastic one (closed
symbols) as long as Tc/V0 > 0.4. On the other hand, increas-
ing η, JInel is larger than JEl for all values of Tc (blue sym-
bols). This behavior can be explained analyzing the kinetic
temperature fields of the two systems. In Fig. 3, we show
these fields for η = 0.5 and two different values of Tc/V0.

While the elastic and non-interacting profiles of T (x) are
very close, the effective value of the temperature, in the
inelastic case, decreases near the potential minima. This indi-
cates that the ratio Tc/Ṽ0 is smaller if α < 1. The inelastic
system can thus be approximately considered as the elas-
tic one, but with a lower temperature Tc, i.e. JInel(Tc) ≈
JEl(Tc − δTc) for a fixed Tc. Such decreasing of Tc helps to
rectifying the fluctuations when the energy is enough for the
activated thermal process, i.e. for η = 0.75 or η = 0.5 and
Tc/V0 > 0.4, or it reduces the transport when Tc +Th 
 Ṽ0

(i.e. for η = 0.5 and Tc/V0 < 0.4).

5 Concluding remarks

In this work, we have shown that contrary to intuition, one-
dimensional systems with hard-core interactions can display
a more efficient “blowtorch” effect than a non interacting
one. Our simulations show this efficiency inversion to be
correlated to the resistance of hard-rods to localize in nar-
row regions. Under some conditions, the inelasticity makes
the transport more efficient by reducing the average kinetic
energy.
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