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1.  Introduction

The study of the motion of a tracer driven by an external 
force in a complex environment plays a central role in many 
research areas, ranging from transport phenomena at different 
scales [1–6], to the response theory in non-equilibrium sys-
tems [7–9]. Although some results have been obtained in the 
last decades in the framework of linear response, the behavior 
of the tracer for perturbations in the nonlinear regime is much 
less understood. It can show complex behaviors, featuring 
surprising phenomena such as negative differential mobility 
(NDM) and even absolute negative mobility (ANM). The 
former means a non-monotonic behavior of the force–velocity 
curve, while the latter indicates that, for certain values of the 
model parameters, the tracer can display a stationary velocity 
opposite to the direction of the applied external force. NDM 
has been recently studied in discrete lattice gas models, where 
also some analytical results are available [10–14], while ANM 
is observed in systems with continuous states as reported for 
instance in [15–19]. The general mechanisms responsible for 
these phenomena rely on some trapping effects occurring in 
the system due to the coupling of the tracer dynamics with the 

surrounding complex environment, and depend on the specific 
model.

In this paper we study a similar problem for the case of 
an active particle advected by a steady laminar flow. Active 
matter is generally characterized by self propulsion, namely an 
internal conversion of energy into unidirected motion, which 
results in a persistent direction, over an ‘active’ timescale τA. 
Instances of such systems range from biological organisms 
[20, 21] to man-made devices [22]. Several models have been 
proposed to study the dynamics of these non-equilibrium sys-
tems, that can show interesting phenomena, such as phase sep-
aration, clustering, symmetry breaking and so on [20, 23, 24].  
The response of active particles moving in complex environ
ments under the action of an external force, is an important 
issue in different contexts: on the one hand, from a theoretical 
perspective, this problem plays a central role in the theory of 
non-equilibrium (also in the non-linear regime) fluctuation-
dissipation relations [25–29]; on the other hand, the study of 
the driven dynamics of active particles has important applica-
tions in active microrheology [30] as well as in the modeling 
of the dispersion of micro-organisms in fluids [31, 32]. Due 
to the non-equilibrium nature of these systems, non-trivial 
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Abstract
We study, via extensive numerical simulations, the force–velocity curve of an active particle 
advected by a steady laminar flow, in the nonlinear response regime. Our model for an active 
particle relies on a colored noise term that mimics its persistent motion over a time scale 
τA. We find that the active particle dynamics shows non-trivial effects, such as negative 
differential and absolute mobility (NDM and ANM, respectively). We explore the space of 
the model parameters and compare the observed behaviors with those obtained for a passive 
particle (τA = 0) advected by the same laminar flow. Our results show that the phenomena 
of NDM and ANM are quite robust with respect to the details of the considered noise: in 
particular for finite τA a more complex force–velocity relation can be observed.
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behaviors such as NDM are expected, as observed in recent 
molecular dynamics simulations of active matter particles 
moving through a random obstacle array [33], or in discrete 
models on a lattice [34, 35]. Many other interesting effects 
can be observed due to the coupling of the active (non-equi-
librium) motion of the particles with the boundaries [36–39] 
or with the surrounding crowding environment [40–45]. In 
particular, driven motion along narrow channels or confined 
geometries can show subdiffusion and anomalous fluctuations 
[46–53].

Here we consider a different approach to describe active 
matter, where the persistent motion is introduced via a colored 
noise term, with a finite correlation time τA [37, 54]. Inspired 
by this model, we study the nonlinear response to an external 
bias of an active particle advected by a divergenceless velocity 
field in the presence of colored noise. This model general-
izes the system considered in [18, 19], where the dynamics 
of an inertial particle was considered. Indeed, in the limit 
of τA → 0 one recovers the δ−correlated ‘passive’ case, 
while for τA → ∞ one obtains the deterministic, zero-noise 
dynamics. As shown in previous works [18, 19], the effective 
motion of the tracer in the passive case, for small noise, occurs 
along preferential ‘channels’, that can be aligned downstream 
or upstream with respect to the force, resulting in a non-
trivial force–velocity relation. Here we show that phenomena 
such as NDM and ANM also take place for the active par-
ticle dynamics and therefore, in these models, they are rather 
robust with respect to the kind of considered noise. Moreover, 
we investigate some regions of the parameter space of the 
model, identifying the cases where NDM or ANM occur. In 
particular, we focus on the range of parameters where in the 
passive case with τA = 0 ANM occurs [19]: our results clari-
fies in what manner the behaviors for τA = 0 get modified 
for finite τA, and show that the effect of ANM can be ampli-
fied by taking larger values of τA. Indeed, both the range of 
forces where ANM is observed and the negative values of the 
stationary velocity, can be increased by increasing the persis-
tence time of the particle.

2.  Model

Consider a driven tracer particle, moving in two dimensions 
with position x = (x, y) and velocity v = (vx, vy), advected by 
a velocity field U = (Ux, Uy). The equations of motion are the 
following

ẋ = vx,� (1)

ẏ = vy,� (2)

v̇x = − 1
τS
(vx − Ux) + F + wx,� (3)

v̇y = − 1
τS
(vy − Uy) + wy,� (4)

where U  is a divergenceless cellular flow defined by a stream-
function ψ as:

Ux =
∂ψ(x, y)

∂y
, Uy = −∂ψ(x, y)

∂x
.� (5)

In the above equations τS is the Stokes time, F the external 
force in the x−direction, and

ψ(x, y) =
U0

k
sin(kx) sin(ky),� (6)

where k = 2π/L. wx and wy are stochastic terms described by 
an Ornstein–Uhlenbeck process

ẇx = −wx

τA
+

√
2D0

τA
ξx,� (7)

ẇy = −
wy

τA
+

√
2D0

τA
ξy,� (8)

where ξx and ξy are uncorrelated white noises with zero mean 
and variance

〈ξα(t)ξβ(t′)〉 = δ(t − t′)δαβ .� (9)

We set U0  =  1 and L  =  1, and the typical time scale of the flow 
becomes τ∗ = L/U0 = 1. The parameter τA represents the 
correlation time of the noise. The limit τA → 0 recovers the 
case of uncorrelated noise, and the microscopic thermal noise 
with diffusivity D0 can be expressed in terms of the temper
ature T of the environment by the relation D0 = T/τS. In the 
opposite limit τA → ∞, somehow the system approaches the 
deterministic (zero-noise) dynamics, because the stochastic 
terms wx and wy in equations (3) and (4) are negligible (order √

D0/τA ). The overdamped version of this model (with no 
external force) has been introduced to study the transport of 
a fluid particle in the upper mesoscale ocean [55, 56] and has 
been analyzed using multiscale technique in [57].

3.  Anomalous behaviors of the force–velocity curve

When a tracer particle is driven by a small external force in 
a simple (equilibrium) fluid, one expects that the asymptotic 
mean velocity selected by the tracer will increase with the 
applied force, in agreement with the linear response. However, 
when the system is out of equilibrium, due to the presence 
of currents, or when the applied force is beyond the linear 
regime, the behavior of the force–velocity curve can be highly 
non-trivial, showing surprising behaviors.

Considering models defined in continuous space, NDM 
and ANM can be observed when the dimensionality of the 
phase space is larger than two [58, 59]. For instance, ANM 
can be shown by: (i) a one-dimensional inertial Brownian par-
ticle subjected to a periodic time-dependent force [16]; (ii) 
an overdamped Brownian particle in two dimensions sub-
jected to dichotomous noise [60]; (iii) an inertial particle in 
two dimensions advected by a velocity field [18]. In the first 
two cases a detailed analysis of the deterministic properties of 
the system identifies the subtle interplay between the stability 
of coexisting attractors, noise induced metastability, and tran-
sient chaos as the underlying physical mechanism [59]. In the 
latter case iii), corresponding to the limit τA = 0 of the model 
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introduced above, the behavior of the force–velocity curve 
of the tracer has been analyzed as a function of the Stokes 
time τS and of the amplitude of microscopic white-noise D0, 
obtaining a ‘phase chart’ of the regions of the parameters 
space where NDM and ANM occur [19]. For large values of 
the noise D0 � 1, one observes a simple monotonic behavior, 
as expected, because in that case the effect of the under-
lying velocity field is negligible with respect to the noise; 
by decreasing D0, instead, one finds NDM for small enough 
values of τS, with a narrow region of ANM for 0.6 � τS � 1 
(and D0 � 5 × 10−3): in particular, ANM is observed when 
the Stokes time of the particle and the characteristic time of 
the velocity field are comparable, namely for τS ∼ τ∗ = 1. All 
these peculiar phenomena can be traced back to the general 
expression for the average of equation (3)

〈vx〉 = FτS + 〈Ux(x, y)〉.� (10)

This shows that the external force has a twofold effect: it 
drives the tracer along its direction, but at the same time, it 
pushes the particle towards specific regions of the underlying 
velocity field. ANM and NDM, thus, emerge from the subtle 
competition between the terms FτS and 〈Ux(x, y)〉.

3.1.  Negative differential mobility

In order to investigate the effect of colored noise, i.e. the role of 
the new parameter τA, we first study the case with Stokes time 
τS = 10 and D0 = 10−5. The average velocity 〈vx〉 is reported 
in figure 1 as a function of the applied force F. Here 〈· · · 〉 is 
computed over many different (∼104) initial conditions and 
on long trajectories. One observes first a linear increase of the 
velocity and then a non-monotonic behavior. Eventually, for 
larger values of the force, the linear behavior is recovered, as 
expected. The intermediate region shows that even in the case 
of finite τA, the phenomenon of NDM occurs, suggesting that 
it is quite robust with respect to the kind of noise considered in 
the model. In the right panel of figure 1 we focus on the small 
force, linear regime to study the mobility µ = limF→0〈vx〉/F, 
that turns out to be a non-monotonic, weakly dependent func-
tion of the correlation time τA (see inset).

3.2.  Absolute negative mobility

A more interesting behavior is observed if the Stokes time 
and the characteristic time of the velocity field are of the 
same order, τS ∼ τ∗. In this case, for the passive inertial tracer 
(τA = 0) it has been shown [18, 19] that there exists a region 
of the parameters space (τS, D0), where absolute negative 
mobility can be observed. Here we investigate the robustness 
of this phenomenon when a more general model, including 
colored noise, is considered, and show how the phase diagram 
gets modified.

We first focus on the case with Stokes time τS = 1 (see 
figure 2). We investigate the behaviors of the force–velocity 
curve as a functions of the time τA and of the noise amplitude 
D0. For τA = 1 we find ANM for D0 = 10−5 and D0 = 10−3, 
but not for D0 = 10−4. Interestingly, in the case D0 = 10−3, 
we observe a negative linear response (green diamonds): this 
behavior does not violate any fundamental principle beacause 
the system is out of equilibrium even when the external force 
is zero, due to the non-gradient form of the velocity field U . 
For τA = 10 we find ANM for all explored values of D0; for 
τA = 20 we find ANM for D0 = 10−5, and D0 = 10−4, but 
not for D0 = 10−3. With respect to the passive case (τA = 0) 
we find that the region of the parameter space where ANM is 
observed is enlarged for finite τA, see table 1.

In the bottom right panel of figure 2 we focus on the case 
D0 = 10−5 and zoom in the region of ANM: we observe that for 
finite τA an interesting two-minima behavior of the force velocity 
relation is observed. It is also worth noting that the negative 
minima of the velocity depend on τA and increase (in absolute 
value) with increasing τA. This suggests that the phenomenon of 
ANM can be amplified by considering a finite τA.

More specifically, this seems to be related to the under-
lying deterministic structure. Indeed, in the limit τA → ∞ 
the stochastic terms wx and wy appearing in equations (3) and 
(4) become small (order 

√
D0/τA ) constants, depending on 

the initial conditions. In figure 3 we show the force–velocity 
relation for τS = 1 and zero noise, namely wx = wy = 0. In 
this deterministic case we find two deep negative minima 
(note the scale of ordinates), suggesting that the underlying 
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Figure 1.  Force–velocity relation 〈vx〉(F) for τS = 10, D0 = 10−5 and different values of τA. Data are obtained averaging over  ∼104 initial 
conditions and noise realizations. Left: note the non-monotonic behavior, corresponding to negative differential mobility. Right: zoom in 
the small force (linear) regime, from which the mobility μ is obtained (inset).
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deterministic dynamics governs the behavior observed in 
the presence of noise. This explanation has been carefully 
described in [59] for a one-dimensional system.

Figure 4 reports M = 5 × 104 points sampled from 
a deterministic (noiseless) trajectory of the particle 
with τS = 1 and re-folded into the fundamental cell 
C = [−L/2, L/2]× [−L/2, L/2], for forces F  =  0.063 
(left panel) and F  =  0.065 (right panel). The figures 
indicate that the dynamics for F  =  0.063 is regular/periodic  
while for F  =  0.065 it looks ‘chaotic’; however, in both 
cases the trajectory spends more time in the regions 
R = {(x, y) ∈ C | Ux(x, y) + FτS � 0} marked by green-
shaded domains. The extension and the contour of these 
regions is obtained by solving the inequality for the explicit 
form of Ux(x,y):

sin(kx) cos(ky) � −FτS

U0
≡ −W.

The results are the two domains represented in figure 4:

D1 =




x ∈ [−L/2, 0]

|y| � 1
k arccos

[
W

| sin(kx)|

]

and

D2 =




x ∈ [0, L/2]

|y| � 1
k arccos

[
−W

| sin(kx)|

]
.
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Figure 2.  Force–velocity relation 〈vx〉(F) for τS = 1, and several values of D0 = 10−5 and τA. In some cases absolute negative mobility is 
observed. Bottom right panel: zoom of a ANM region, showing a complex behavior characterized by two minima (the grey area represents 
the regions where the average velocity for the white noise case, τA = 0, changes sign).

Table 1.  Table showing the regions of the parameter space where 
ANM and NDM is observed, for τS = 1 (ST means standard, i.e. 
d〈vx〉/dF > 0 in all the range of explored values of F).

τS = 1 τA = 0 τA = 1.0 τA = 10 τA = 20

D0 = 10−3 ANM ANM ANM NDM

D0 = 10−4 NDM NDM ANM ANM

D0 = 10−5 ST ANM ANM ANM

0.06 0.064 0.068
F

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

〈V〉

Figure 3.  Force–velocity relation for τS = 1 in the zero-noise 
(τA → ∞) limit.
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For the values of F for which ANM is observed, figure 3, the 
dynamics preferentially occupies these domains so that the 
average (10) turns to be certainly negative.

The bottom panels of figure 4 show the corresponding his-
tograms of the set of values Uk = Ux[x(tk), y(tk)], k = 1, ..., M  
evaluated over the sampled points. Both histograms exhibit a neat 
asymmetry with respect to the origin, P(−|U|) > P(|U|), indi-
cating that in equation (10) the average 〈Ux(x, y)〉 gets mainly 
negative contributions and dominates over FτS.

We have performed the same analysis also for 
τS = 0.65: table 2 summarizes our results. In particular, note 

that for τS = 0.65 < τ∗ we do not observe ANM, but only 
NDM, at variance with the white-noise case τA = 0, where 
ANM occurs for some values of D0.

4.  Conclusions

In this paper, we have studied the nonlinear response to an 
external force of an active particle, with persistence time 
τA, in the presence of a laminar flow. We have focused on 
the behavior of the average velocity of the particle as a func-
tion of the applied force, exploring a region of the model 
parameter space, (τS, τA, D0), where τS is the Stokes time 
of the particle and D0 the amplitude of the active noise. We 
found that the force–velocity relation of the particle can show 
non-monotonic behaviors, including negative differential and 
absolute mobility. Our results indicate that the response of 
active matter in the presence of an underlying velocity field 
can show counterintuitive phenomena, such as NDM or ANM. 
In particular, this can be applied for sorting and selection of 

Figure 4.  Deterministic (noiseless) trajectory (red dots) sampled every ts = 2000∆t and folded into the fundamental cell 
C = [−L/2, L/2]× [−L/2, L/2] for two cases: τS = 1, F = 0.063 (left panel) and τS = 1, F = 0.065 (right panel). Left: the folded 
trajectory is periodic and mainly visits the regions of C where Ux(x, y) + FτS � 0 (shaded green areas). Right: the folded trajectory looks 
chaotic but again points are denser in the regions where Ux(x, y) + FτS � 0. Bottom panels reports the normalized histograms of the 
values U  =  Ux(x,y) collected along the trajectories showing the asymmetry with respect to the origin: P(−|U|) > P(|U|). This dynamical 
symmetry breaking is another signature of the presence of negative mobility states.

Table 2.  Table showing the regions of the parameter space where 
ANM and NDM is observed, for τS = 0.65.

τS = 0.65 τA = 0 τA = 1.0 τA = 10 τA = 20

D0 = 10−3 ANM NDM NDM NDM

D0 = 10−4 NDM NDM NDM NDM

D0 = 10−5 ANM NDM NDM NDM

J. Phys.: Condens. Matter 30 (2018) 264002
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particles with different activity (defined via the active time 
τA), exploiting the different response to an external force.

In general, anomalous response behavior can be expected 
in the nonlinear response regime, or/and out of equilibrium, 
namely in the presence of currents, when the time-reversal 
symmetry and detailed balance are violated by the dynamics. 
This happens in our model, where, even for zero external 
force, the system does not satisfy detailed balance, due to the 
non-gradient form of the velocity field and due to the active 
nature of the tracer.

It could be also interesting the study of more complex 
situations where several interacting active particles are con-
sidered, or including the effect of the particle motion on the 
structure of the surrounding fluid, or the presence of particular 
boundary conditions. Moreover, the investigation of the dif-
fusion properties in the absence and in the presence of the 
external force requires further analysis, in particular in the 
light of the non-equilibrium fluctuation-dissipation relations, 
connecting mobility and diffusion coefficient.
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