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ABSTRACT
The transport of independent active Brownian particles within a two-dimensional narrow channel, modeled as an open-wedge, is studied
both numerically and theoretically. We show that the active force tends to localize the particles near the walls, thus reducing the effect of the
entropic force which, instead, is prevailing in the case of passive particles. As a consequence, the exit of active particles from the smaller side
of the channel is facilitated with respect to their passive counterpart. By continuously re-injecting particles in the middle of the wedge, we
obtain a steady regime whose properties are investigated in the presence and absence of an external constant driving field. We characterize
the statistics and properties of the exit process from the two opposite sides of the channel, also by making a comparison between the active
case and passive case. Our study reveals the existence of an optimal value of the persistence time of the active force which is able to guarantee
the maximal efficiency in the transport process.
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I. INTRODUCTION

In the last years, the theoretical study of self-propelled
microswimmers has become an important research area at the cross-
roads between biology, mathematics, and physics. These systems are
ubiquitous in nature, typical examples being bacteria,1 protozoa,2
spermatozoa,3 living tissues,4 and actin filaments,5 to mention just
a few. On the other hand, bioengineers and physicists are develop-
ing techniques to create artificial self-propelled objects, as in the case
of the so-called Janus particles.6,7

The common feature of active particles is the existence of
a self-propelling mechanism converting the environmental energy
into motion.8–11 The nature of such propulsion varies from one
microswimmer to another but in general determines a ballistic
motion at short spatial and temporal scales and a diffusive motion
at larger scales.

In order to describe the behavior of such systems, different the-
oretical models have been developed; among them, we recall (a) the
Run&Tumble (R&T) model,12–14 where the microswimmers alter-
natively perform at a given rate ballistic displacements and tumbles,
i.e., random changes in the orientation of their velocity. (b) A con-
tinuous model with a Langevin-like dynamics, the so-called active

Brownian particle (ABP) model9,15 described in detail in Sec. II.
(c) The active Ornstein-Uhlenbeck particle (AOUP) model.16–18 All
these models show an intriguing phenomenology ranging from par-
ticle accumulation near the walls of a container19–25 to the exis-
tence of non-Boltzmann probability distributions26–28 also in the
presence of acoustic traps,29,30 the appearance of negative mobility
in the presence of non convex potentials,31 and motility induced
phase separation (MIPS),32–38 in the case of interacting active par-
ticles. The influence of geometrical constraints on the motion of
active particles is a less explored and only partly understood issue,
in spite of its importance in elucidating how some systems of bio-
logical interest behave. For instance, living bodies harbor colonies
of bacteria normally localized in the skin, external mucosae, gas-
trointestinal tracts, etc. These bacteria, by crossing narrow constric-
tions, are able to invade/infect the hosts’ internal tissues that instead
need to remain sterile.39 How this passage occurs is a problem of
great relevance for evident reasons, especially in cases of pathogen
infections.

In the framework of R&T modeling, first-passage properties
have been studied both with40 and without41,42 thermal noise for a
one-dimensional channel, whereas the same problem was numeri-
cally studied for a one-dimensional version of the ABP-model43 and
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in two-dimensional corrugated channels in Refs. 44 and 45. In a
similar context, a Fick-Jacobs transport equation46 accounting for
the channel geometry via an entropic effective force47–49 has been
proposed for weakly active particles.50

In the present paper, we idealize the motion of bacteria by
means of ABP and model the pore as a narrow wedge-shaped capil-
lary. At variance with previous studies, we investigate how the first-
passage process of an ABP through a narrow constriction depends
on the activity parameters as well as the geometry. The distribution
of the escape events has been addressed by several authors;31,51–53

in this work, we focus on the general features of escape process, in
particular, comparing the efficiency of “active” transport with the
Brownian transport.

The paper is organized as follows: in Sec. II, we introduce the
model, while in Sec. III, the steady-state properties of active particles
in the channel are discussed, including the density along the trans-
port direction and the density along a section of the pore. In Sec. IV,
we study the escape-time statistics showing how the efficiency of the
active transport depends on the active force. Finally, we summarize
the main results in the Conclusions section.

II. MODEL OF ACTIVE PARTICLES IN OPEN
WEDGE-GEOMETRY

We consider an assembly of independent active particles
immersed in a viscous solvent and constrained to move in the two
dimensional truncated-wedge channel shown in Fig. 1. We neglect
the inertial effect and consider the over-damped dynamics of the
particles, where the position of each particle, r, moves according to
the following stochastic differential equation:

γṙ = F(r) + �x̂ + γU0ê(t), (1)

where F is an external force and �x̂ is a drift along the channel axis
representing a systematic bias associated with a drag or a biologi-
cal bias toward positive x. The constant γ is the friction coefficient.
The last term of Eq. (1) represents the ABP self-propulsion mecha-
nism, namely, a force of fixed strength, γU0, and varying orientation,
ê(t) = (cos θ(t), sin θ(t)), whose angle θ(t) evolves according to the
following Wiener process:

θ̇ =
√

2Drξ, (2)

FIG. 1. Sketch of the truncated wedge used as a simulation box Q = {|x| ≤ L, 0
≤ y ≤ w(x)}, bounded by the lines y = H − Hx/a and y = 0. Absorbing conditions
are placed at x = ±L, for which the particles crossing x = ±L are removed from
the system. The black circle, centered in (0, H/2), marks the narrow region where
particles are either initially emitted or re-injected after their absorption.

where the constant Dr is the rotational diffusion coefficient and ξ
is a white noise with zero average and unitary variance. As sev-
eral experimental studies indicate,54 the influence of the thermal
agitation of the solvent surrounding the microswimmers can be
neglected.55

The particles are confined to the domain Q = {(x, y) : |x| ≤ L,
0 ≤ y < w(x)} bounded by the bottom of the open-wedge channel at
y = 0 and by its upper boundary

w(x) =
H
a
(a − x). (3)

The left and right vertical boundaries, at x = ±L, are absorbing, while
both boundaries are soft reflecting walls (no-flux boundaries). More-
over, we are interested in the narrow channel condition: H ≪ L.
The top wall exerts on the particles a force directed along its nor-
mal direction n = (w′

(x),−1)/
√

1 + w′(x)2, whereas the repulsion
of the bottom wall is directed along ŷ = (0, 1). To represent this
force, we introduce a wall-potential V (u) = V0/m(σ/u)m, where V0
defines its energy scale and σ its length-scale assumed to be small
with respect to H, L and write

F = −V′
(w(x) − y) n − V′

(y) ŷ, (4)

where the prime represents the derivative with respect to the argu-
ment u. The form of the force (4) determines specular reflection
when particles “collide” with the walls. To prevent excessive pene-
tration, the functional form of V must guarantee strong repulsion
when evaluated at y = w(x) and y = 0 and thus we assume σ to be at
least ∼10−2H and V0 = 1, m = 4.

In the numerical simulations, the particles are initially placed in
a small neighborhood of the point P = (0, H/2) (see Fig. 1), mimick-
ing the injection by means of a “micro-pipette,” and eventually leave
the pore at the L and −L boundaries. A stationary process is achieved
by reinserting these particles at the point P. Correspondingly, the
direction of the active force acting on the re-injected particles is
obtained from a uniform distribution of angles θ in the interval
[0, 2π]. The evolution of N = 104 particles is obtained by integrat-
ing Eq. (1) with a Euler-Maruyama algorithm,56 at least up to time
T ∼ 103

/Dr . Throughout the paper, the geometry will be fixed such
that H = 10, L = 80, and a = 100, which guarantees the condition
H ≪ L.

We begin our analysis by first discussing how the particle dis-
tribution over the domain Q influences the escape properties when
Dr is varied.

A. Case � = 0
In Fig. 2, we display three snapshots of particle configuration at

increasing values of DrL/U0, in the absence of an external force.
Panels (a) and (b) clearly show thin denser stripes near both the

upper and lower wall, indicating the tendency of strongly active par-
ticles to “climb on” confining edges. With the growth of DrL/U0, the
accumulation at walls decreases from (a) to (b) till almost vanishing
in (c).

The particle distribution is inhomogeneous and characterized
by peaks at the walls57–59 whose height is controlled by the persis-
tence time of the force orientation, ta = 1/Dr .20 Indeed, the larger ta,
the greater is the time spent by a particle in the proximity of the wall
and the larger the accumulation.60 In the limit of small persistence
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FIG. 2. Snapshots of particle configurations, upon re-injection at the site (0,H/2), for different values of the parameter Dr L/U0 in the absence of field � = 0. Panels (a), (b),
and (c), showing a different degree of particle accumulation to the walls, are obtained with Dr L/U0 = 2.6× 10–2, 1.3× 10, 2.7× 102, respectively. Other system parameters
are L = 80, a = 100, H = 10, and U0 = 3.

time (Dr ≫ γ), the accumulation becomes negligible and the parti-
cles’ behavior is quite similar to the Brownian one, with an effective
temperature T = γU2

0/2Dr .15,32,61,62

To characterize the accumulation degree, we report in Fig. 3
the conditional probability distribution function (pdf), p(y|x), at two
selected vertical sections centered at x = ±L/2. The conditional pdf
of Fig. 3(a), corresponding to the snapshot (b) in Fig. 2, displays a
bimodal behavior with well pronounced peaks due to a marked accu-
mulation of particles at the walls. The bulk distribution, between the
peaks, is not uniform, indicating that the activity not only promotes
the accumulation at the boundaries but also influences the bulk. It
is also apparent that the bulk-density is smaller than the density of

FIG. 3. Conditional probability distribution functions, p(y|x), evaluated at x = L/2
(blue line) and x = −L/2 (red line). Panels (a) and (b) are obtained for Dr L/U0
= 1.3× 10, 2.7× 102, respectively. System parameters are L = 80, a = 100, H = 10,
� = 0, and U0 = 3.

the Brownian system counterpart [Fig. 3(b)]. This picture is in a
qualitative agreement with the prediction of Malgaretti and Stark.44

When Dr becomes larger enough to determine the approach to the
Brownian-like regime, see Fig. 3(a) referring to the snapshots (c) in
Fig. 2, the peaks become strongly depleted, and p(y|x) turns to be flat
in the bulk, as a consequence of a fast transversal homogenization.

The accumulation also depends on the persistence length,
λa = U0/Dr , roughly the typical length-scale after which particles
change the direction. Indeed, the comparison between λa and the
geometrical sizes H and L of the channel, Fig. 1, unveils the interplay
between surface and bulk properties and allows three main regimes
to be identified:

(i) The regime H≪ L≪ λa, where particles move ballistically in
all directions [Fig. 2(a)] and the majority of them lay in the
proximity of the two walls, eventually sliding along them.

(ii) In the regime H ≪ λa ≪ L, a diffusive effective motion
emerges along the axis channel, while the transversal motion
is characterized by rebounds between the walls. The snap-
shot (b) of Fig. 2 shows that under this condition, the
accumulation reduces and is no longer dominant.

(iii) The regime λa ≪ H, where the persistence length is smaller
than any geometrical scale. As shown in Fig. 2(c), the phe-
nomenology is similar to the one of a Brownian system at an
effective temperature, T = γU2

0/2Dr .

FIG. 4. Ratio Nw /(N − Nw) between the number of particles accumulating at the
walls and the remaining ones in the bulk, as a function of Dr . The inset is a blow-up
of the range Dr > 1. System parameters are the same as in Fig. 3.
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FIG. 5. Snapshots of particle positions in
the presence of a field � = 0.5 at dif-
ferent U0 and Dr . Panels (a), (b), and
(c) refer to values U0 = 1.0, 0.5, 0.1 and
the same Dr = 1.0, while panels (d), (e),
and (f) are obtained with the same set
of U0 but a value Dr = 0.01. Black lines
represent the walls, and the gray circle
centered at (0, 5) is the area where parti-
cles are re-injected when they cross the
right exit at x = L = 80. The remaining
parameters are a = 100 and H = 10.

As a quantitative measure of accumulation, we plot in Fig. 4
the fraction Nw/(N −Nw) vs Dr , by counting the particles contained
in the stripes, parallel and adjacent to each boundary, of transversal
size σ. This ratio exhibits a monotonic decreasing behavior with Dr
toward the Brownian limit, further indicating that the increase in Dr
depresses the accumulation at the wall.

B. Case � > 0
We now discuss the case where an external force of strength

� pushes the particles toward the right. At variance with the case
without drift, U0 plays a fundamental role as it combines with the
drift �/γ. We vary U0, keeping � = 0.5, and explore the two regimes
γU0 ≥ � and γU0 < �, at different values of Dr .

In Fig. 5, we show six snapshots of particle configurations at
different values of Dr and U0. Panels (a)–(c) referring to Dr = 1.0
and U0 = 1, 0.5, and 0.1 show a Brownian-like behavior with the
effective temperature, T = γU2

0/2Dr . In this regime, the Brownian
fluctuations are not able to counteract the effect of the bias so that
no particle can escape on the left.

As shown in Figs. 5(a) and 5(b) when � ≲ γU0, the particles may
fill vertically the whole sector x > 0 of the channel, whereas in the
opposite regime (� ≳ γU0), the drift prevails over diffusion creating
a sort of “plume” toward the right exit, as illustrated in Fig. 5(c).

The persistent case Dr = 0.01 is shown in panels (d)–(f). In
panel (d), the particles can explore the whole channel despite the
bias; on the contrary, when the ratio γU0/� decreases, the bias pre-
vails, and particles injected at the point P can only explore angles β
such that

∣β∣ ≤ tan−1
(

�
U0

);

see panels (e) and (f). Such a condition is obtained by assuming a
less favorable case where the active force has only the y-component;
thus, ẋ = �, ẏ = ±U0.

III. DISTRIBUTION ALONG CHANNEL AXIS
A successful approximation often employed in the study of the

transport of passive particles in narrow channels with non-uniform
section is represented by the so-called Fick-Jacobs approach.46,47,49

It amounts to reducing the multidimensional process to a

one-dimensional diffusion in the effective potential encoding the
channel geometry. Such an approximation is valid whenever the sys-
tem reaches a steady distribution in the transversal section on a time
scale much shorter than the typical time of the process along the
channel axis.48,63,64 To what extent this homogenization approach is
valid for active particles is not clear. Our results show that transver-
sal homogenization is not fulfilled when Dr < γ because persistent
values of the active force favor the accumulation at the walls. In this
respect, we numerically study the stationary marginal probability
distribution, pst(x), along the channel axis,

pst(x) =
1

w(x) ∫
w(x)

0
dyPst(x, y), (5)

obtained from the two-dimensional distribution Pst(x, y). Notice
that the existence of a stationary state is a consequence of the re-
injection that replaces the particles exiting from the boundaries
x = ±L. The numerical pst(x) are reported in Fig. 6(a) in the absence
of bias and in Fig. 6(b) in the presence of bias, �, for different values
of Dr .

For � = 0, panel (a), we observe an asymmetry with respect to
the center of the channel (x = 0) reflecting the narrowing of the sec-
tion w(x). Indeed, the slant of the upper wall generates an “entropic”
drift favoring a larger occupation of the side x < 0. This entropic
effect is more evident for large Dr and maximal in the Brownian
limit characterized, up to a normalization constant, by a distribution
(dashed black line)

pst(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

A(a − x) ln(
a + L
a − x

) x ∈ [−L, 0]

B(a − x) ln(
a − x
a − L

) x ∈ [0,L]
, (6)

predicted by a Fick-Jacobs approach46,48,49 that is discussed in detail
in the Appendix. A, B are two coefficients depending on the geome-
try parameters, a, L, H.

It is interesting to remark that formula (6) remains reason-
ably applicable to active particles up to values around Dr = 1. At
smaller Dr , the entropic drift is contrasted by the persistence of the
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FIG. 6. Stationary marginal space probability distribution, pst(x), at different values
of Dr . Panel (a) refers to � = 0, panel (b) refers to � > 0; dashed lines represent the
Brownian predictions: Eq. (6) for � = 0 and Eq. (7) for � > 0. System parameters
are L = 80, a = 100, H = 10, and U0 = 3.0.

trajectories and consequently, the distribution becomes more sym-
metric; it also develops a narrow peak near x = 0, more and more
pronounced as Dr is reduced. This over-crowding of the region near
x = 0, absent in the Brownian case, is a combined effect of re-
injection and persistence that determines the accumulation of the
particles pointing toward the walls.

As shown in Fig. 6(b), a constant field � = 0.5 overwhelms the
“entropic” drift and determines a larger density in the region x > 0.
Even in this case, the shape of pst(x) is strongly influenced by the
activity, and again the large Dr range recovers the Brownian-like
profile

pst(x) ∝ eεx(a − x)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A(Ei[ε(a + L)] − Ei[ε(a − x)])
x ∈ [−L, 0]

B(Ei[ε(a − x)] − Ei[ε(a − L)])
x ∈ [0,L]

, (7)

which is also derived in the Appendix. In expression (7), we set
ε = γ�/T (with T = γU2

0/2Dr meant as an effective temperature) and
Ei[. . .] denotes the exponential integral function (cf. pp. 661–662 of
Ref. 65).

We conclude by remarking that in the strong activity regime
[blue and green curves in Figs. 6(a) and 6(b)], the active force is able
to shadow both the entropic and the bias effects, thus leading to a
symmetrization of the profiles.

In Sec. IV, we see how the accumulation mechanism of the
particles to the walls strongly affects the escape process.

IV. ESCAPE PROCESS OF ACTIVE PARTICLES
FROM THE WEDGE

We study numerically the escape statistics from the wedge, Q,
for the ensemble of particles initially injected in the neighborhood
of (0, H/2). We define the left and right first passage times, τL ,R, as
the first time at which a given particle leaves Q either from the left or
from the right boundary,

τL = min
t

{0 < t ≤ Tw ∣ x(t) < −L}, (8)

τR = min
t

{0 < t ≤ Tw ∣ x(t) > L}, (9)

within a given simulation time window [0, Tw]. A convenient choice
is Tw ∼ 104/Dr to allow all the particles to exit in a reasonable sim-
ulation time. We investigate the three different dynamical regimes
discussed in Sec. II and obtain numerically the exit-time distribu-
tions, ΨL ,R(τ), by the histogram method. We start discussing the
results in the case of no drift, � = 0, and then we consider the driven
system, � > 0, using the Brownian case as a reference.

A. Active escaping time at � = 0
Figure 7 reports the distributions of first exit times, Ψ(τ), at

different values of Dr .
When λa ≪ H ≪ L, the majority of the particles spread

in the bulk and their behavior is hardly distinguishable from the
one of a swarm of Brownian particles with temperature γU2

0/2Dr .

FIG. 7. Escape time distribution, Ψ(τ), for � = 0, computed at selected values of
Dr in the range [2× 10−3, 5], see the legend. Plots have been split in two panels for
readability reasons: panel (a) refers to the range [2× 10–3, 5× 10–2] while panel
(b) to the range [0.1, 5.0]. Other used parameters are L = 80, a = 100, H = 10, and
U0 = 3.
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Accordingly, Ψ(τ) is very similar to the escape time distribution of
Brownian particles from the wedge.

When the persistence length is H ≪ λa ≪ 2L, the situation
changes because (i) a large fraction of particles spend much time
stuck to the up and bottom boundary and (ii) the vertical component
of the particle velocity behaves quite “deterministically” producing a
bouncing ball effect between the upper and lower boundaries that
lasts for a period of the order of the persistence time,60 ta ∼ 1/Dr . As
a result of the “stickiness” of the walls, we observe a sort of dimen-
sional reduction which confers to Ψ(τ), a shape strongly deviating
from the corresponding Brownian distribution. At first, as seen in
both Figs. 7(a) and 7(b), a pronounced asymmetry of Ψ(τ) occurs,
characterized by the emergence of a fat tail at larger times and a
rather steep shoulder at shorter times.

In the regime H ≪ L≪ λa, particles strongly accumulate along
the walls which act as trails guiding the particles to the left or right
exit, in a time roughly given by td ∼ L/U0. As a consequence, the
escape problem reduces to the combination of two one-dimensional
escape processes, each occurring along one of the walls. Accordingly,
the exit-time distribution becomes extremely peaked near td. The
possibility of escaping within td clearly depends on the initial ran-
dom orientation of the active force at the injection point. In this
respect, we can classify the particles into two groups: group A is
formed by particles with an initial direction allowing them to leave
the channel in a time, t ∼ td, either to the left or to the right, without
changing the direction. Instead, group B contains particles chang-
ing the direction at least one time before they reach one of the exits
at a larger time. The particles belonging to A, arriving quite at the
same time td, contribute to the peak in Ψ(τ), while the arrivals of
the particles of group B contribute to the long tails. In this regime,
the decrease in Dr produces higher and thinner spikes and longer
tails.

We plot in Fig. 8 the right and left escaping probability, pR,
pL = 1 − pR, respectively, obtained by measuring the fraction of exit
events from the right and from the left in a long simulation. We see
that pR and pL show a clean monotonic behavior as a function of
Dr , converging to two different plateaus for Dr → 0 and Dr → ∞,
respectively. The plateau for Dr ≫ γ (Brownian regime) is given by

FIG. 8. Dependence of the left/right escape probabilities, pL and pR, on Dr . Black
lines indicate the two limiting plateaus: the Brownian prediction from Eq. (10) and
the infinite-τ prediction given by Eq. (11).

the expression

pR =
ln(a + L) − ln a

ln(a + L) − ln(a − L)
=

ln(1 + µ tanα)

ln(
1 − µ tanα
1 + µ tanα

)

, (10)

where µ = L/H and α is the wedge angle; see Fig. 1. The derivation of
the above expression can be found in the Appendix; specifically see
Eq. (A10).

Notice that in the Brownian case, there is no temperature
dependence. For H = 100 and L = 80, Eq. (10) provides the value
pR ≃ 0.2675 which agrees with the simulation value. In this case, pL
is much less than pR, due to the obvious action of the entropic “drift”
produced by the wedge geometry which favors the exit to the larger
left side. This scenario remains valid up to values of Dr ∼ 10.

If Dr further decreases, pL develops a strong dependence on Dr ,
indicating that the activity counteracts the entropic drift and facili-
tates the passage through the narrow side of the channel. In practice,
the particle accumulation to the walls has the effect of reducing the
entropic barrier. A similar “rectifying” phenomenology has been
observed for active Janus particles in periodic channels alternating
two wedge compartments.66

At some value of Dr , pR(L) saturates to a value, p∗R,L

p∗L,R =
π ± α

2π
. (11)

Indeed, if the motion of the particles is so persistent to be considered
“ballistic,” pL and pR strongly depend on the initial re-injection con-
dition. With reference to Fig. 1, we can identify two complementary
intervals AR = [−π/2,π/2 − α] and AL = [π/2 − α, 3π/2], for which
those active particles emitted with an initial angle either θi ∈ AR
or θi ∈ AL are bound to exit almost surely either to the left or to
the right, respectively. Equation (11) is the analog of Eq. (10) in the
regime of strong persistence. Of course, a very small fraction of parti-
cles always exists whose orientation prevents the exit in a time ta, but
this fraction is very small and does not affect the exit time statistics
except for the short tail.

It is interesting to study the average exit time from the wedge

τ̄ = ∫
∞

0
dτΨ(τ)τ

as a function of the control parameters. This observable is able to
quantify the transport efficiency, and it is relevant to understand if
the activity favors or not the emptying of the channel.

We can define the transport efficiency as the ratio,

η =
L

U0τ̄
, (12)

between the time, L/U0, at which a deterministic motion of velocity
U0 gains the exit and the mean exit time τ̄.

In Fig. 9, we plot η for U0 = 3 vs the dimensionless param-
eter DrL/U0. It exhibits a non-monotonous behavior reaching its
maximal value at DrL/U0 ≈ 0.3. This reveals the existence of an opti-
mal Dr such that the escaping process becomes more efficient, in
the specific parameter choice Dr ≃ 0.01. The increase in the “trans-
port efficiency” can be explained by invoking a sort of “dimensional
reduction.” Specifically, those particles accumulating at the walls are
favored in the exit process because they use the boundaries like
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FIG. 9. Efficiency, defined by Eq. (12), as a function of the dimensionless parame-
ter Dr L/U0, in the case of zero drift � = 0. The peak is attained at Dr ≈ 10−2. The
inset shows τ̄ (black data) vs Dr L/U0 for a comparison with the Brownian result
[Eq. (13)]. Parameters: L = 80, a = 100, H = 10, and U0 = 3.

trails, thus performing basically a one-dimensional motion along
them. This greatly enhances the possibility to find the exit with
respect to the case where particles explore the full wedge in order
to escape. Reference 44 shows that the accumulation near the walls
also depends on the hydrodynamics interactions. As a consequence,
the efficiency peak in Fig. 9 shifts toward larger or smaller values of
DrL/U0 in the case of pullers or pushers, respectively.

At very smallDrL/U0, however, 1/τ̄ decreases as a finite fraction
of particles, in particular, those hitting normally the walls, almost
remain stuck for a time 1/Dr (diverging for Dr → 0), thus slowing
down their escape process. Again for Dr ≳ γ, the system approaches
a Brownian regime and τ̄ linearly increases with DrL/U0, as shown
in the inset of Fig. 9. Indeed, the effective temperature T = γU2

0/2Dr ,
which in this case controls the Brownian-like behavior, increases
with DrL/U0. The inset of Fig. 9 shows also a comparison between
the numerical τ̄ and the prediction derived in the Appendix for a
Brownian particle at temperature T = γU2

0/2Dr ,

τ̄ =
DrL2

2γU2
0
(1 +

a
2L

ln[a2
/(a2

− L2
)]

ln[(a + L)/(a − L)]
). (13)

The first term corresponds to the average exit time of a one-
dimensional system of length 2L, whereas the second one is asso-
ciated with the entropic barrier and reflects the asymmetry of the
channel. As expected, the linear behavior of τ̄with Dr in the effective
equilibrium regime is in very good agreement with the prediction.

B. Active escaping time at � > 0
In this section, we analyze how an external driving � modifies

the previous scenario. Consistently with the concept of effective tem-
perature, when Dr is large enough, we expect a Brownian-like regime
and thus an exit time distribution, Ψ(τ), resembling the correspond-
ing Brownian distribution at temperature γU2

0/2Dr , as shown in

FIG. 10. Panels (a) and (b): escape time
distributions at different values of Dr and
two different values of U0 = 0.1, 1 in the
presence of an external bias � = 0.5.
Panel (c): dependence of 1/τ̄, namely,
the transport efficiency, on Dr at values
U0 = 0.1, 0.5, 3, and � = 0.5. Geome-
try parameters are L = 80, a = 100, and
H = 10.
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Fig. 10. In this case, Ψ(τ) is peaked around, tm ∼ γL/�, represent-
ing the time taken by particles of velocity �/γ to travel a distance L.
In this regime, the reduction in U0 or Dr increases the variance of
Ψ(τ). In the Brownian-like regime, the decrease in Dr produces the
enhancement of the skewness of Ψ(τ) and the emergence of long
right tails.

A further decrease in Dr shifts the peak of Ψ(τ) to the left and
simultaneously the right tail becomes higher, until the mean peak
position pins at tm ∼ γL/(γU0 + �). In this regime, the reduction in
Dr leads only to more pronounced peaks of Ψ(τ). Indeed, even the
particles which move ballistically toward the exit without changing
their orientation (group A) cannot reach the exit within the minimal
time ∼ γL/(γU0 + �). Depending on the ratio γU0/�, a different phe-
nomenology occurs: (i) γU0 < �: a secondary peak of Ψ(τ) occurs at a
value γL/(� − γU0) and finally the distribution abruptly drops down.
This secondary peak is due to the slow particles whose orientation
is opposed to the x-direction where the constant force is directed.
(ii) γU0 > �: the first peak simply becomes higher but the second
vanishes.

The efficiency η of the transport for � > 0 is defined by replac-
ing U0 → U0 + � in Eq. (12), but as a matter of fact, the inverse
of the mean exit time is already an estimate of η. For this reason,
Fig. 10(c) reports directly 1/τ̄ vs Dr to quantify the channel emp-
tying at three values of U0. In the case � > γU0, the increase in Dr ,
i.e., the decrease in the effective temperature, leads to a monotonic
growth of 1/τ̄, until saturation is reached and the system behaves as
a Brownian one. In this regime, the activity reduces the efficiency of
the transport process. Indeed, although some particles travel toward
the exit with more facility, also several particles move in the opposite
direction, employing a long time before leaving the wedge. Clearly,
the reduction effect becomes relevant only when U0 is comparable
with � (blue diamond data); otherwise, (when γU0 ≪ �) the parti-
cles leave the wedge only because of the driving � (green triangle
data).

The situation is more interesting in the opposite regime, where
� < γU0. In this case, 1/τ̄ reveals a non-monotonic behavior in
terms of Dr . Starting from the Brownian saturation value, a first
decrease in Dr produces a reduction in 1/τ̄, until a minimum value,
a situation resembling the previous one for � > γU0. Neverthe-
less, a further decrease in Dr produces the increase in 1/τ̄, up to
a maximum value which reveals an increase in the transport effi-
ciency for some value of Dr . This persistence maximizes the effi-
ciency of the transport process since for smaller Dr , a decrease in
1/τ̄ occurs, due to the same mechanism already discussed in the case
� = 0.

As a consequence, the activity can be seen as an optimization
mechanism, which reduces the time employed by microswimmers
to reach the exit of the channel, also in the presence of a constant
driving force. A condition for this scenario implies that the activ-
ity strength has to be stronger than the amplitude of the external
driving.

V. CONCLUSIONS
In this work, we studied the escape process of a system of

ABP particles from an open-wedge channel in the absence and in
the presence of an external driving force. The comparison with the
Brownian system counterpart shows that the activity facilitates the

escaping from the narrow exit and competes against the entropic
force. We also found the existence of an optimum value of the
persistence time which maximizes the channel emptying. The phys-
ical mechanism which improves the efficiency is the effective attrac-
tion exerted by the bottom and upper walls on the active particles
which leads to a depletion of the inner region. The majority of the
particles accumulate in a narrow region near each wall, and as a con-
sequence, the section-dependent entropic force is strongly reduced.
The resulting motion of the particles is effectively one-dimensional
and controlled by the competition between the active force and the
external field. Somehow, the activity is able to operate a sort of
dimensional reduction, since it makes surface effects prevailing over
the bulk properties.

The present treatment shows that the extension of the Fick-
Jacobs approximation to the active case is possible only for small
values of the persistent time and activity strength.50 When it hap-
pens, the far-equilibrium feature of active particles does not emerge
and the Brownian theory with an effective temperature agrees with
numerical data. On the contrary, when the active force is very per-
sistent and large, our study of particle distributions shows that the
main hypothesis underlying the Fick-Jacobs approximation breaks
down since the density is not homogeneous in each channel section,
as an effect of the accumulation near the walls. Quantifying how the
effective entropic barrier is reduced by this mechanism could repre-
sent an intriguing next point in understanding biological transport
processes.

This work suggests that the active transport can be facilitated or
even optimized by a proper design of the channel surface. This can
be interpreted as further manifestation of “ratcheting mechanism”
that can be observed as soon as active particles experience confining
forces breaking the left-right symmetry.66

We point out that the presence of inter-particle interactions
could drastically affect the transport properties in the channel.
Indeed, as mentioned in the introduction, interactions could pro-
mote clustering until MIPS takes place in the regime of strong active
forces. Assessing the effects of MIPS on the mean exit time from
the channel will certainly constitute an interesting subject for future
investigations.

APPENDIX: BROWNIAN CASE
In this appendix, we describe the spreading of Brownian par-

ticles distribution, P(x, t), along the axis of the channel Q in terms
of the Fick-Jacobs approach.46 The Fick-Jacobs theory is applicable
to channels with variable sections, w(x), provided that the particle
distribution attains its steady form along the y-direction on a time
scale much shorter than the time scale associated with the longitudi-
nal motion (transversal homogenization). However, this condition,
which can be fulfilled by Brownian particles, is violated by the active
particles in those regimes where accumulation to the boundaries is
not negligible.

In the Brownian regimes, the strong confinement in the lateral
direction allows the diffusion of the particles along the channel to be
described in a quasi-one-dimensional equation

∂P
∂t

+
∂J
∂x

= k δ(x), (A1)

P(L, t) = P(−L, t) = 0, (A2)
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where the last two equations mathematically implement the absorb-
ing boundary conditions at x = ±L. The Dirac-delta source with
amplitude k accounts for the instantaneous re-injection, at x = 0,
of those particles leaving the channel from the boundaries x = ±L.

The current

J(x, t) = −
T
γ
eγ�x/Tw(x)

∂

∂x
[e−γ�x/T

P(x, t)
w(x)

] (A3)

describes to a good approximation the longitudinal transport along
a channel of variable section w(x) = H − Hx/a, in the presence of a
constant field (bias) of strength � acting along the channel axis. In
the following, we set

D0 =
T
γ

, ε =
γ�
T

.

The balance between absorption and re-injection preserves the num-
ber of particles and gives rise to a steady-state characterized by the
equality

J(L) − J(−L) = k,
stating that the re-injection rate balances the loss fluxes at the
boundaries.

The stationary distribution satisfies the equation

−D0
∂

∂x
[w(x)eεx

∂

∂x
e−εx

P
w(x)

] = k δ(x). (A4)

The presence of the Dirac δ(x) requires the splitting of the solution
over the two domains [−L, 0] and [0, L] such that

P(x) = {
A Y1(x) −L ≤ x < 0
B Y2(x) 0 ≤ x ≤ L

, (A5)

where

Y1(x) = eεxw(x)∫
x

−L
du

e−εu

w(u)
and

Y2(x) = eεxw(x)∫
L

x
du

e−εu

w(u)
are the fundamental solutions of the homogeneous equation (k = 0)
satisfying the boundary conditions Y1(−L) = Y2(L) = 0. The coef-
ficients A, B are determined by imposing the continuity condition,
P(0+) = P(0−), and from integrating both members of Eq. (A4) over
the interval [−∆, ∆], then taking ∆→ 0.

The solution of these constraints provides

A = ∫

L

0
dx

e−εx

w(x)
, B = ∫

0

−L
dx

e−εx

w(x)
.

A little algebraic manipulation yields the explicit result

A = Ei[εa] − Ei[ε(a − L)], (A6)
B = Ei[ε(a + L)] − Ei[εa], (A7)

where Ei[u] is the exponential integral of argument u.65 The final
expression reads

P(x) ∝ eεx(a − x)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A(Ei[ε(a + L)] − Ei[ε(a − x)])
when x ∈ [−L, 0]

B(Ei[ε(a − x)] − Ei[ε(a − L)])
when x ∈ [0,L]

, (A8)

up to a normalization constant such that the integral of P(x) over
[−L, L] is set to 1.

These expressions drastically simplify in the zero-field limit,
� = 0,

P(x) = C(a − x)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

A ln[
a + L
a − x

] x ∈ [−L, 0]

B ln[
a − x
a − L

] x ∈ [0,L]
, (A9)

with A = ln[(a + L)/a], B = ln[a/(a − L)], and a normalization
constant

C−1
=
L
4
[2a ln(

a2

a2 − L2 ) + L ln(
a + L
a − L

)].

Now, we are in the position to derive formula (10) for the ratio pR,
which determines the Brownian limit in Fig. 8. The value of pR can
be estimated in terms of the fluxes at the boundaries, which due to
the fact that P(±L) = 0 are only proportional to the derivatives of P at
x = ±L, i.e., J(±L) = −D0P′(±L). Then pR is obtained as the fraction
of the flux to the right over the total flux

pR =
J(L)

J(L) + J(−L)
=

ln(a + L) − ln(a)
ln(a + L) − ln(a − L)

. (A10)

The average first-arrival time at the boundaries ±L, for a parti-
cle released at x, is related to the survival probability, S(x, t), by the
integral67

τ̄(x) = ∫
∞

0
dt S(x, t).

By definition, S(x, t) is the probability that the particle has not yet
left the interval [−L, L] at the time t and it is known to satisfy the
backward Fokker-Planck equation67

∂S
∂t

=
D0

w(x)
∂

∂x
[w(x)

∂S
∂x

], (A11)

with the boundary conditions S(±L, t) = 0. To obtain a differential
equation for τ̄(x), it is sufficient to integrate Eq. (A11) in the interval
0 ≤ t < ∞, and taking into account that S(x, ∞) = 0 and S(x, 0) = 1,
thus

d
dx

[w(x)
dτ̄
dx

] = −
w(x)
D0

, (A12)

which has to be solved with the obvious boundary values
τ̄(±L) = 0, stating that particles emitted at the boundary are instan-
taneously absorbed. We are interested in the average arrival time
from x = 0; then, the searched solution is

τ̄(x = 0) =
L2

4D0
+

aL
2D0

ln[a2
/(a2

− L2
)]

ln[(a + L)/(a − L)]
,

which is exactly Eq. (13).

J. Chem. Phys. 150, 144903 (2019); doi: 10.1063/1.5090104 150, 144903-9

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

REFERENCES
1H. Berg, E. Coli in Motion (Springer Science & Business Media, 2008).
2J. R. Blake and M. A. Sleigh, Biol. Rev. 49, 85–125 (1974).
3D. Woolley, Reproduction 126, 259–270 (2003).
4M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier,
B. Ladoux, A. Buguin, and P. Silberzan, Proc. Natl. Acad. Sci. U. S. A. 104,
15988–15993 (2007).
5S. Köhler, V. Schaller, and A. R. Bausch, Nat. Mater. 10, 462 (2011).
6A. Walther and A. H. Müller, Chem. Rev. 113, 5194–5261 (2013).
7M. Lattuada and T. Hatton, Nano Today 6, 286–308 (2011).
8C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, and G. Volpe, Rev. Mod.
Phys. 88, 045006 (2016).
9P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier, Eur.
Phys. J.: Spec. Top. 202, 1–162 (2012).
10M. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool, J. Prost, M. Rao, and R.
A. Simha, Rev. Mod. Phys. 85, 1143–1189 (2013).
11S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).
12R. Nash, R. Adhikari, J. Tailleur, and M. Cates, Phys. Rev. Lett. 104, 258101
(2010).
13J. Tailleur and M. Cates, Phys. Rev. Lett. 100, 218103 (2008).
14F. J. Sevilla and L. A. G. Nava, Phys. Rev. E 90, 022130 (2014).
15B. ten Hagen, S. van Teeffelen, and H. Löwen, J. Phys.: Condens. Matter 23,
194119 (2011).
16G. Szamel, Phys. Rev. E 90, 012111 (2014).
17S. Das, G. Gompper, and R. Winkler, New J. Phys. 20, 015001 (2018).
18U. Marconi Marini Bettolo and C. Maggi, Soft Matter 11, 8768–8781
(2015).
19G. Miño, M. Baabour, R. Chertcoff, G. Gutkind, E. Clément, H. Auradou, and
I. Ippolito, Adv. Microbiol. 8, 451–464 (2018).
20L. Caprini and U. Marconi Marini Bettolo, Soft Matter 14, 9044–9054 (2018).
21H. Wensink and H. Löwen, Phys. Rev. E 78, 031409 (2008).
22A. Kaiser, H. Wensink, and H. Löwen, Phys. Rev. Lett. 108, 268307 (2012).
23Y. Fily, A. Baskaran, and M. Hagan, Soft Matter 10, 5609–5617 (2014).
24J. Elgeti and G. Gompper, Europhys. Lett. 109, 58003 (2015).
25J. Elgeti and G. Gompper, Europhys. Lett. 101, 48003 (2013).
26E. Fodor, C. Nardini, M. Cates, J. Tailleur, P. Visco, and F. van Wijland, Phys.
Rev. Lett. 117, 038103 (2016).
27U. Marconi Marini Bettolo, A. Puglisi, and C. Maggi, Sci. Rep. 7, 46496 (2017).
28L. Caprini, U. Marconi Marini Bettolo, and A. Vulpiani, J. Stat. Mech.: Theory
Exp. 2018, 033203.
29S. C. Takatori, R. De Dier, J. Vermant, and J. F. Brady, Nat. Commun. 7, 10694
(2016).
30L. Caprini, U. Marconi Marini Bettolo, and A. Puglisi, Sci. Rep. 9, 1386
(2019).
31L. Caprini, U. Marini Bettolo Marconi, A. Puglisi, and A. Vulpiani, J. Chem.
Phys. 150, 024902 (2019).
32Y. Fily and M. Marchetti, Phys. Rev. Lett. 108, 235702 (2012).

33I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, Phys.
Rev. Lett. 110, 238301 (2013).
34J. Bialké, T. Speck, and H. Löwen, J. Non-Cryst. Solids 407, 367–375 (2015).
35M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219–244
(2015).
36T. Speck, Eur. Phys. J.: Spec. Top. 225, 2287–2299 (2016).
37E. Tjhung, C. Nardini, and M. Cates, Phys. Rev. X 8, 031080 (2018).
38P. Digregorio, D. Levis, A. Suma, L. F. Cugliandolo, G. Gonnella, and I. Pago-
nabarraga, Phys. Rev. Lett. 121, 098003 (2018).
39D. Ribet and P. Cossart, Microbes Infect. 17, 173–183 (2015).
40K. Malakar, V. Jemseena, A. Kundu, K. Kumar, S. Sabhapandit, S. Majumdar,
S. Redner, and A. Dhar, J. Stat. Mech.: Theory Exp. 2018, 043215.
41G. H. Weiss, Physica A 311, 381–410 (2002).
42L. Angelani, R. Di Leonardo, and M. Paoluzzi, Eur. Phys. J. E 37, 59 (2014).
43A. Scacchi and A. Sharma, Mol. Phys. 116, 460–464 (2018).
44P. Malgaretti and H. Stark, J. Chem. Phys. 146, 174901 (2017).
45J.-c. Wu, Q. Chen, and B.-q. Ai, Phys. Lett. A 379, 3025–3028 (2015).
46M. H. Jacobs, Diffusion Processes (Springer, 1935), pp. 1–145.
47R. Zwanzig, J. Phys. Chem. 96, 3926–3930 (1992).
48D. Reguera and J. M. Rubí, Phys. Rev. E 64, 061106 (2001).
49P. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner,
ChemPhysChem 10, 45–54 (2009).
50M. Sandoval and L. Dagdug, Phys. Rev. E 90, 062711 (2014).
51F. J. Sevilla, A. V. Arzola, and E. P. Cital, Phys. Rev. E 99, 012145 (2019).
52Y. Fily, preprint arXiv:1812.05698 (2018).
53A. Sharma, R. Wittmann, and J. Brader, Phys. Rev. E 95, 012115 (2017).
54C. Bechinger, F. Sciortino, and P. Ziherl, Physics of Complex Colloids (IOS Press,
2013), Vol. 184.
55P. Romanczuk and L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011).
56R. Toral and P. Colet, Stochastic Numerical Methods: An Introduction for
Students and Scientists (John Wiley & Sons, 2014).
57C. Maggi, U. Marini Bettolo Marconi, N. Gnan, and R. Di Leonardo, Sci. Rep. 5,
10742 (2015).
58C. G. Wagner, M. F. Hagan, and A. Baskaran, J. Stat. Mech.: Theory Exp. 2017,
043203.
59L. Angelani, J. Phys. A: Math. Theor. 50, 325601 (2017).
60C. Lee, New J. Phys. 15, 055007 (2013).
61R. G. Winkler, A. Wysocki, and G. Gompper, Soft Matter 11, 6680–6691 (2015).
62C. Kurzthaler, S. Leitmann, and T. Franosch, Sci. Rep. 6, 36702 (2016).
63P. S. Burada, G. Schmid, D. Reguera, J. M. Rubí, and P. Hänggi, Phys. Rev. E
75(8), 051111 (2007).
64G. Forte, F. Cecconi, and A. Vulpiani, Phys. Rev. E 90, 062110 (2014).
65G. Arfken and H. Weber, Mathematical Methods for Physicists (Academic Press,
2001).
66P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 110,
268301 (2013).
67C. Gardiner, Handbook of Stochastic: For the Natural and Social Sciences
(Springer, Berlin, 2009), Vol. 4.

J. Chem. Phys. 150, 144903 (2019); doi: 10.1063/1.5090104 150, 144903-10

Published under license by AIP Publishing


