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Abstract. Kolmogorov contributed directly to Biology in essentially three pro-
blems: the analysis of population dynamics (Lotka-Volterra equations), the reaction-
diffusion formulation of gene spreading (FKPP equation), and some discussions ab-
out Mendel’s laws. However, the widely recognized importance of his contribution
arises from his work on algorithmic complexity. In fact, the limited direct inter-
vention in Biology reflects the generally slow growth of interest of mathematicians
towards biological issues. From the early work of Vito Volterra on species competi-
tion, to the slow growth of dynamical systems theory, contributions to the study of
matter and the physiology of the nervous system, the first 50–60 years have witnes-
sed important contributions, but as scattered pieces apparently uncorrelated, and in
branches often far away from Biology. Up to the 40’ it is hard to see the initial loose
build up of a convergence, for those theories that will become mainstream research
by the end of the century, and connected by the study of biological systems per-se.

The initial intuitions of L. Pauling and E. Schrödinger on life and matter date
from this period, and will gave the first initial full fledged results only ten years
later, with the discovery of the structure of DNA by J. Watson and F. Crick, and
the initial applications of molecular structures to the study of human diseases few
years earlier by Pauling. Thus, as a result of scientific developments in Biology that
took place after the 50’, the work of Kolmogorov on Information Theory is much
more fundamental than his direct contributions would suggest. For scientist working
in Molecular Biology and Genetics, Information Theory has increasingly become,
during the last fifty years, one of the mayor tools in dissecting and understanding
basic Biological problems.

After an introductory presentation on algorithmic complexity and information
theory, in relation to biological evolution and control, we discuss those aspects rele-
vant for a rational approach to problems arising on different scales. The processes of
transcription and replication of DNA which are at the basis of life, can be recasted
into an Information theory problem. Proteins and enzymes with their biological
functionality contribute to the cellular life and activity. The cell offers an extraor-
dinary example of a highly complex system that is able to regulate its own activity
through metabolic network. Then we present an example on the formation of com-
plex structures through cellular division and differentiation in a model organism
(C. elegans). Finally we discuss the essential principles that are thought to rule
evolution through natural selection (theory of fitness landscapes).
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If one were to judge Kolmogorov’s contribution to Biology only on the ba-
sis of his papers explicitly devoted to the topic, one might conclude that it
is of moderate interest, at least in comparison with his direct intervention
in turbulence or dynamical systems. However, one should not forget that,
in the past, the limited availability of quantitative data in Biology made
this subject quite unattractive for mathematicians. It is therefore remarkable
that Kolmogorov nevertheless contributed to three different problems: the
analysis of population dynamics (Lotka-Volterra equations), the reaction-
diffusion formulation of gene spreading (Fisher Kolmogorov Petrovsky Pis-
kunov – FKPP– equation), and some discussions about Mendel’s laws. It is
however widely recognized that the relevance of Kolmogorov’s contribution
is connected to his work on algorithmic information. In fact, after the in-
itial intuitions of L. Pauling and E. Schrödinger on life and matter in the
’40s and, especially after the discovery, ten years later, of the structure of
DNA by J. Watson and F. Crick, it has become increasingly clear that in-
formation plays a major role in many biological processes. The penetration
of these concepts in Biology has led to the formulation of the central dogma
of genetics: the discovery of a one-directional flow of information from DNA
and genes to proteins, and from there to morphogenesis, cellular organiza-
tion and finally to individuals and communities. In this perspective, life is
now viewed as the execution of a computer program codified in the DNA
sequence. However, in spite of the elegance of this doctrine, one cannot for-
get the various difficulties that make the final goal of decoding the program
much more difficult than one could expect. First of all, in order to under-
stand what the life-code does without running it, it is necessary to know the
logic of the underlying “hardware”, or “wetware” as it is sometimes called.
Wetware is certainly structured in quite a different way from the hardware
of ordinary digital computers. Indeed, living system are highly parallel de-
vices, where the parallelism does not only enhance the “computer” perfor-
mance, but is also there to guarantee the required redundancy for a robust
functioning both in the presence of a noisy environment or of significant
damages even. As a result, in living systems, information-theoretic aspects
are profoundly interlaced with the physico-chemical mechanisms responsible
for their functioning and it could not be otherwise, considering that they
are the result of a self-assembling process that has evolved over billions of
years.

The roadmap of this contribution is as follows. The first section is de-
voted to an historical account of the connections between biology and the
other major scientific disciplines. This allows us to place Kolmogorov’s direct
contributions (exposed in the next section) in the right context. Next, we
give a brief presentation of information and algorithmic-information theories
in relation to biological systems. Finally, we discuss the problem of protein
folding as an example of how information, physics and dynamics concur to
biological processes at an almost microscopic level of description.
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1 Historical Notes

For a long time, biology has mainly dealt with definitions, classification and
description of objects connected with the evolution of life forms such as bac-
teria, plants, animals, biochemical substances, proteins, sugars or genes. The
great variety of life forms, present and past, has required a large amount
of ground work before general theories could be formulated. The Evolution
theory of Charles Darwin is a good case in point. Moreover, the dissection of
environments, organisms and cells has been practiced by many in the hope
that a precise identification of the objects of study is a necessary and perhaps
sufficient condition to understand their role: a sort of reductionism, like in
physics, with the difference that no simple general laws have ever been iden-
tified.

In this continuous search for an appropriate methodology, biologists have
been led to emphasize different aspects (ranging from mechanical, to chemi-
cal, thermodynamical, and molecular) depending on the current development
of science. As an example, in Fig. 1 we report an apparatus invented by an

Fig. 1. Girolamus Fabricius ab Acquapendente (1533–1619), machina, Museo Vil-
lasneri from [1]. This example of machina, a system to bring body parts into correct
place–proportions, is due to Fabricius ab Acquapendente, anatomist at the Univer-
sity of Padova. Acquapendente was Professor of Anatomy in Padova during the
same period in which Galileo Galilei, who was trained in his youth as a physician,
was teaching there (1592–1610). Acquapendente and Galileo were tutors of William
Harvey (1578–1657). Harvey, by application of the experimental method, discovered
blood circulation, while working at St. Bartholomew’s hospital in London [2]
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anatomist, Girolamus Fabricius ab Acquapendente at the turn between the
16th and 17th centuries; the machine was meant to be used in order to bring
parts of the human body into correct proportions.

The ingenious, naive, primitive, and somehow sadistic mean of fixing body
parts through the use of a reference frame is remarkable. The general idea
to fix it is already there with the means of the period, and has evolved with
human knowledge. The present level of technology allows the discussion of
atomic-molecular adjustments, but, in many cases, the conceptual aim has
not changed much since 1600, aside from a deeper understanding of the inner
details involved. The reported picture, nevertheless, warns that the desire to
find solutions to biological problems, drawing principles from other sciences,
has always been present from the very beginning. Sometimes it has been
stretched to the limit.

The limited success of this stratgegy has led in the last century to a strong
debate about two alternative approaches, the holistic and the reductionistic
view. The former one assumes that biological systems, in order to be under-
standable, must be considered and described in their wholeness; the latter
one understands that full operational knowledge can be reached only after
characterizing all of the single components. While the supporters of the holi-
stic view have, with a few exceptions, fostered more qualitative approaches,
the reductionistic attitude has been much more oriented towards quantita-
tive work (for a detailed historical account of this long story, the interested
readers are invited to consult the detailed book of B.O. Kuppers, [3], or the
historical account of E. Mayr, [4]).

However, in recent years the scenario has started to change and there
exists now a chance that the above two points of view can be reconciled wit-
hin a suitable information-theoretic approach. Indeed, information processing
represents a truly unifying concept that allows the investigation of seemingly
different issues such as the functioning of the brain, the cell cycle, the immune
system, or the “simple” task of recognizing food, moving towards it, and so
on. Furthermore, one should not forget the problem that has represented a
puzzle for centuries: the transmission from one generation to the next of the
“plan” for constructing new individuals.

The first results were obtained by G. Mendel (1865) and concerned sta-
tistical correlations between phenotypic characters of species. However, the
idea that characters are due to elementary units spread about 35 years later,
through the work of H. de Vries, C. Correns, and E. Tschermak. Later T.
Boveri, W. Sutton, and especially T.H. Morgan and collaborators established
the chromosomal theory, the link between characters, genes and the physical
existence of chromosomes. Still, all research in genetics up to the beginning
of the ’40s was done as an inductive reconstruction, through the study of
crossing and mutants, with no knowledge of the mechanisms and molecules
carrying this information.

All in all, spreading of information-theoretic concepts in Biology occurred
by following several convoluted paths. This is true also for the brain: the
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system that, more than any other, can be seen as an information-processing
unit. It is indeed quite illuminating to cite W.S. McCulloch about the way
he came, together with W. Pitts, to the development of his famous simplified
model of a brain, in which neurons were treated as boolean interconnected
switches [5],

I came, from a major interest in philosophy and mathematics,
into psychology with the problem of how a thing like mathematics
could ever arise – what sort of thing it was. For that reason, I gra-
dually shifted into psychology and thence, for the reason that I again
and again failed to find significant variables, I was forced into neuro-
physiology. The attempt to construct a theory in a field like this, so
that it can be put to any verification, is tough. Humorously enough,
I started entirely at the wrong angle, about 1919, trying to construct
a logic for transitive verbs. That turned out to be as mean a problem
as modal logic, and it was not until I saw Turing’s paper that I began
to get going the right way around, and with Pitt’s help formulated
the required logical calculus.

One of the major obstacles in the development of a theoretical Biology is
its nonstationary character: strictly speaking, there are no stationary states –
one can at most imagine that, on some scales, quasi-equilibrium is maintained.
It is, indeed, since the beginning of the last century that Evolution has been
recognized as playing a crucial role and the first models on the time variation
of species have been introduced. Initially, the spread of the ideas of C. Darwin
strongly depended on the country; in some cases they were partially accepted,
allowing evolution but not natural selection – such as, e.g., in France. In
others, these ideas were accepted much faster, as in the case of Russia [4]. In
the beginning of the century a dichotomy between naturalists and geneticists
took place on the way to proceed in order to understand evolution. The
former looked more at final causes, while the latter, more oriented towards
physical and mathematical methods, pursued a strict experimental approach.
The major achievement of Genetics in this period was the rejection of the
theory of acquired characters – i.e. the pangenesis hypothesis of C. Darwin,
or the theories of those biologists who followed J.B. Lamarck [4] –. Without
any knowledge of the physical base for the transmission of characters, the
demonstration was done by means of statistical methods, and by showing
the combinatorial character of traits due to more than one gene (the final
experimental demonstration came with work done by Salvatore Luria and
Max Delbrück in the ’40s).

Attributing a key role to information processing amounts to assuming that
the mechanisms through which, e.g., a face or an antigene is recognized, can
be understood without the need to characterize in full detail the underlying
physical processes and chemical reactions. This is indeed a fruitful hypothesis,
formulated already by von Neumann in the book on “The computer and
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the brain”, that has given rise to the formulation of several more-or-less
abstract models introduced in the last 20 years, in the hope of identifying
possibly universal mechanisms. One of the most successful models is the
Hopfield model [6] that exploited a possible analogy between an associative
memory and a spin glass. It shows how information can be robustly stored and
retrieved in a context where many connections can be accidentally destroyed,
as it is the case of our brains.

Although this is a route that will be useful to pursue in the future as well,
one cannot neglect biochemical processes, at least to understand how biolo-
gical systems can self-assemble. In fact, another discipline that is having an
increasing impact on Biology is the theory of dynamical systems. In the last
century it has been progressively recognized that most, if not all, processes
that are responsible for the functioning of a living system involve nonlinear
mechanisms which, in turn, are responsible for the onset of nontrival time
dynamics and the onset of spatial patterns. Initial rudimentary attempts to
figure out a physico-chemical explanation for the origin of life can already be
found in [7], although this remained an isolated attempt, still very qualitative
and rooted into J.B. Lamarck ideas. The modelling of oscillations, thanks to
the work of A.J. Lotka, where one of the well studied models was introduced,
can also be attributed to this path.

Later contributions came thanks to the advances of B.P. Belousov, with
his discovery of the chemical reaction that bears his name, the Belousov-
Zhabotinsky reaction. Belousov discovered this reaction while attempting to
model the Krebs cycle. The Krebs cycle, i.e. the tricarboxylic acid cycle, is
the name given to the set of reactions that transforms sugars or lipids into
energy. Degradation produces acetyl-CoA, a molecule with two atoms of car-
bon, which are transformed through the cycle in two molecules of CO2 while
producing energy in the process. He showed that the oxidation of citric acid
in acidic bromate, in the presence of Cerium catalysis – [Ce(IV)]/[Ce(III)] –,
produces oscillations in the reaction visible through changes in color of the
solution. The discovery was made in 1951 but the paper was rejected because
the nonequilibrium nature of the thermodynamic process was not understood.
He finally published his result in 1958 in the proceedings of a conference.
Along this same path, a theoretical paper on the spontaneous formation of
patterns in chemical systems was published by Alan Turing in 1952 [8]. Ho-
wever, while Belousov’s contribution had an experimental basis, it was not
until the beginning of the ’90s that Turing’s hypothesis was demonstrated
experimentally.

The relevance of dynamical system theory in Biology has definitely emer-
ged in the beginning of the ’60s in connection with the problem of gene
regulation. For instance, in a series of papers, by Jacques Monod, Francois
Jacob, and André Lwoff give some hints about the logic of living systems
and show that regulation of the β-Galactosidase system in bacteria can be
seen as a switch. The classical scheme of the Lactose Operon works as a sen-
sor of the presence-absence of Lactose. As a first approximation, a protein
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produced in the bacterial cell, the lactose repressor, binds to the operator,
a 22 base pairs (bp) long stretch of DNA in front of the genes. This blocks
RNA Polymerase that should start transcription of DNA in order to make the
mRNAs of the three genes which are part of the Operon (β-Galactosidase,
transacetylase and lactose permease). If the lactose is present, it binds to
the repressor, unlocking the operator and transcription begins. If the lactose
is absent, transcription is blocked. Aside from further complexities, this sy-
stem, in its baseline, can be considered similar to a boolean switch. These
ideas have been pointed out by Jacques Monod and Francois Jacob both in
technical papers and in popular articles. Particularly Monod stressed the fact
that the logic of living forms follows Boolean algebra, with a series of more
or less complex logic circuits at work.

The initial formalization of genes as switches, in a way similar to the
modelling of McCulloch and Pitts, is due to M. Sugita in 1961, soon followed
by S. Kauffman [9,10]. A similar approach to the study of the dynamics of
gene expression was pursued by B. Goodwin [11].

However, recognition that high-level cellular functions are regulated by a
plethora of proteins interacting in cells had to wait until the end of the ’80s,
beginning of the ’90s. Since then, it has become increasingly clear that the
lower dimensional levels in Biological systems, those of molecules, organelles
and cells, are as difficult as the higher dimensional one to solve. Several ap-
parently simple functions have revealed a degree of sophistication previously
unforeseen. As a result, the currently emerging picture of multicellular sy-
stems is much more similar to a highly regulated society, than to the simple
gene-protein scheme accepted for many years, [12–15].

2 Kolmogorov’s Direct Contributions

Before discussing the contributions of Kolmogorov to Biology, it is useful to
recall the situation in the Soviet Union. While acceptance of natural selection
in the USA and Europe had to overcome political and philosophical barriers,
this was not the case in Russia. An important figure in the development of
Evolution theories was Sergej S. Chetverikov (1880-1959). In 1906 he pu-
blished an important study on fluctuations in populations. He was able to
demonstrate that not all mutations have a negative impact on fitness: some
are almost neutral and, as shown later by Dobzansky, some can even increase
the fitness. Moreover, because of heterozygosity – the presence of two copies
of each gene – most mutants remain silent within the population, as shown
also by R.A. Fisher, and only homozigous individuals will be exposed to
selection. Chetverikov demonstrated these facts through back crossing expe-
riments with wild type Drosophila melanogaster. His most important result
was that the previous idea of the structure of organisms made of indepen-
dent genes had to be abandoned. No gene has a constant fitness because his
expression will depend on the global genetic background. However, his work
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was not well-known outside Russia and, after 1926, he had to leave his post
for political reasons [4,16].

Independently of the work done within the group of Chetverikov, around
1935, Kolmogorov became interested in some problems of mathematical gene-
tics, probably stimulated by the ongoing debate about Lamarckism occurring
in Europe and especially in the Soviet Union.

The first relevant contribution on the subject deals with the propagation
of “advantageous genes” (see chapter 9 in this book). The variable of interest
is the concentration 0 ≤ c(x, t) ≤ 1 of individuals expressing a given gene, at
position x and time t. In the absence of spatial dependence, the concentration
is assumed to follow a purely logistic growth, ċ ≡ F (c) = Kc(1 − c): this
dynamics is characterized by two stationary solutions, c = 0 and c = 1. If
K > 0, the former one is linearly unstable; any small fraction of individuals
carrying the “advantageous” gene tends to grow, but the limited amount of
resources put a limit on the growth which converges to the stable solution c =
1. In the presence of spatial directions, it is natural to include the possibility
of a random movement of the single individuals. As a result, the whole process
is described by Fisher’s equation [17], proposed in 1937, ten years after the
work of Chetverikov,

∂c

∂t
= D

∂2c

∂x2 +Kc(1 − c). (1)

c = 0 and c = 1 are still meaningful stationary solutions, but now the dyna-
mics of the spatially extended system is determined not only by the evolution
of small perturbations, but also by the propagation of one phase into the
other. This is a general observation whose relevance goes beyond the origi-
nal context, since it applies to all pattern-forming dynamical systems. This
specific model is important, since it is one of the very few nonlinear reaction-
diffusion equations that can be treated analytically. The relevant solutions are
front-like ones connecting the two different fixed points (e.g, c(x, t) → 1 for
x → −∞ and c(x, t) → 0 for x → ∞). The relative stability of the two phases
is thereby quantified by the front velocity that can be estimated by assuming
that the front travels without changing shape, i.e. c(x, t) ≡ f(x− vt) ≡ f(z).
By assuming that f(z) decays exponentially to 0, f(z) � exp(−γz) for large
z, one can easily investigate the front propagation by replacing this ansatz
into the linearized (1). As a result, one finds that

v(γ) =






K/γ + γD if γ > γ∗

2
√
KD if γ ≤ γ∗

where γ∗ =
√
K/D. If the parameter γ defining the initial profile is smaller

than γ∗, then the front propagates with the minimal velocity vmin = v(γ∗) =
2
√
KD. This is the well-known velocity selection mechanism (see also chapter

9 of this book).
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In the same year as Fisher’s paper, Kolmogorov, Petrovskii and Piskunov
[18] extended the solution of the problem to a fairly general class of local
growth-functions F (c), rigorously proving the following expression for the
propagation velocity

vmin = 2
√
F ′(0)D (2)

where the prime denotes the derivative w.r.t. the argument (Fisher’s result
is recovered by noticing that in the logistic case F ′(0) = K).

There are two other studies by Kolmogorov in genetics. The first one [19]
concerns the problem of statistical fluctuations of Mendel’s laws. The interest
in this subject is mainly historical, since it aimed at refuting a claim by
T.D. Lysenko that Mendel’s “3:1 ratio”-law is only a statistical regularity,
rather than a true biological law. More important is the second contribution
which extends the notion of Hardy-Weinberg (HW) equilibrium in population
genetics. HW equilibrium refers to the simplest setup, where allele statistics
can be studied. It assumes: i) random crossing between individuals; ii) absence
of mutations; iii) neutrality, i.e. absence of mechanisms favouring a given
allele; iv) closed population in order to avoid exchanges of alleles with the
environment; v) an infinite population. Mathematically, the problem can be
formulated as follows: Given the probability p (q = 1 − p) to observe the
allele A (a), the free crossing of genes A and a produces AA, Aa, and aa with
probabilities p2, 2pq, and q2, respectively and the frequency of individuals
follows a Bernoulli distribution.

The route towards more realistic models requires progressively relaxing
the above restrictions. Kolmogorov first investigated the effect of a diffusive
coupling in a system of otherwise closed populations and then studied the con-
sequences of selection simulated by a mechanism suppressing the occurrence
of the recessive allele a. Here, we briefly summarize the first generalization.
Kolmogorov considered a large ensemble ofN individuals divided into s popu-
lations, each containing the same number n of individuals, (N = sn). Like in
the HW scheme, random mating (free crossing) is assumed within each popu-
lation. Moreover, a number of k individuals are allowed to “migrate” towards
different populations and thus to contribute to the next generation. As a re-
sult of the mutual coupling, a population characterized by a concentration
p of the allele A experiences an average drift F (p) towards the equilibrium
value p∗ (corresponding to the concentration in the total population) with
variance σ2,

F (p) =
k

n
(p∗ − p) σ2(p) =

p(1 − p)
2n

.

Altogether, the distribution ρ(p, t) of populations with concentration p satis-
fies the Fokker-Planck equation,

∂ρ

∂t
= −∂Fρ

∂p
+

1
2
∂2σ2ρ

∂p2 , (3)
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whose stationary solution is

ρ(p) =
C

σ2(p)
exp
{

2
∫
dp

F (p)
σ2(p)

}
=
pα−1(1 − p)β−1

B(α, β)
,

where α = 4kp∗, β = 4kq∗ = 4k(1 − p∗) and the Euler beta-function B(α, β)
accounts for the proper normalization. The frequency of individuals carrying
AA, Aa, and aa and, hence deviations from a pure HW-equilibrium can then
be estimated by simply averaging p2, p(1−p), and (1−p)2, respectively over
the distribution ρ(p).

Finally, Kolmogorov made some contributions in the modeling of popula-
tion dynamics, by generalizing the Lotka-Volterra equations. Such a model,
on the Volterra side, followed an experimental observation by the Italian bio-
logist Umberto D’Ancona, who discovered a puzzling fact. During the first
World War, the Adriatic sea was a dangerous place, so that large-scale fis-
hing effectively stopped. Upon studying the statistics of the fish markets,
D’Ancona noticed that the proportion of predators was higher during the
war than in the years before and after. V. Volterra, stimulated by his son
in law D’Ancona, formulated the problem in terms two coupled differential
equations,1

dN1

dt
= (ε1 − γ1N2)N1,

dN2

dt
= (−ε2 + γ2N1)N2,

N1 and N2 being the abundance of preys and predators, respectively. They
exhibit periodic behaviour whose amplitude depends on the initial conditions.
This feature crucially depends on the form of the proposed equations, because
the dynamics admits a conserved quantity E (analogous to the energy in
conservative systems)

E = γ2N1 + γ1N2 − ε2 log(N1) − ε1 log(N2),

while the periodic orbits are level lines of E. However, E has no direct biolo-
gical meaning. Kolmogorov argued that the term γ2N1 is too naive, because
it implies that the growth rate of predators can increase indefinitely with
prey abundance, while it should saturate at the maximum reproductive rate
of predators. Accordingly, he suggested the modified model [22]

dN1

dt
= K1(N1)N1 − L(N1)N2,

dN2

dt
= K2(N1)N2,

where K1(N1), K2(N1) and L(N1) are suitable functions of the prey abun-
dance and predators are naturally “slaved” to preys. With reasonable as-
sumptions on the form of K1(N1), K2(N1) and L(N1), Kolmogorov obtained
1 The same equations were derived also by A.J. Lotka some years before [20,21] as

a possible model for oscillating chemical reactions
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a complete phase diagram, showing that a two-species predator-prey compe-
tition may lead to either extinction of predators, stable coexistence of prey
and predator, or, finally, oscillating cycles. He also generalized the differential
equation to more than two species2, introducing most of the phenomenology
nowadays known in population dynamics.

Moreover, Kolmogorov pointed to the strong character of the assumptions
behind an approach based on differential equations. In particular, populations
are composed of individuals and statistical fluctuations may not be negligible,
especially for small populations. In practice, there exists a fourth scenario:
at the minimum of a large oscillation, fluctuations can extinguish the prey
population, thereby causing the extinction of predators too. It is remarkable
to notice how Evolution has developed mechanisms to reduce “accidental”
extintions. In most species, the birth of individuals takes place during a very
short time interval. In some cases, such as for example for herbivores like
the gnus – Connochaetes taurinus –, living in herds, the birth of puppies
is limited to a time span as short as one-two weeks. This mechanism helps
in preserving the species since the number of newborns highly exceeds the
possibility of killing by predators.

3 Information and Biology

Information is one of those technical words that can also be encountered wit-
hin natural languages. C.E. Shannon, who was mainly interested in signal
transmission, succeeded in formalizing the concept of information by delibe-
rately discarding semantic aspects. He states in the beginning of [24]

The fundamental problem of communication is that of reprodu-
cing at one point either exactly or approximately a message selected
at another point. Frequently, the messages have meaning; that is they
refer to or are correlated according to some system with certain phy-
sical or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem.

In fact, before discussing the meaning of single messages, it is necessary to
distinguish among them. In this sense, the information becomes the number
of independent specifications one needs in order to identify a single message
x in an ensemble of N possible choices. Given, for instance, an ensemble
of N equiprobable messages xk, the unambiguous identification of a specific
message x requires taking log2N binary decisions. One can indeed split the
initial ensemble into two subsets and identify the one containing x. This
operation involves the minimal amount of information, a “bit”, and it must
be recursively repeated until the remaining set contains no more than one
element. Accordingly, the amount of information is I = I(x) = log2N bits.
2 See for instance [23]; the generalized version is sometimes referred as the Kolmo-

gorov model.
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If messages do not have the same probability, it is natural to define the
information of a single message as

Ik = − log2 p(xk) , (4)

and accordingly introduce the average information

H =
∑

k

p(xk)Ik = −
∑

k

p(xk) log2 p(xk) . (5)

The quantity H was defined as an entropy by Shannon, since it can also be
interpreted as an uncertainty about the actual message.

In many contexts, the object of investigation is an ideally infinite sequence
s1s2 . . . sn . . . of symbols (si belonging to an alphabet with 2b letters) that
can be viewed as a collection of strings Si of length n with probability p(Si, n).
In this case, the information is written as H(n) =

∑2bn

i=1 p(Si, n) log2 p(Si, n)
and the sum extends to the set of all possible strings. The difference hn =
H(n + 1) − H(n) is the information needed to specify the (n + 1)st symbol
given the previous n, while h = limn→∞ hn is the Kolmogorov-Sinai entropy
of the signal. The maximum value, h = b is attained for random sequences
of equally probable symbols, while h = 0 is a distinctive feature of regular
messages.

Another useful indicator is mutual information

M(k) =
∑

p(sj , sj+k) log2
p(sj , sj+k)
p(sj)p(sj+k)

, (6)

measuring the statistical dependence between two variables; M(k) = 0 if and
only if the two variables are mutually independent.

While the concept of information was being formalized, crucial progress
was made in Biology that led to the discovery of the DNA double-helix struc-
ture by J. Watson and F. Crick [25] in 1953. This was made possible by the
development of methods for the analysis of chemical structures based on X-
ray scattering, mostly by William and Lawrence Bragg together with the
intuitions of L. Pauling for the application of the method to the study of
protein and DNA structure [26]3. One should not however forget also the
impact of the book of E. Schrödinger on atoms and life [27], where he argued
about the existence of a disordered solid as the medium hiding the secrets of
life.

The crucial role of information within genetics has become increasingly
clear with the discovery that DNA and proteins are essentially string-like
objects, composed by a sequence of different units (bases and amino acids,
3 The story goes that the interest in protein structure was aroused in Pauling by

Warren Weaver, head of the Natural Sciences division of the Rockefeller Founda-
tion, who convinced him to work on the problem, financed by the Rockefeller’s
funds.
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Table 1. Genetic code, translating the codon triplets into amino acids, e.g. UUU
and UUC both corresponds to amino acid Phenylalanine (Phe), while Leucine (Leu)
is encoded by six possibilities UUA, UUG, CUU, CUC, CUA, CUG. Notice that the
symbol “T” is replaced by “U” since the translation codons → aminacids actually
involves RNA and not directly DNA. It is evident that most of the redundancy in
the code is due to the third base of each codon. Triplets UAA, UGA and UAG
are the stop-codons; they do not encode any amino acid but locate the end of the
protein

First Position Second Position Third Position
U C A C

U Phe Ser Tyr Cys U
U Phe Ser Tyr Cys C
U Leu Ser Stop Stop A
U Leu Ser Stop Trp G
C Leu Pro His Arg U
C Leu Pro His Arg C
C Leu Pro Gln Arg A
C Leu (Met) Pro Gln Arg G
A Ile Thr Asn Ser U
A Ile Thr Asn Ser C
A Ile Thr Lys Arg A
A Met (Start) Thr Lys Arg G
G Val Ala Asp Gly U
G Val Ala Asp Gly C
G Val Ala Glu Gly A
G Val (Met) Ala Glu Gly G

respectively) linked together by covalent chemical bonds which ensure a chain
structure. The properties of DNA, RNA and proteins are briefly recalled
below in a specific box; for further details, we recommend that the reader
consult any modern textbook on molecular biology [28,29].

The information contained in the DNA is first transferred to RNA and
eventually to proteins. In the latter step there is a loss of information because
the 43 = 64 possible different triplets of nucleotides – codons – are mapped
onto only 20 amino acids (see Table 1). This is therefore an irreversible process
and there is no way to go back from the proteins to DNA since different
nucleotide sequences can code for the same protein.

After the discovery of DNA’s structure and function, a shift of focus took
place in genetics and biology: all relevant properties became traced back to
the information stored at the molecular level. The DNA sequence is viewed
as “the fundamental issue” and the pursuit of the sequencing projects for
several organisms has been the main direct consequence of this view. The
centrality of DNA is so undisputed that human-like behavioral characteristics
are occasionally attributed to the chemical properties of this molecule.4 The

4 The use of the catchy metaphor of the selfish gene by R. Dawkins is a good
example.
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reasons for this are several, the main one being the appealing interpretation of
living organisms as complex computing machines. The DNA then represents
the code that the program actually runs. However, the relative ease with
which DNA molecules can be studied has contributed to this view, since the
DNA is relatively constant for a certain organism. Technological advances
during the last three decades have made the process sequencing routine,
through the use of automatic machines.

Given its naturally symbolic structure, DNA can be directly investiga-
ted by means of information-theoretic tools. The zero-th order question is
whether DNA can be treated as a stationary process, since the very com-
putation of probabilities requires this. Several studies have revealed that a
slow drift in the composition may be present and must be carefully accounted
for. Once this is made clear, one can proceed by computing the probability
p(Si, n) of each sequence of length n and thus determine the information
H(n). If the DNA was a purely random sequence of equally probable bases
(four), H(n) would attain its maximum value H(n) = 2n. This is almost
true for n ≤ 4 ÷ 5: for instance H(1) = 1.95 in the human chromosome 22
[30], the 0.05 difference from 2 being an indication of the slightly uneven
distribution of the four nucleotides. However, upon increasing n, hn decrea-
ses and for n = 10 it has already decreased down to 1.7. Going to larger
n-values is basically impossible, since one would need such large samples to
reliably determine the exponentially small probabilities, that even 107 − 108

bp are no longer sufficient. One partial way to go around the problem is
by looking for low-order correlations. A straightforward solution consists in
studying the standard correlation C(k) = 〈sjsj+k〉 − 〈sj〉2. Starting with
[31], several studies performed on different living organisms have revealed a
slow correlation-decay, C(k) � k−γ . Such observations have been confirmed
by studying also the mutual information M(k) (see (6)) which only requires
computing probabilities of pairs of symbols, k bp apart from each other. For
instance, in [30], a decay with γ ≈ 1/4 was found up to k = 105. Many factors
seem to be responsible for such a slow decay on different scales, but none of
them prevails. For instance, it is known that many almost-equal repeats are
interspersed within DNA and some are even as long as 300 bp, but they are
responsible for correlations only up to k ≈ 102,

3.1 Algorithmic Information

As soon it was realized that DNA is simply a long message possibly con-
taining the instructions for the development of a living being, algorithmic
issues immediately became relevant. In the decade across ’60s and ’70s, R.
Solomonoff, A. Kolmogorov, and G. Chaitin, [32–37], independently set the
basis of what is now known as algorithmic information theory. Consider the
sequences
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Sa = ATGCATGCATGCATGCATGCATGCATGCATGCATGC

Sb = AATAGATACAAACATGTCGACTTGACACATTTCCTA,

it is clear that Sa is somehow simpler than Sb. Suppose indeed that we have
to describe them; while the former string is fully characterized by the state-
ment 8 times ATGC, the latter cannot be better described than enumerating
the individual symbols. However, in order to make more quantitative our
considerations about “simplicity”, it is necessary to formalize the concept of
description of a given string. The Turing machine is a tool to answer this
question: it is a general purpose computer which, upon reading a series of
instructions and input data (altogether representing the program), produ-
ces the required string S. It is therefore natural to consider the program
length as a measure of the “complexity” of S. As proven by Solomonoff,
Kolmogorov and Chaitin this is an objective definition, provided that the
shortest code is first identified. In fact, on the one hand, there exist the so-
called universal Turing machines (UTMs) that are able to emulate any other
machine. On the other hand, there is no need to refer to a specific UTM,
since the unavoidable differences among the lengths of minimal codes cor-
responding to different UTMs are independent of the sequence length N .
More precisely, the Kolmogorov-Chaitin algorithmic complexity K(S), i.e.
the minimal code length, is known within a machine-dependent constant and
κ(S) = limN→∞ K(S)/N is an objective quantity. Unfortunately one conse-
quence of the undecidability theorem, proved by Kurt Gödel, is that there
is no general algorithm to determine κ(S) which thereby turns out to be an
uncomputable quantity.

While information deals with ensembles of strings, algorithmic informa-
tion aims at measuring properties of single sequences. In spite of this striking
difference, there is a close analogy to the extent that we now often speak of
“algorithmic information”. In fact, one may want to determine the probability
P (S) that a given UTM generates a string S when fed with a sequence of inde-
pendent, equally probable bits. Since Chaitin proved that K(S) = − log2 P ,
one can interpret K(S) as the logarithm of the probability that the minimal
code is randomly assembled. This observation is particularly suited to discuss
the role of chance within biological evolution. Indeed, if the DNA sequence is
a randomly selected program, even imagining the Earth as a gigantic parallel
processor performing independent tests every cubic millimiter each nanose-
cond,5 the probability P (DNA) should be larger than 10−50 and, accordingly,
K(DNA) < 200. In other words, it should be possible to compress the DNA
5 This is reminescent of an episode of the hitchiker’s guide to the galaxy by Douglas

Noel Adams (whose acronym is DNA)
http://www.bbc.co.uk/cult/hitchhikers/: Some time ago a group of hyper-
intelligent pan dimensional beings decided to finally answer the great question
of Life, The Universe and Everything. To this end they built an incredibly po-
werful computer, Deep Thought. After the great computer programme had run
seven and a half million years, the answer was “42”. The great computer kindly
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sequence down to less than 200 bits (or, equivalently, 100 bp). We cannot
exclude that this is the case, but it is hard to believe that all instructions
for the development, of e.g. humans, can be compressed within such a short
length!

An observation that helps to close the gap is that only part of the genome
is transcribed and then translated: according to the most recent results, less
than 2% of human DNA is transformed into proteins! A small fraction of the
remaining 98% contributes to the regulation of metabolic processes, but the
vast majority seems to be only accidentally there. This is so true that onion-
DNA contains 3 times more bp than human-DNA! Whatever the algorithmic
content of this so-called “junk” DNA, we are clearly left with the crucial pro-
blem of discovering the language used to store information in DNA. Several
researchers have investigated the DNA structure in the hope of identifying the
relevant building blocks. In natural and artificial languages, words represent
the minimal blocks; they can be easily identified because words are separa-
ted by the special “blank” character. But how to proceed in partitioning an
unknown language, if all blanks have been removed? Siggia and collaborators
[38] have proposed to construct a dictionary recursively. Given, e.g., the se-
quence Sn = s1 . . . sn, it is extended to Sn+1 = s1 . . . sns

′, if the probability
of Sn+1 turns out to be larger than the probability of Sn multiplied that of
the symbol s′. In the opposite case, the process is stopped and Sn is identi-
fied as a new word. The rationale behind this approach is that when a word
is completed, a sudden uncertainty arises due to the ignorance about the
newly starting one. The above approach has been successfully implemented,
allowing the recognition of several regulatory motifs.

Extracting information from the sole knowledge of the DNA sequence
seems however to be an exceedingly hard problem, since the products of DNA
translation interact with each other and with the DNA itself. In order to gain
some insight about living matter, it is therefore useful, if not necessary, to
look directly at the structure of the “final product” in the hope of identifying
the relevant ingredients. In this philosophy, many researchers have pointed
out that living matter is characterized by non-trivial relationships among
its constituents. Chaitin [39], in particular, suggested that the algorithmic
equivalent of mutual information represents the right setup for quantifying
the degree of organization of a sequence S. More precisely, he introduced
the d-diameter complexity Kd(S) as the minimum number of bits needed
to describe S as the composition of separate parts Si, each of diameter not
greater than d,

Kd(S) = min

[
K(α) +

∑

i

K(Si)

]
, (7)

pointed out that what the problem really was that no-one knew the question.
Accordingly, the computer designed its successor, the Earth, to find the question
to the ultimate answer.
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where K(Si) is the algorithmic information of the single ith piece and K(α)
accounts for the reassembling processes needed to combine the various pieces.
If d > N , Kd(S) = K(S) and Kd(S) increases as d decreases. The faster
the difference δK(S) = Kd(S) − K(S) increases, the more structured and
organized S is. The beauty of this approach is in the fact that no definition of
the constituents is required: they are automatically identified by determining
the partition that minimizes the d-diameter complexity.

In the case of a perfect crystal (i.e. a periodic self-repeating sequence),
K(S) is very low and Kd(S) remains low, even when S is broken into various
pieces, since there is no connection between the different cells. The same is
true in the opposite limit of a gas-like (purely random) sequence. In this case,
K(S) is maximal and remains large when S is partitioned in whatever way,
as all bits are, by definition, uncorrelated with each other.

3.2 DNA → RNA → Proteins

DNA (deoxyribonucleic acid) is a double-stranded polymer made of four ele-
mentary components called nucleotides: Adenine (A), Cytosine (C), Guanine
(G), and Thymine (T). Nucleotides are small molecules consisting of a phos-
phate group linked to a pentose (a sugar with 5 carbon atoms) which is in
turn bound to one of the bases. The two strands interact via hydrogen bonds
linking the pairs A-T and C-G. In its native state, the two DNA-strands spi-
ral around each other and assume the well-known double helix conformation,
as proposed by Watson and Crick in 1953 [25]. DNA is the carrier of the
genetic information required to build a living organism. Such information is
organized in units named genes which, from a molecular point of view, are se-
quences of DNA nucleotides capable of synthesizing a functional polypeptide.
Roughly speaking a gene is a portion of DNA which encodes a protein.

RNA (ribonucleic acid) is generally a single strand polymer made of the
same nucleotides as DNA, except for the replacement of Thymine with Uracil
(U). RNA is the outcome of DNA transcription, and is copied by using a given
portion of DNA as a template. RNAs which carry information to be translated
into proteins are called messenger RNAs, mRNA. Other RNAs, such as rRNA
and tRNA are involved in the translation of mRNA into proteins.

Amino acids are the proteins’ building blocks; even if their number is
potentially limitless, only twenty types of amino acid are involved in natural
proteins. Amino acids share a common structure: each of them is made by
at least one amino group -NH2 and a carboxyl group -COOH, both linked to
a central carbon atom Cα (α-carbon) which is in turn bound to a side chain
(functional group or residue). It is the chemical nature of the side chains that
differentiate amino acids from one another, conferring to them a structure
with chemical and physical specificity. Amino acids are connected together to
form the protein chain through peptide bonds, which are established by the
chemical reaction between the -NH2 group of one amino acid and the -COOH
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group of another. The sequence of amino acids determines the properties and
the function of a protein.

4 Proteins: A Paradigmatic Example of Complexity

In addition to being a technical term introduced in the theory of computation,
complexity is a word widely invoked in many different contexts ranging from
turbulence, to networks of any kind, spin glasses, chaotic dynamics and so on.
In spite of the great diffusion of this term, no clear definition of complexity has
yet been given. This will presumably remain so in the near future, since it is
unlikely that so many different problems share some well-defined properties.
Nevertheless, if there exists a scientific discipline where complexity is to be
used, it is Biology, both for the diversity of structures existing over a wide
range of scales and for the combination of several mutual interactions among
the very many constituents.

Proteins have been selected for their mixed digital and analog nature and
since they represent the point where the initial set of genetic instructions
is transformed into a working device capable of processing information. A
protein is uniquely defined by a sequence of amino acids, which in turn fol-
lows from the translation of a string of DNA. However, after a protein is
linearly assembled by the ribosomes of the cell, it begins to twist and bend
until it attains a three-dimensional compact structure – the native configura-
tion – that is specific of each protein and is crucial for its biological function.
Because of thermal fluctuations, the final shape is, however, not exactly de-
termined so that a protein can be seen as a digitally assembled analog device.
Once assembled, proteins represent the “working molecules”, supporting and
controlling the life of an organism. Structural proteins, for instance, are the
basic constituents of cells and tissues; other proteins store and transport
electrons, ions, molecules, and other chemical compounds. Moreover, some
proteins perform a catalytic function (enzymes), while others control and re-
gulate cell activity. Most of these processes involve many proteins of the same
type at once, so that it is tempting to draw an analogy with statistical me-
chanics, with a microscopic level (that of the single molecules) and a macros-
copic one, characterized by a few effective variables (e.g., concentrations and
currents). Accordingly, biological problems are akin to non-equilibrium sta-
tistical mechanics and the relevant questions concern how the definition of
specific microscopic rules translates into a given macroscopic behaviour.

The lack of theoretical tools for dealing with such systems prevents us of
finding general solutions, but analogies with known problems can sometimes
be invoked and many help in making substantial progress (examples are the
statistical mechanics of disordered systems and reaction-diffusion equations).
Moreover, modern microscopic techniques allow the visualization and ma-
nipulation of single molecules, so that it is now possible to study proteins
experimentally and clarify their mutual interactions.
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The first problem one is faced with is to understand how each protein finds
its native configuration. Indeed, consider a protein molecule with N amino
acids, and assume that there are q preferred orientations of each monomer
with respect to the previous one along the chain. Then, there exist qN local
minima of the energy that can a priori be meaningful “native” states. Moreo-
ver, one can imagine that the true native configuration is that corresponding
to the most stable minimum. If this picture were correct, it is hard to imagine
a polymeric chain exploring the whole set of minima in a few milliseconds (the
folding time can indeed be so short) to identify the absolute minimum: for a
chain with N = 100 amino acids and q = 3, no more than 10−50s should be
dedicated to each minimum! This is basically the famous Levinthal paradox
[40], which strongly indicates that protein folding can neither be the result
of an exhaustive search nor of a random exploration of the phase space.

How can proteins find their native state within such a huge number of
possible configurations? A significant step towards the answer was made by
Anfinsen and coworkers. They discovered, in an in vitro experiment – i.e.
outside the cell environment – that the enzyme ribonuclease, previously den-
aturated, was able to spontaneously refold into its native state when the phy-
siological conditions for the folding were restored. This work [41], that won
Anfinsen the Nobel Prize, demonstrated that the folding of protein molecules
is a self-assembly process determined, at a first approximation, only by the
amino acids sequence. It is not assisted by the complex cell machinery nor
by enzymatic activity6. This great conceptual simplification in the folding
problem gave great stimulus to its study. The activity was not restricted to
the fields of Biology and Biochemistry, but was tackled with the methods of
Physics, specifically of statistical mechanics. After Anfinsen’s work, attention
soon shifted towards the so-called “folding code”, i.e. the basic rules through
which the information stored in a one dimensional structure, the amino acid
sequence (also called primary structure), encode the three-dimensional pro-
tein structure (tertiary structure). From an information-theoretic point of
view, if one is to specify the native configuration out of the above mentioned
ensemble of possibilities, the required information is on the order of N log2 q.
This is compatible with the information contained in the DNA sequence,
equal to 6N bits. However, no algorithm has been found to predict the ter-
tiary structure, given the primary one: this seems to belong to the class of
hard computational problems. If a shortcut exists, a solution of the folding
problem will be more likely found by studying the underlying physics and
understanding its dynamics.

The first insight into the folding mechanisms came from the observation
of protein shapes. Experimental data on protein structures, collected through

6 Actually, futher studies revealed that large-protein folding can be assisted by
molecular chaperons (chaperonins) and other helper enzymes to prevent protein
self-aggregation and possibly dangerous misfolding. However the role of the cha-
peronins that are themselves proteins is still non fully elucidated.
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Fig. 2. A possible folding funnel scenario with the corresponding interpretation of
folding stages. In the horizontal axis, protein conformations are parametrized by
conformational entropy, while the energy is on vertical axis. On the side, typical
protein conformations corresponding to states in the funnel.

X-ray spectroscopy and nuclear magnetic resonance (NMR), show that fol-
ded proteins are not random arrangements of atoms, but present recurrent
motifs. Such motifs, forming the secondary structure of proteins, consist of
α-helices (L. Pauling), β-sheets and loops (see Fig. 2). The secondary struc-
ture formation plays a crucial role in the folding process, since it introduces
severe steric and topological contraints that strongly influence the way the
native state can be reached.

Another hint about the rules that govern the folding comes from the
analysis of the amino acid properties. The twenty natural amino acids can
be grouped into two classes: hydrophobic and polar. While polar amino acids
are preferentially exposed to water molecules, hydrophobic ones avoid contact
with water; this is possible by grouping them together. As a result, most of
the hydrophobic residues are buried inside the native structure, while the
polar ones are located near the surface. In 1959, Kauzmann [42] realized that
the hydrophobic effect is the principal driving force of the folding. However,
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even if the hydrophobic collapse has a prominent role in directing the folding,
it is not a sufficiently precise criterion to predict the protein structure from
the knowledge of the amino acid sequence.

Earlier theoretical efforts to understand protein folding were directly ai-
med at bypassing Levinthal’s paradox. For instance, it was proposed that a
protein, during folding, follows a precise sequence of steps (pathway) to the
native state without exploring the whole configurational space. This ensures
a fast and large decrease of conformational entropy and justifies the relatively
short folding times. However, even though it must be true that only a subset
of the phase space is explored, several works on the folding kinetics revealed
that folding of a given protein does not always follows the same route. The
pathway scenario implies also the concept of intermediate states, i.e. states
with partially folded domains that favour the correct aggregation of the rest
of the protein. However the determination of intermediates is critical because
they are metastable states with a relatively short lifetime.

A general theory of the protein folding requires the combination of po-
lymer theory and the statistical mechanics of disordered systems. In fact,
several features of the folding process can be understood from the properties
of random heteropolymers and spin-glasses. However, there is a great diffe-
rence between random heteropolymers and proteins: proteins have an (al-
most) unique ground state, while random heteropolymers have, in general,
many degenerate ground states. In other words, proteins correspond to spe-
cific amino acid sequences that have been carefully selected by evolution in
such a way that they can always fold in the same “native” configuration.

Many of these features have been investigated in what is perhaps the
simplest model of a protein, the HP model [43]. It amounts to schematizing
a protein as a chain of two kinds of amino acids, hydrophobic (H) and polar
(P) ones, lying on a three-dimensional cubic lattice. Accordingly, the primary
structure reduces to a binary sequence such as, e.g., HPPHHHPHH . . . .
Moreover, pairwise interactions are assigned so as to energetically favour
neighbouring of H monomers in real space. Investigation of HP-type models
and of more realistic generalizations has led to the “folding funnel” theory [44]
which provides the currently unifying picture for the folding process.

This picture, generally referred to in the literature as the “new view”, is
based on the concept of free-energy landscape. This landscape neither refers
to the real space nor to the phase-space, but to the space identified by the
order parameter(s). In order to construct such a picture, it is first necessary
to identify the proper parameters; the study of spin glasses has shown that
this may not be an easy task in disordered systems. In the case of protein
models, it was suggested that the proper coordinate is the fraction of correct
contacts, i.e. the number of monomer pairs that are nearest neighbours both
in the given and the “native” configuration. Theoretical considerations [44]
based on simplified models, such as the HP model, suggest that the landscape
of proteins is funnel-shaped with some degree of ruggedness (see Fig. 3).
The local energy oscillations are a manifestation of frustration, a typical
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Fig. 3. Ribbon representation of the protein chemo-trypsin-inhibitor (CI2), showing
the characteristic secondary motifs alpha-helix and β-sheets

property of many disordered systems, here induced by the conflicting polar
and hydrophobic interactions.

The funnel structure is the essential property ensuring an efficient collapse,
because it naturally drives the system towards the minimum of free energy.
Moreover, the protein can be temporarily trapped into the deepest relative
minima, which correspond to the intermediates observed in kinetics experi-
ments. Accordingly, the funnel scenario is able to reconcile the thermodyna-
mic and kinetic features of the folding process.
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problème de biologie. Moskow Univ. Bull. Math. 1, 1 (1937)

19. A.N. Kolmogorov, On a new confirmation of Mendel’s Laws. Dokl. Akad. Nauk.
SSSR 27, 38 (1940)

20. A.J. Lotka, Undamped oscillations derived from the law of mass action. J.
Phys. Chem., 14, 271 (1920)

21. A.J. Lotka, Elements of physical biology. Williams and Wilkins, Baltimore,
1925

22. A.N. Kolmogorov, Sulla teoria di Volterra della lotta per l’esistenza. Giorn.
Ist. Ital. Attuar. 7, 74 (1936)

23. J.D. Murray, Mathematical Biology. Springer, Berlin, 1993
24. C.E. Shannon, A mathematical teory of communication. The Bell System

Technical Journal 27, 379 and 623 (1948)
25. J.D. Watson and F.H. Crick, Molecular structure of nucleic acids: a structure

for deoxyribose nucleic acid. Nature 171, 737 (1953). Classical article, Ann.
N.Y. Acad. Sci. 758, 13 (1995)

26. L. Pauling and R.B. Corey, Two hydrogen-bonded spiral configurations of the
polypeptide chain. J. Am. Chem. Soc. 72, 5349 (1950)

27. E. Schrödinger, What is Life. Cambridge University Press, Cambridge, 1992.
original appeared in 1944

28. T.E. Creighton, Proteins: Structure and Molecular Properties. W.H. Freeman
and Company, New York, 2000

29. H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell,
Molecular Cell Biology. W.H. Freeman and Company, New York (2000)

30. D. Holste, I. Grosse, and H. Herzel, Statistical analysis of the DNA sequence
oh human chromosome 22. Phys. Rev. E 64, 041917 (2001)



146 F. Bagnoli et al.

31. C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, F. Sciortino, M. Simons,
and H.E. Stanley, Long-range correlations in nucleotide sequences, Nature 356,
168 (1992)

32. R.J. Solomonoff, A formal theory of inductive inference, part i. Inform. Contr.
7,1 (1964)

33. R.J. Solomonoff, A formal theory of inductive inference, part ii. Inform. Contr.
7, 224 (1964)

34. A.N. Kolmogorov, Three approaches to the quantitative definition of informa-
tion. Problemy Peredachi Informatsii 1, 3 (1965). Original in russian, transla-
ted in: Three approaches to the quantitative definition of information. Probl.
Inform. Trans. 1, 1 (1965)

35. A.N. Kolmogorov, Logical basis for information theory and probability theory.
IEEE Trans. Inform. Theory, 14, 663 (1968)

36. G.J. Chaitin, Information-theoretic computational complexity. IEEE Trans.
Inform. Theory 20, 10 (1974)

37. G.J. Chaitin, Randomness and mathematical proof. Scientific American 232,
47 (1975)

38. H.J. Bussemaker, Hao Li, and E.D. Siggia, Building a dictionary for genomes:
identification for presumptive regulatory sites by statistical analysis. Proc.
Natl. Acad. Sci. USA 97, 10096 (2000)

39. G.J. Chaitin, Toward a mathematical definition of “Life” in R.D. Levine and
M. Tribus, The Maximum Entropy Formalism, MIT Press, 1979, 477

40. C. Levinthal, Are there Pathways for Protein Folding? J. Chem. Phys. 65, 44
(1968)

41. C.B. Anfinsen, Principles that govern the folding of protein chains. Science
161, 223 (1973)

42. W. Kauzmann, Some factors in the interpretation of protein denaturation. Adv.
Protein Chem. 14, 1 (1959)

43. H.S. Chan and K.A. Dill, Protein folding in the landscape perspective: chevron
plots and non-Arrhenius kinetics. Proteins 30, 2 (1998)

44. P.G. Wolynes, J.N. Onuchic, and D. Thirumalay, Navigating the folding routes.
Science 267, 1619 (1995)


	1 Historical Notes
	2 Kolmogorov’s Direct Contributions
	3 Information and Biology
	3.1 Algorithmic Information
	3.2 DNA → RNA → Proteins

	4 Proteins: A Paradigmatic Example of Complexity



