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Abstract

We have applied a simple statistical mechanics Gō-like model to the analysis of the PIN1 WW domain, resorting to mean field and Monte

Carlo techniques to characterize its thermodynamics, and comparing the results with the wealth of available experimental data. PIN1 WW

domain is a 39-residue protein fragment which folds on an antiparallel h-sheet, thus representing an interesting model system to study the

behavior of these secondary structure elements. Results show that the model correctly reproduces the two-state behavior of the protein, and

also the trends of the experimental /T values. Moreover, there is a good agreement between Monte Carlo results and the mean field ones,

which can be obtained with a substantially smaller computational effort.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the folding process of proteins is one of

the most challenging issues of biochemistry which requires

sophisticated simulations at atomic resolution generally

referred as all-atom methods. At present, the large incom-

patibility between folding time scales and regimes explored

by all-atom simulations makes the folding process not yet

accessible to these powerful computational approaches.

Even though very encouraging progress has been achieved,

their applicability remains restricted to the study of peptides

and fragments of proteins [1,2]. In addition, the comparison

to experiments requires an accumulation of folding events to

gain an enough large statistics furtherly narrowing the route

to the full-atom techniques. These limitations suggest

resorting to minimalist models which adopt a less accurate

description of protein chains, residue–residue and residue–
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solvent interactions [3–7]. Approximate representations

reduce the computational costs and, with a certain amount

of uncertainty, allow to follow all the stages which bring a

protein into its native fold. The use of simplified models

within a statistical mechanical approach to protein folding is

grounded on the assumption that not all the chemical details

need to be retained to understand and describe the basic

properties of folding processes. Of course the approxima-

tions that this kind of approach introduces must ensure that

the basic principles of biochemistry are fulfilled to keep a

correct description of the real molecules. Several years ago,

a simple model was proposed by Gō [8] to attain a

phenomenological but complete description of the folding

reaction. The model replaces all non-bonded interactions by

attractive native-state contact energies. This recipe, which

can be applied only when native structure is known,

implements the idea that a reasonable energy bias toward

the native state could capture the relevant features of the

folding process. This kind of modelling removes high

energetic barriers along the pathways towards the native

conformation (which lies in a deep minimum), and produces
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relatively smooth energy landscapes. As a result the folding

bfunnelQ [9,10] leading to the native state is very smooth so

the folding process results bidealQ. Folding events simulated

through Gō-like potentials take only few nanoseconds

making possible to obtain statistically meaningful results

for generic proteins and polypeptide chains. Since Gō-like

models lack any energetic frustration, the scope of their

applications is related to the investigation of the role of

geometric frustration and configurational entropy in the

folding process. Their success in providing a reasonable

account for kinetic properties of the folding process is

related to the assumption that folding kinetics is mainly

determined by native geometry, together with native state

stability, and this view is indeed supported by several

experimental works [11–15]. Along the lines indicated by

the Gō-phylosophy, other simplified models exploiting the

information present in the native state have been proposed

[16–19]. In this paper we continue our analysis [20] of one

of this Gō-like models, the Finkelstein model [19,21], and

apply it to the study of the PIN1 WW domain (pdb code

1I6C) which has a well-defined and simple native structure

made of two slightly bent antiparallel h-sheets. Its distinc-
tive feature, which is also reflected in its name, is the

presence of two triptophanes (W), located 20 residues apart

from one another. Its structure, with a simple topology, lacks

all those features that can complicate the modeling. Thus

this molecule represents a suitable candidate to explore the

kinetic and thermodynamic factors responsible for the

formation of h-sheets and their stability, and is also a suit-

able benchmark through which models and theories are

validated. The Finkelstein model is particularly suitable for

analyzing the folding thermodynamics of two-state proteins

and the WW domain is known to fold in a two-state scenario

so we can test whether the model can faithfully reproduce

the known experimental data [22] about WW domain

folding.

The organization of the paper is as follows. In Section 2

we discuss the model and its assumptions. In Section 3 we

present the Monte Carlo and mean field methods we adopt,

and in Section 4 we report and discuss our results. Finally,

Section 5 is dedicated to the concluding remarks.
2. Description of Finkelstein Model

Finkelstein model assumes a simple description of the

polypeptide chain, where residues can stay only in an

ordered (native) or disordered (non-native) state. Then, each

micro-state of a protein with L residues is encoded in a

sequence of L binary variables s={s1,s2, . . . ,sL}, si={0,1}.
Residues with si=1 (si=0) are in their native (non-native)

conformation. When all variables take on the value 1, the

protein is considered folded, whereas the random coil

corresponds to all 0’s. Because each residue can be in one

of the two states, ordered or disordered, the free energy

landscape consists of 2L configurations. This enormous
reduction in the number of configurations available to a

protein is a quite delicate point because it is a restrictive

feature of the model. However this crude assumption,

already employed in Ref. [23], is the simplest one leading

to a two-state behaviour of the folding. The effective

Hamiltonian (indeed, a free energy function) is

H sð Þ ¼ e
X
ibj

DijSiSj � TS sð Þ; ð1Þ

where S(s) is given by:

S sð Þ ¼ R q
XL
i¼1

1� Sið Þ þ Sloop sð Þ
#
:

"
ð2Þ

R is the gas constant and T the absolute temperature. The

first term in Eq. (1) is the energy associated to native contact

formation. Non-native interactions are neglected: this

further assumption can be just tested a posteriori and it is

expected to hold if, during the folding process, the progress

along the reaction coordinate is well depicted on the basis of

the native contacts. That is, the reaction coordinate(s) must

be related to just the native contacts. Moreover, such

progress must be slow with respect to all other motions,

so that all non-native interaction can be baveraged-outQ
when considering the folding pathways. Dij denotes the

element i,j of the contact matrix, whose entries are the

number of heavy-atom contacts between residues i and j in

the native state. Here we consider two amino acids to be in

contact if there are at least two heavy atoms (one from

amino acid i and one from j) separated by a distance less

than 5 2. The matrix D embodies the geometrical properties

of the protein.

The second term in Eq. (1) is the conformational entropy

associated to the presence of unfolded regions along the

chain, and vanishes in the native state.

More precisely, the first term in Eq. (2) is a sort of

binternalQ entropy of the residues: qR represents the entropic

difference between the coil and the native state of a single

residue. This can be noticed by considering that in the fully

unfolded state Sloop vanishes and the remaining entropy is

qLR only.

The term RSloop in Eq. (2) is the entropy pertaining to the

disordered closed loops protruding from the globular native

state [18]; it reads:

Sloop sð Þ ¼
X
ibj

JðrijÞ j
j�1

k¼iþ1
ð1� skÞsisj: ð3Þ

According to [19], we take:

JðrijÞ ¼ � 5

2
lnji� jj � 3

4

r2ij � d2

Adji� jj : ð4Þ

In this way the configuration of a disordered loop going

from residues (i+1) to ( j�1), with i and j in their native

positions, is assimilated to a random walk with end-to-end

distance rij, the latter being the distance between Ca atoms
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of residues i and j in the native state. The parameters d=3.8

2 and A=20 2 are the average distance of consecutive Ca

along the chain and persistence length, respectively. The

entropy of one loop closure (Eq. (4)) differs from the clas-

sical result �3R/2ln(N) pertaining to a free Gaussian chains

[24]. The presence of the factor 5/2, instead of 3/2, stems

from the fact that a loop exiting the globule must lie com-

pletely outside of it, to account for the self-avoidance. Thus,

the spatial domain occupied by the globule results in a

forbidden region for the disordered loop, and this simple

sterical constraint, reducing the number of accessible con-

formations, increases the entropy loss obtained from the

closure of the loop [18].
3. Methods

A direct comparison between model predictions and

experimental results requires a tuning of the coefficients q

and e in the energy function Eq. (1). In our computation we

set q=2.31 and regarded e as an adjustable parameter. We

determined it by imposing that the mean field specific heat

exhibits its bcollapseQ peak in correspondence to the

experimental transition temperature T=332 K [22]. Despite

the use of a simple MF approach, we expect that this

procedure yields a correct estimate for e, since the MF is

known to reproduce the thermodynamics properties of the

Finkelstein model pretty faithfully [20]. Once we deter-

mined the optimal choice of q and e, we performed Monte

Carlo simulations to investigate the thermal folding of the

WW domain. We implemented a Metropolis algorithm with

transition rates between states j and k

w jYkð Þ ¼ exp Hj � Hk

� �
=RT

��
R being the gas constant, T the temperature and Hj the

Finkelstein energy of state j, according to Eq. (1).

We applied the multiple histogram technique (MHT) [25]

to reconstruct the system density of states (DOS) in the full

range of accessible energies. To this end, we carried out MC

runs at 50 equally spaced temperatures in the range 273–383

K, and for each run we collected the energy histogram to

estimate the statistical weight of all configurations with a

certain energy. Through the Swendsen–Ferremberg proce-

dure [25], these histograms were optimally linearly com-

bined to extract the whole DOS and thus compute the

entropy S(E)=Rln[ g(E)] up to an additive constant. The

knowledge of entropy allows evaluating the free energy

profiles F(E)=E�TS(E), and other relevant thermodynam-

ical quantities for the folding, such as the specific heat.

In its variational formulation [26], mean field approx-

imation, for a system with Hamiltonian H and correspond-

ing free energy F, amounts to minimizing

FvarVF0 þ hH � H0i0; ð5Þ

where H0 is a solvable trial Hamiltonian, F0 is the

corresponding free energy, both depending on free param-
eters x={x1 . . . xL} (variational parameters). Minimization

leads to the self-consistent equations that in their general

form read�
BH0

Bxl

	
0

hH � H0i0 �
�

H � H0ð Þ BH0

Bxl

	
0

¼ 0; ð6Þ

with l=1, . . . ,L. We have implemented different versions of

the MFA for the model that differ each from the other by the

choice of the trial Hamiltonian.

The standard MFA employs as the trial Hamiltonian:

H0 ¼
XL
i¼1

xiSi; ð7Þ

with xi to be determined by minimizing the variational free

energy [26]

Fvar x; Tð Þ ¼
XL
i¼1

f0 xi; TÞ þ hH � H0i0;
�

ð8Þ

where
P

i f0 xi; TÞð is the free energy associated to H0,

f0ðxi; TÞ ¼ � 1

b
ln

�
1þ exp � bxið Þ

�
: ð9Þ

Thermal averages, performed through the Hamiltonian

H0, factorize hsisj . . . ski0=hsii0hsji0 . . . hski0. The approx-

imate average site bmagnetizationQ mi=hsii0 depends only

on the field xi, and is given by

mi ¼
BF0

Bxi
¼ 1

1þ exp bxið Þ : ð10Þ

Instead of working with external fields xi’s, it is more

intuitive to use the corresponding bmagnetizationsQ mi’s,

writing Fvar as a function of the mi’s. Due to the choice of

H0, Eq. (7), and to the expression Eq. (10), evaluating the

thermal average hHi0 amounts to replacing, in the Hamil-

tonian Eq. (1), each variable si by its thermal average mi. In

the end we get:

Fvar m; Tð Þ ¼ e
X
ij

Dijmimj�TS mð ÞþRT
XL
i¼1

g mið Þ; ð11Þ

where g(u)=uln(u)+(1�u)ln(1�u) and S(m) is obtained

from Eq. (2) by substituting siYmi. The last term

corresponds to F0�hH0i0 in Eq. (5): it is the entropy

associated to the system with Hamiltonian H0 and is the

typical term that stems from this kind of MFA [26]. The

minimization of function Eq. (11) with respect to m leads to

self-consistent equations:

gV mið Þ ¼ e
X
j

Dijmj � RT q� BSloop mð Þ
Bmi



:

�
ð12Þ

Eq. (12) can be solved numerically by iteration and

provide the optimal values of the magnetizations that we

denote by m*. Once the set of solutions m* is available,

we can compute the variational free energy Fvar(m*) that
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Fig. 2. Fraction of native protein as a function of temperature: MC
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experimental fit in Ref. [22].
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represents the better estimate of the system free energy F.

Free energy profiles are evaluated performing the minimi-

zation after the introduction of Lagrange multipliers,

corresponding to the constraint of considering states with

a fixed number of native residues.

A different MFA consists in taking a trial Hamiltonian

that accounts exactly for the entropic term of the original

one, resorting to the procedure introduced in Ref. [27], and

approximates the interactions by introducing a weight

dependent on the number of native residues in the

configuration. Namely, we consider the set of configurations

of the proteins with M native residues (M=0, . . . , L) and
take as the trial Hamiltonian

H0 xð Þ ¼
XL
M¼0

d M �
X
i

si

!
H

Mð Þ
0 xð Þ;

 
ð13Þ

where d(!) is the Kronecker delta, and H0
(M) is the

Hamiltonian restricted to the configurations with M natives:

H
Mð Þ

0 xð Þ ¼
XL
i¼1

ẽeixi
M � 1

L� 1
si � TS sð Þ; ð14Þ

with ẽei ¼ 1=2ð Þ
PN

j¼1 ei;jDi;j. Each residue i, in a generic

configuration with M native residues, feels an interaction ẽi
which it would feel in the native state, weakened by a factor

(M�1)/(L�1) (accounting for the fact that not all the

residues are native), times the external field xi, to be fixed

by the mean field procedure.

The mean field equations for this case can be found in

Ref. [20].
4. Results and discussion

The folding transition is signalled by the behavior of the

specific heat, which develops a peak identifying the Tf.
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Fig. 1. Specific heat in kcal mol�1 T�1 (inset) and energy (in kcal mol�1) as

function of temperature, computed through MC simulations (points) and

standard mean field approach (line).
Standard MF peak position is imposed to the correct

experimental folding temperature to fit the parameters;

notice though that MC peak is correctly found at the same

position, providing a consistency check between the two

methods (Fig. 1).

PIN1 WW domain is reported to be a two-state folder

[22]: this is recovered by both the MC and the MF

approximations, as can be seen in Fig. 2. MC and the more

complicated MF approach reproduce with reasonable

accuracy the experimental signal.

The two-state nature of the protein can also be seen in the

free energy profiles (Figs. 3 and 4). It is remarkable that the

barrier separating folded from unfolded conformations is

quite flat, especially in the MC case, so that mutations could

likely induce relevant changes in its position with just a

slight change in the energies, a scenario which is indeed

suggested in Ref. [22].

Monte Carlo and mean field free energy profiles allow to

estimate the stability gap DG and the folding barrier DGy as
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Fig. 3. MC free energy profiles, with energy as the coordinate of reac-

tion, at different temperatures: from top to bottom T=292, 312, 332, 352,

372 K.



280 300 320 340 360 380

T (K)

0.0

0.2

0.4

0.6

0.8

Φ
T

Experiment
MC
Standard MF
MC barrier position

Fig. 6. /T values from experiments and simulation, together with the barrier

position for the MC case. Barrier position values at a given T are evaluated

as the energy coordinate (x-axis in Fig. 3) corresponding to the barrier top
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(independent from T: E=�53.32 kcal/mol with our choice of the

parameters). Notice how the shifts in /T correspond to those in the barrier

position.
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Fig. 4. Standard MF free energy profiles, in the number of native residues,

at different temperatures: from top to bottom T=292, 312, 332, 352, 372 K.
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a function of temperature. The comparison with the corres-

ponding experimental curves [22]

DGex Tð Þ ¼ DG0 þ DG1ðT � Tf Þ þ DG2ðT � Tf Þ2

DGyex Tð Þ ¼ DG
y
0 þ DG

y
1 ðT � Tf Þ þ DG

y
2 ðT � Tf Þ2

where Tf=332 K, DG0,1,2={�0.062,0.105,6.244d 10�4}

kcal/mol and DG
y
0,1,2={5.089,0.0568,1.232d 10

�3} kcal/

mol. The result of this comparison is reported in Fig. 5.

Notice that all methods compare most favorably with the

experimental results in the vicinity of Tf, which is to be

expected, since the model only accounts for the geometry,

and not for the details of the interactions, with their

temperature dependence in the hydrophobic contributions.

MC gives a good estimate of both the stability gap and the

barrier, while standard mean field gives a reasonable

description of the folding barrier, but overestimates the

stability. On the other hand, the more complicated MF

scheme recovers correctly the stability, but it overestimates

the barrier, at least if we consider, as we did in Ref. [20], just

the profile of F0 (relying on the good approximation that F0
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Fig. 5. Folding barrier (top set of curves) and stability of the native state

(bottom set) as a function of T, from experiment and simulations. Data are

reported in kcal/mol.
provides to Fvar), without resorting to the more correct, but

computationally expensive minimization of a constrained

Fvar. A more accurate analysis of free energy profiles within

this MF scheme is left for future work. In the following, we

analyze standard MF and MC results concerning another

important experimental quantity, namely the /T values

(Fig. 6). /T values are defined as

/T ¼ BDGy
BT

1
BDG
BT

¼ DSy
DS

; ð15Þ

and give an idea of the entropy of the barrier compared to

that of the native state, providing a measure of the proximity

of the barrier to the folded state. The experimental results

show a monotonically increasing, continuous function,

spanning a wide range of values. MC and MF results

indeed agree in the monotonically increasing behavior,

reflecting thus the Hammond behavior [28,29], even if in a

discretized version. Indeed, they show a series of discrete

jumps that, in the case of MC simulations, are not simply an

effect of the binning in the reaction coordinate, but seem to

suggest sharp movements in the barrier position: sudden

changes in /T are in complete correspondence to shifts in

the position of the barrier, as reported in Fig. 6.
5. Conclusions

The application of the Finkelstein model to protein PIN1

WW domain reveals that this model, after fitting the para-

meter e in order to reproduce the correct transition temper-

ature, is able to describe correctly the thermodynamics of

the folding process, at least in the case of simple two-state

behavior. Indeed, the estimate of the folding barrier, both

in the case of MF approximation as well as for MC
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simulations, lies within a relative error of about 15% from

the experimental estimate in all the region of experimental

measures. This is indeed interesting, as the model lacks

every detail about the nature of the residues, dealing with all

atomic contacts in the ground-state on the same footing.

Moreover, the estimate of the entropy is based on the theory

of noninteracting polymers, and neglects possible clashes of

the protruding unfolded loops with the folded part of the

protein.

Another important result concerns the /T values: both

MF and MC results recover the non-decreasing nature of

experimental values, with MC providing a better estimate of

the slope than MF. At difference with the experimental

values, though, theoretical /T values increase in a dis-

continuous fashion, with abrupt changes followed by steady

plateaus. This behavior is related to the fact that the

transition state is quite broad, so that the actual free energy

maximum, determining the barrier, jumps through different

values of the reaction coordinate (the number of native

residues or the energy). This is an aspect that deserves

further analysis, also because the simple three-state model,

with a negligible intermediate, put forward by the authors of

Ref. [22] does not seem to be able to reproduce the

experimental results with sufficient accuracy, and a sat-

isfactory description of the transition state of this protein has

still to be found. Probably, it will require the introduction of

residue heterogeneities and more accurate studies on the

dynamics of the system.
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