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Understanding causation via correlations and linear response theory
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In spite of the (correct) common-wisdom statement correlation does not imply causation, a proper employ
of time correlations and of fluctuation-response theory allows us to understand the causal relations between the
variables of a multidimensional linear Markov process. It is shown that the fluctuation-response formalism can be
used both to find the direct causal links between the variables of a system and to introduce a degree of causation,
cumulative in time, whose physical interpretation is straightforward. Although for generic nonlinear dynamics
there is no simple exact relationship between correlations and response functions, the described protocol can still
give a useful proxy also in the presence of weak nonlinear terms.
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I. INTRODUCTION

Detection of causation is a fundamental topic in science,
whose origin dates back to the philosophical investigation of
Hume [1] and to the roots of physical thinking. In its most
general terms, the problem may be formulated as follows:
Given the time series {x,“)}, {x, )}, R {x,(")} of n variables
constituting an observable system X,, one wishes to deter-
mine unambiguously whether the behavior of x*) has been
influenced by x/) during the dynamics, without knowing the
underlying evolution laws. Causal detection has a primary
practical relevance in physical modeling [2—4], where the
problem of inferring models from data is typically faced
[5-8]. A natural idea, summarized by the Latin saying cum
hoc ergo propter hoc (with this, therefore because of this),
is looking at the correlation Cj(t) = (xt(] )x(()k) ), since a causal
link should lead to a nonzero value for it, at least for some
t > 0. On the other hand, the presence of correlation does
not imply causation, as it is possible, for instance, that both
x% and x are influenced by one or more common-causal
variables [2,9-11].

A more reliable way to detect the presence of causal effects
between two variables is the popular Granger causality (GC)
test [12]. This method allows us to determine whether the
knowledge of the past history of x/) enhances the ability
to predict future values of x®). Basically, it compares the
statistical uncertainties of two predictions built on the linear
regression of past data, obtained by including or ignoring the
trajectory of x\/). The improvement of the prediction, defined
by the relative reduction of the uncertainty, gives a measure of
how much x) is useful to the determination of x®) [13-15]. A
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similar approach consists of defining a degree of information
exchange from x) to x®), which quantifies the loss of infor-
mation about x®) that one experiences if {x/'} is ignored. This
is exactly what is done by transfer entropy (TE) and related
quantities [16-20] (which also have interesting interpretations
in the context of information thermodynamics [21,22]). Re-
markably, TE has been shown to be exactly equivalent to GC
in linear autoregressive systems [14,23,24].

Even if GC, TE, and similar quantities can provide useful
information about the dynamics, their employment as a mea-
sure of causal relations may not be completely satisfactory
from a physical point of view. Indeed, in physics, two vari-
ables are usually believed to be in a cause-effect relationship
if an external action on one of them results in a change of
the observed value of the second [3,23], whereas the above
mentioned tests, strictly speaking, only determine whether,
and to what extent, the knowledge of a certain variable is use-
ful to the actual determination of future values of another. In
the following, we will call interventional the former, physics-
inspired definition of cause-effect relation and observational
the latter. Sometimes, a similar distinction is made between
the two approaches, distinguishing between the detection of
causal mechanisms and causal effects [25,26]. As we will
discuss in the next section, the strength of the interventional
causal link is quantified by a well-known observable, the
physical response [27], whose usage to infer causal relations
from data is the main subject of this paper.

To clarify the above distinction between interventional and
observational causation, let us briefly discuss a simple situ-
ation in which this difference may be relevant. Imagine that
we want to measure the electrical current passing trough a
resistor, when its extremities are connected to an external
time-dependent source of electric potential, v(¢). Let us as-
sume that the amperometer we are using is affected by some
noise 7n(t) independent of v(¢). In this case, the measured
value of the current j(¢) is given by

Jmeas() = Juue(t) + (1) = Gu(t) + n(#), ()
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where jiy. is the actual (unknown) value of the current and G
is the electrical conductance of the considered resistor. In this
case, a good estimator of the interventional causality between
v(t) and jpeas(t) will only depend on the conductance G,
since this parameter establishes to which extent an external
action on v(¢) will influence the observed value of the current,
Jmeas(?) (a notion which does not depend on the intensity of
the noise). Conversely, from an observational perspective, the
amplitude of the noise 7(¢) also plays a role, since our ability
to predict future values of jieqs, given v(¢), crucially depends
on it: Roughly speaking, if the noise is small, the knowledge
of v(t) will suffice to give a good esteem of jie,s(#), Whereas
if it is large, the information about v(¢) is almost useless.

In this paper, we show that linear response theory allows us
to understand causal links (in the interventional sense) from
time series of data, if the considered process is of Markov
type. Moreover, if the dynamics is also linear, only simple
time correlation functions have to be taken into account. This
approach can be used both to quantify the overall influence of
x% on x®, including the effects due to indirect causation, and
to infer the matrix of direct links between the elements of the
system.

Of course, in most cases, an analysis based on linear
response will provide results qualitatively similar to those
obtained by mean of TE or GC, since information transfer and
physical interaction are usually related; however, the analyti-
cal forms of TE and GC are typically cumbersome, even for
very simple models, and this makes it very difficult to get any
insight into the structure of the considered system by mean
of these tools. Moreover, they are usually difficult to apply in
practical situations, as in experiments, if the dimensionality
of the system is not very small. The method presented here
is instead very simple to apply in practice and its physical
interpretation is straightforward; the drawback is its rigorous
validity only for Markov systems with linear dynamics: gen-
eralizations to nonlinear evolutions are also possible, provided
that the stationary joint probability density function of the
system is known.

The paper is structured as follows. In Sec. II we give a
physical definition of causation using the formalism of linear
response theory, which is briefly recalled in Appendix A.
Section III is devoted to linear Markov systems: we discuss
how the response formalism can be used to infer causal links
from correlations and we outline the main differences with
other approaches. In Sec. IV we consider more general cases,
i.e., nonlinear systems and dynamics with hidden variables,
and we discuss the limits of causation determination from
data. Finally, in Sec. V we draw our conclusions.

II. A PHYSICAL DEFINITION OF CAUSATION

As mentioned in the Introduction, we are mainly interested
in the study of causation in the interventional sense, i.e.,
the one accounting for the effects of external actions of the
system, as in typical experimental setups. Let us consider the
system X, = (xtl),xt(z), ...,x,(")), where ¢ is a (discrete) time
index. We say that x) influences x*) if a perturbation on
the variable x) at time 0, xéj ) xéj )+ Sx(()j ) induces, on
average, a change on x,(k), with ¢t > 0. In formulas, we will
say that x/) has an influence on x*) if a smooth function F(x)

exists such that

SF(x™) 20

) for somet > 0, 2)
Sxg'

i.e., if perturbing x(()j)
of F (x,(k)) with respect to its unperturbed evolution. Here
the overline represents an average over many realizations
of the experiment. Since we will mainly deal with linear
Markov systems, considering the identity function F(x) = x
will be sufficient to detect the presence of causal links (see
Appendix B for a brief discussion on this point).

This idea is not completely new [3,23] and is reminiscent
of the framework developed by Pearl [2], in which causation
is detected by observing the effects of an action on the system
(although in that context the role of time is not explicitly con-
sidered). In particular, in Pearl’s formalism one has to evaluate
conditional probabilities assuming that the graph of the inter-
actions between variables is actively manipulated. A similar
idea can be found in the “flow of information” introduced
in Ref. [28], which can be seen as the information-theoretic
counterpart of Pearl’s probabilistic formalism.

If the system admits a (sufficiently smooth) invariant dis-
tribution and Sx(()j ) is small enough, quantities of the form
(2) can be evaluated without actually perturbing the system,
since they are related to the spontaneous correlations in the
unperturbed dynamics by the fluctuation-response (FR) theo-
rem [27,29], also known as fluctuation-dissipation theorem. If
{x,} is a stationary process with invariant probability density
function (PDF) p,(x), under rather general conditions the
following relation holds (see Appendix A):

results in a nonzero average variation

(k)
R = 1lim m o _ —<x(k)—8 In ps(x)
! Sx(()j)—>0 8)((()]) ! ax(j)

)

where the average (-) is computed on the two-times joint PDF
PP(x,,X0). R, is the matrix of the linear response functions
(at time 7) of the considered system.

Equation (3) shows the existence of a rigorous link among
responses and correlations, provided that either the functional
form of py(x) is known or can be inferred from data. Of
course, in general, the latter will be a rather nontrivial task,
at least in high-dimensional systems.

III. LINEAR MARKOYV SYSTEMS

In this section, we will limit ourselves to the study of linear
stochastic processes of the form

X +1 = AX; + By, 4)

where A and B are constant n X n matrices and the compo-
nents of 7, are independent and identically distributed random
variables with zero mean and unitary variances. The spectral
radius of A needs to be less than 1 for the dynamics not
to diverge with time. In this case, one has (x/)) =0 Vi.
The following relation between the response matrix and the
covariance matrix with entries Ctk I = (x,(k)x(()j ) holds:

R =CC,', ®
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where C ! is the inverse of Cy [27] (see Appendix B for
details). This result can be shown to also hold in cases with
continuous time.

Following the idea of Green-Kubo formula, which allows
us to understand the average effect of an electric field on the
current in terms of correlations [29,30], a cumulative degree
of causation x) — x® can be introduced:

Dk =Y R ©)
t=1

This quantity characterizes the cumulative effect of the pertur-
bation 8x% on the variable x*). In linear systems with discrete
time, from the relation R, = A’ (see Appendix B) it follows
that

Dk = AU, — A, @)

I, being the n x n identity matrix. Let us stress that a vanish-
ing value of D;_, does not exclude causation between x/) and

x®: indeed, since R/ can assume both positive and negative
values, contributions with opposite signs in the sum appearing
in the r.h.s. of Eq. (6) might eventually compensate and give a
null result even in presence of a causal link.

A. Interventional and observational causation

Let us briefly discuss an important difference between the
FR formalism and the other traditional approaches to the study
of causation. The formalism of response, as well as Pearl’s
probabilistic interventional approach [2,28], focuses on the
effect of an active perturbation of the considered system,
which is a typical physical procedure in experimental practice.
In contrast, GC and TE pertain mainly to the observational
approach, as they are related to the information exchange be-
tween degrees of freedom. As mentioned in the Introduction,
the intrinsic statistical fluctuations of the observed variables
are not crucial to establish their cause-effect relation from
a physical, interventional perspective because they are not
related to the active perturbation of the system and its effects.
On the other hand, such fluctuations play a relevant role in the
information-based, observational approach, since they concur
to determine the statistics of the observed quantities and this
is relevant to our ability to make prediction.

To show the above point, let us consider model (4) with

A:%EG) }) B=(*/é71 fD—z) ®)

The response function R'2, = A'? is equal to +/2/2 and is
independent of D; and D», as expected. Indeed, the amplitudes
of the noise terms should not play any role in the cause-effect
relations, from a physical perspective.

For direct comparison, let us compute now the GC and the
TE for the same model. Suppose it generates a long time-
series {x,“),xt(z)}: the evaluation of the observational casual
link between x® and x() with the GC test requires us to find
the best approximation of {x,(l)} by the two alternative models

xl(i)l =a1x,(1)~|—\/A]§, (9)

and

1 1 2
XD =aox + Box® + /At

where the coefficients («;, Ay) and (a3, B2, Ay) need to be
optimally adjusted. Once they are known, the quantity

Ay
GGy =In| —
Ay

provides a measure of the increment in the predictability of
x when also the trajectory of x® is taken into account. In
Appendix C, we compute A; and A, explicitly for model (8),
finding the final result

(10)

an

|+ 4r 4212
GCy .y = In 2

12
1+ 3r 2

where r = D,/D;. Likewise, we can derive analytically the
TE for model (8). In this case, we need to evaluate the follow-
ing expression:

13)

M) @
TE; = <ln P(xt+1|xt( ’xt() >

D (1
P )
where the average is taken over the joint distribution
p(X+1, X, ¥¢). In Appendix D, we show that

1. 1+4 272
TE, ., = —ln$

14
2 14 3r (14

The coincidence of TE and GC expressions, but for a factor
1/2, is not incidental: Indeed, the equivalence of the two
quantities for linear regressive systems has been proved in
Ref. [23]. Both TE and GC depend on the ratio r = D,/D;
of the noise amplitudes: As mentioned at the beginning of this
section, this is consistent with the fact that they are related to
predictability rather than to mechanistic causality, in contrast
with response.

Let us stress that also in the response-theory approach
one may define an observational-like causation estimator by
rescaling correlations and responses with the standard devia-
tions of the corresponding variables:

Py 1 ;
Ctkj — Ctkj

ski _ 9 pkj
R/ =R .
00 Ok

as)

Since the quantities Rfj are dimensionless, they can be used
to compare the effect of different causes on a given variable.
In the above-discussed example, the rescaled response reads

. 1 0!
R?= [-(3+=) .
2( +r>

B. Linear response and correlations

(16)

To better understand the role of response in determining
nontrivial causal links, let us examine a typical toy model in
which the analysis of correlations may lead to wrong conclu-
sions. We consider a three-dimensional vector x = (x, y, z),
whose evolution is ruled by a Gaussian, linear stochastic
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FIG. 1. Spurious correlations and response. Panel (a) schemati-
cally represents the coupling scheme of Eq. (17), where solid arrows
account for linear dependencies with coefficient a, while the dashed
arrow indicates the linear term multiplied by ¢. Panel (b) shows the
rescaled response [Eq. (15)] of z when y is perturbed. The inset plots
the corresponding correlations. Several values of ¢ are considered; in
all cases, a = 0.5, b = 1. Each plot has been obtained with an aver-
age over 10° trajectories; responses have been computed inducing an
initial perturbation 8y, = 0.01.

dynamics at discrete times:

X1 = ax, + ey, + by (17a)
Yer1 = ax, + ay, + by, (17b)
L4l = ax; +az + bnt@, (17¢)

where n¥, n®, n@ are independent Gaussian processes with
zero mean and unitary variance, while a, ¢ and b are con-
stant parameters. The situation is graphically represented in
Fig. 1(a). The case ¢ =0 is a minimal example in which
the behavior of two quantities, y and z, is influenced by a
common-causal variable x; as a consequence, y and z are cor-
related even though they are not in causal relationship [black
graph in the inset of Fig. 1(b)]. The same mechanism may be
identified in many situations in which surprising functional
dependencies arise, as that between the number of Nobel
laureates of a country and its chocolate consumption per year
[31]: In this specific case, both quantities may be expected to
be influenced by the gross domestic product of the nation.

According to our definition, to decide whether there is a
causal relation between y and z, one has to perturb y at time
0 and measure the average variation dz for ¢ > 0. Let us
briefly comment on the optimal choice for the intensity of
the perturbation. As a general rule, §y should be small with
respect to the typical values of variable y, since the linear
response theory requires an expansion for small values of §y
(see Appendix A); on the other hand, if §y is too small, a
large number of experiments will be needed to get reliable
averages over the stochastic realizations of the noise. Here and
in the following examples, we took §y =~ 0(1072); however,
since the dynamics of this example is linear, the results of
Appendix A are exact and there is actually no need to choose
8y small.

The result for ¢ = 0 is shown in Fig. 1(b), black curve: not
surprisingly, R” = 0 for all ¢ > 0. The situation completely
changes if we introduce a small feedback ¢ # 0 from y to x,
which will eventually result in a causal link between y and
z. As Fig. 1(b) shows, the corresponding response function
correctly reveals that the behavior of z starts to be influenced
by a perturbation of y after + = 2 time steps, and that the
intensity of such causal influence roughly scales with ¢.

None of these conclusions could have been drawn from
the mere analysis of the correlation functions, reported in the
inset of Fig. 1(b). However, for linear Markov systems, Eq. (5)
allows the response function to be found by simple operations
on the covariance matrix, i.e., by a suitable manipulation of
time correlations.

It can be shown [23,32,33] that in linear systems GC,
TE, and related quantities can also be eventually reduced to
functions of correlations but, in general, their derivation may
be much more involved than that based on response theory.
Indeed, when dealing with more than two variables, an impor-
tant caveat has to be bore in mind: To get insightful results,
we need to use conditional GC and TE [14]. This fact can
be understood by looking at the causal link between y and
z with a time lag of one step, which is expected to be null
from a physical perspective, since no action on y, will have
consequences on 7,4 in our model. The naive TE,

PZis1lze, Y1) >

P(Zi4112r) ’
will be, in general, different from zero because the knowledge
of y, provides indirect information about x, (the two variables
are not independent) and the possibility to forecast the value

of z,41 is improved. The problem is solved by considering the
conditional TE

TE)'—)zlx = <ln

TE,... = <ln (18)

w> (19)

P12, X1)

in this case, the conditional probabilities at the numerator
and denominator are equal, in fact the knowledge of y, does
not provide additional information about x,, which is already
known. Similar considerations hold for the GC analysis.

C. Direct causation and modeling via response theory

A typical problem in the study of a complex system is
that of inferring the strength of its links, assuming that the
dynamics is of the form Eq. (4); in other terms, one can be
interested in inferring the matrix A from the analysis of long
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FIG. 2. Response in multidimensional linear systems. Panel
(a) schematically shows an example of interactions scheme for a
model of the form (4). Each solid arrow represents a linear interaction
coefficient 0.25, each dashed arrow stands for an autointeraction
term 0.5. The response matrix R, is represented in panels (b)—(e)
for different values of ¢, according to the color scheme in panel (e).
Here b =1 and correlations have been obtained by averaging over
10° trajectories.

4 8 12 16 4 8 12 16

time series {x,(i)}, i=1,...,n,t=1,2,..., T > 1. A situa-
tion of this kind is usually faced, e.g., in the study of complex
proteins [34,35]. In these cases, one is mostly interested in
the direct causation links between the variables, which allow
us to understand the structure of the system and the matrix
A [20]; this can be done again by mean of response theory,
which relates the response function to the propagator of the
dynamics. In particular, by recalling that R, and A are simply
related by R, = A’, one has that A = R;. An example is shown
in Fig. 2; the matrix A which rules the dynamics is graphically
represented by Fig. 2(a). In Figs. 2(b)-2(e), the matrix R; is
shown as reconstructed from time correlations, for different
values of 7. As expected, for = 1 the response matrix equals
A, and it is possible to infer all (oriented) causal links. For
t>1, Rf] provides information on the indirect influence of
x% on x| i.e., including effects which would not have been
present in a system composed by x) and x*) only.

0.06 x5 x19: From &ty —— 1
© o) Measyre ——
0.05 | - .
a 0.25
. 0.04 1
[0} 0.2
2 0.15
S 0.03 ) 1
% 0.1
Q
[ 0.02 + 0.05 i
0
0.01 t 2 4 6 8101214
’ Time t
0 L L L L L
0 5 10 15 20 25 30
Time t

FIG. 3. Causation and correlation in multidimensional linear sys-
tems. Response functions (main plot) and correlations (inset) for the
causal links x — x(19 and x® — x(9 of the model described by
Fig. 2. Simulated responses (perturbation amplitude §xo = 0.01) are
compared with Eq. (5).

However, the response formalism is able to give, with
minimal effort, much more information on the studied sys-
tem. In particular, it is especially suitable to determine in a
rather simple way also indirect causation. It is quite natu-
ral to say that there exists an indirect causation relationship
x) — x® if there exist an oriented path on the graph con-
necting j with k, i.e., there is (at least) a sequence of length
m—1 (i1, iz, ..., i;u—1) such that

A j#0, Ay #0, ..., Agi, #0. (20)
From the time series {xt(i)}, i=1,..,n, we can compute the
correlation functions and, using Eq. (5), the response matrix.
The entries Rf’ allow the understanding of the structure of
the graph (i.e., the matrix A) and the causation relationship
x = x®_If RY =0 for any 7 > 0, the causation link is
missing, whereas if Rfj =0fort <m—1 and Rfj # 0 for
t > m, this means that there exist at least a path of length
m connecting j with k. Figure 3 reports two examples of
response functions (1?,16’1 and 15,16’5 ) for the model described
in Fig. 2. It can be verified that, in both cases, the first nonzero
value of the responses obtained after a number of time steps
equals the length of the minimum oriented path connecting the
considered variables. Again, the relative effect of the variables
x1 and x® on x'® could not have been simply deduced from
the correlation functions, reported in the inset of Fig. 3.

Let us just mention that the same reasoning can be easily
extended to stochastic processes with continuous time of the
form

x = —Fx + B¢, 21
where F and B are n x n matrices. The eigenvalues of F' have
positive real part and & is a n-dimensional, delta-correlated
normalized Gaussian noise. In this case, it can be shown [27]
that R, = exp(—Ft), so inferring F' from the study of the
response functions is again possible, either by considering the
matrix I, — R, for t — 0, where I, denotes the n x n identity
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matrix, or by the continuous-time version of Eq. (7):

D =[F"Y. (22)

IV. TACKLING THE GENERAL PROBLEM

In this section, we discuss the difficulties encountered
when trying to infer causal relations in more general situ-
ations, as in nonlinear systems and in cases where not all
relevant variables are accessible. While, in the former case,
the FD theory is still applicable in principle, and linear ap-
proximations provide quite good results, in the latter the lack
of information is a major obstacle to the understanding of the
causal links.

A. Nonlinear systems

As an example of nonlinear dynamics, let us now consider
a system composed of three interacting particles in one di-
mension moving under the action of an external nonharmonic
potential. We assume an overdamped dynamics, so the state
of the system x = (x, y, z) evolves as

x=-U'(x) —k(x —y) + bgW, (23a)
y=-U'()—k(y—x)—k(y —2)+bEY, (23b)
;= -U'(z) — k(z —y) + bE®, (23¢)

with
Ux) = (1 —rx +rx*, (24)

where k and b are constants, £ is a delta-correlated Gaussian
noise and r is a parameter which determines the degree of
nonlinearity of the dynamics: When r = 0, the external po-
tential U is harmonic, while for r > 1, it takes a double-well
shape. We are interested in studying how accurate Eq. (5)
is in predicting the response function. Equation (3) implies
that the general treatment of cases in which the invariant PDF
is not Gaussian would require (i) a careful estimation of the
functional form of the joint PDF of all variables of the system
and (ii) the knowledge of all correlation functions resulting
from the right-hand side of Eq. (3). However, Fig. 4 shows
that if the nonlinear contribution to the dynamics is small
enough, the linearized response (5) still gives a meaningful
information about the causal relations between the variables
of the system. In particular, Fig. 4(d) reports the relative error
that one makes by computing D, _,,, defined by Eq. (6), with
the linear approximation in Eq. (5). We observe that the error
is rather bounded even for r >~ O(1), when the joint PDF is
quite far from a multivariate Gaussian. This fact has a quite
clear mathematical interpretation. To show that, we consider
a system described by the time-dependent vector x, ruled by
some unknown stochastic dynamics. The system is initially
in the state Xg, and the dynamics will evolve it to some other
state x, after a time interval ¢, where x, will, in general, depend
both on the initial condition and on the particular realization
of the stochastic noise. If we repeat this kind of observation
many times along a trajectory, assuming that the dynamics of
the considered system is ergodic, we can collect many pairs
(Xo, X;);- The best linear approximation to predict x; from x¢

(a) (b)

0.08 0.12
~ r=1.0 0.1 - r=25
006 1 A R, 1) 0.08 R0
0.04 0.06
Measure -e- 0.04
0.02 From C(t) 0.02
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Time t Time t
(c) (d)

0
-15-1-05 0 05 1 15
X r

0 05 1 15 2 25

FIG. 4. Response function in the nonlinear dynamics (23). Pan-
els (a) and (b) show I?f" for two different values of the nonlinearity
r, compared with Eq. (5) (which is valid in the linear case). Panel
(c) shows the PDF of the variable x, for different values of r. In
panel (d), the relative error is shown between the integrated response
D,_,,, computed from the measured I?;’", and its approximation Dy,
where the proxy responses of Eq. (5) are considered. For the nu-
merical simulations, a stochastic Heun integrator has been used (see,
e.g., Ref. [36]), choosing b = 1, k = 1, and a time-step At = 0.001;
perturbation amplitude éx = 0.01; each plot has been obtained by
averaging over 10° trajectories.

will be of the form
X, >~ Lixo + ¢, (25)

where ¢, is a vector of random variables with zero mean,
independent of xy. The structure of Eq. (25) is the same as
that of Eq. (B4). Reasoning as in Appendix B, one finds the
linear regression formula (see also Ref. [23]):

L ~GCy . (26)

As a consequence, the R; matrix that one might compute in
nonlinear systems by using the wrong relation R; = C,Cy s
actually the response associated to the process (25), which is
the best linear approximation of the considered transformation
Xo — X;. Let us notice that, for this result to hold, we do not
have to assume any particular dependence of L; on time.

B. Systems with hidden variables:
Failure of embedding strategies

Let us conclude by discussing the rather common situation
in which we do not know the whole state vector x of the
system but we only have access to the time series of two
variables, {xt(j )} and {x,(k>}. To show the basic problems in
inferring causation, let us refer again to the system described
by Eq. (17), assuming that only the times series of y and z are
available.

The first attempt to detect the y — z causation can be to
consider the reduced vector F,(z) = (%, y;), assuming that it
properly describes the system, and to use Eq. (5) in this
two-dimensional space. This simple approach leads to wrong
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FIG. 5. Estimating the response function of model (17), witha =
0.5, ¢ = 0.02, b = 1. The blue solid line shows the actual response
function R, measured from simulations; the other curves, marked
with different symbols, represent the results obtained from the only
knowledge of correlations between y and z, as if x was not part of the
system, with different embedding dimensions. All curves have been
obtained with an average over 10° trajectories.

results: as shown in Fig. 5 (green circles), the computed re-
sponse function is completely different from the real R (blue
solid line). This is not surprising at all, since Ffz) does not
contain enough information about the state of the system, and
therefore the dynamics is not Markov. A tempting strategy,
inspired by Takens’ embedding approach in the context of
deterministic dynamical systems [37,38], suggests trying a
reconstruction of a vector which completely describes the
state of the system by exploiting the knowledge of past values
of y, and z,. Basically, the idea is to introduce the vector

r;Zd)

= (Vs Yiels woes Yimdt15 2o L—1s +oey Zo—d+1) » 27

and repeat the analysis on this 2d-dimensional system for
increasing values of d. For deterministic dynamical systems,
if d is large enough, the vector I‘t@d) can be proved to have an
autonomous dynamics, so we might expect that in the context
of stochastic processes it would follow a Markov evolution
rule. If this were the case, we could apply Eq. (5) to I‘t(z”l)
and infer all the causal links. Unfortunately, Fig. 5 shows
in a rather convincing way that increasing the embedding
dimension d does not lead to any improvement: On the con-
trary, choosing d > 1 can even determine, as in the considered
example, a worse estimation of the response function. Similar
results would have been observed with different choices of the
embedding protocol.

The embedding fails for generic random process because,
at variance with deterministic cases, the knowledge of previ-
ous values of certain observables is not equivalent, in general,
to the knowledge of the entire state of the system. To clarify
this point, let us consider a dynamical system x, composed
of n variables (x, x®, ..., x™), ruled by some autonomous
dynamics in discrete time,

x4 =f(x,), (28)

where f : R” — R” and we know that there exists a unique
solution at any time. It is quite obvious that the n-dimensional
vector obtained with the embedding protocol,

1 1 1
" =M b, x D), (29)

gives as much information as the vector x,, see, e.g.,
Refs. [37,38].
Let us now consider a nonautonomous version of Eq. (28),

x4 = f(x,) +g(@), (30)

where g : R — R” is the vector of n periodic functions with
period T. The system can be mapped into an autonomous
system by introducing a new variable, say w, such that

{w0=0

Wier = w, + 1 — T (w, + DT, (31

where |y| stands for the integer part of y. With this definition,
w; € [0, T)and g(¢) = g(w,), because of its periodicity. Sim-
ilarly, if g(¢) is the linear combination of periodic functions
with k (incommensurable) periods Tj, ..., T, system Eq. (28)
can be mapped into an autonomous system by introducing k
variables w", ..., w® of the form (31).

Since a random term can be seen as the superposition of
an infinite number of periodic functions with incommensu-
rable frequencies, it is straightforward to understand that in a
generic system perturbed by a random forcing, for any finite
d, the vector Fid) cannot describe completely the state of the
original system. In particular, no reliable information about
the response function of the original system can be deduced
by applying the FR relation to it.

This implies that to infer causation from time correlations
in stochastic dynamics, we actually need to know the trajecto-
ries of all the variables which are relevant to the dynamics of
y and z.

V. CONCLUSIONS

Using some tools from the FR theory of out-of-equilibrium
statistical mechanics, we have introduced a way of char-
acterizing causation between two variables, whose physical
interpretation is rather straightforward. The basic idea of this
proposal is that x\/) has a causal effect on x*) after a time
interval A7 > 0 if a perturbation of x) at time ¢ induces some
change on x® at time ¢ + At. In this sense, our definition
is reminiscent of the interventional framework developed by
Pearl, in which causation is detected by observing the effects
of an action on the system. Other approaches to detect causa-
tion, as those related to GC and TE, are based on the idea
that causation is associated to information, i.e., x*) has an
effect on x® if the knowledge of x'/ helps the prediction
of x®). At first glance, the choice between observational or
interventional approaches may seem only a matter of taste;
instead the two methods present important differences, both
at a qualitative and quantitative level.

Bearing in mind the above definition, we describe a practi-
cal method to understand causal links between the variables
of a system by looking at time series of data. Despite the
(correct) common-wisdom statement that correlation does not
imply causation, we have shown that, at least in a multidi-
mensional linear Markov process, the presence/absence of
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causation between variables can be inferred by a proper em-
ploy of (all) time correlations. The FR formalism can be used
to find direct causal links between variables at a given time,
and therefore to build linear models based on these findings,
as well as to introduce a degree of causation cumulative in
time. The physical interpretation of this indicator is quite
natural and reminds the Green-Kubo formula for the electric
(or thermal) conductivity.

From a computational point of view, it is worth noticing
that the practical implementation of our method is quite easy
even in high dimensional systems. In a generic nonlinear
dynamics, even though an exact relation between response
functions and certain correlators (whose specific shape de-
pends on the invariant probability distribution) always exists,
its explicit form may be very convoluted. However, we have
shown that the protocol that holds for the linear case still
represents a useful proxy also in presence of weak nonlinear
terms.

Serious difficulties arise instead in the case of hidden vari-
ables, i.e., when access to vector x describing the state of
the system is partial. The tempting idea to use an embed-
ding methodology to reconstruct the proper complete phase
space, at variance with deterministic systems, does not work,
in general, for stochastic processes. Let us stress that this
impossibility is not due to mere practical difficulties, as the
limited length of the time series or the high dimension of
the system. It seems to us that the only possible way to
understand causation from data is to guess the proper set of
variables which describe, at least within a certain accuracy,
the complete system according to a Markov rule. The above
limitation is always present in any purely inductive approach,
i.e., in all cases where, without a fair theoretical framework,
one tries to infer the essence of a system (or to build an
effective model) just from data. Caveats on this topic had been
already expressed by Onsager and Machlup [39], and Ma [40],
in a rather vivid way; unfortunately, those wise warnings are
often disregarded.
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APPENDIX A: LINEAR RESPONSE IN A NUTSHELL

Just for the sake of self-consistency, here we recall the
main ideas and results of linear response theory. A more
detailed exposition can be found, for instance, in Ref. [27].
Consider a Markov process x; = (x,(l) s ey x,(")) whose invari-
ant PDF p,(x;) is smooth and nonvanishing. Given a (small)
perturbation §xy = ((Sx(()l), s (Sx(()”)) at time ¢t = 0, we want to
understand its effects at time ¢ by measuring the difference be-
tween vector X, in the original dynamics and in the perturbed

one, on average. More precisely, we want to compute

8 = (), — (), (A1)

where (), and (-) indicate the average over many realizations
of the perturbed and of the original dynamics, respectively.

We can compute explicitly the average (x,(k)) » by noticing
that the joint PDF in the perturbed case can be written as

(A2)

where the stationary conditional probability accounts for the
effect of the perturbation at time = 0. As a consequence, the
above average can be written as

k k
Poen (1, X0) = ps(x0)ps (%0 + 8%0) ,

)y = / dxodx® p,(x0)ps (P xo + Sx )

= /dxodx,(k) ps(Xo — SXO)pS(x,(k)|x0)x,(k),

; dps(Xg)
= )= [amar® P (e
j 0
(A3)

where in the second line we have made a shift of the integra-
tion variables: Xy — Xy — §X¢. From the above equation, one

easily finds
>6xéj ),
Xo

0 0 In py(x)
® ~ (*) s
R Z<"t 9xl)
J
whence Eq. (3). The above formula can be generalized to a
generic observable F(x;) as
>6xéj ),
Xo

Let us notice that Eq. (A4) is valid under rather general
hypotheses; in particular, in its derivation no assumption of
detailed balance is used, meaning that Eq. (A4) also holds for
out-of-equilibrium systems in stationary states.

(A4)

9 1n ps(x;)

X (A3)

SFx)~—Y <;(X,)
J

APPENDIX B: RESPONSE IN LINEAR SYSTEMS

According to the definition of causation we followed in
the paper, the variable x/) influences x*) if and only if some
smooth function F(x) exists such that

FEY) — F(x)

8x(()j )
where 8x{) = %/’ — x|’ is the perturbation operated on x’
at time ¢ = 0 and X, represents the perturbed dynamics.

In the following, we want to show that this causal relation
between two variables can be understood by only considering
F(x) = x as far as linear Markov systems are concerned. To
show that, let us first recall that linear response theory allows
to rewrite the left-hand side of Eq. (B1) as [27]

8F(x) (o 8 1n py(x)
D :_<f(xf )"0
8xg' oxU

assuming that the considered process admits a smooth invari-
ant distribution (p‘Y (x). Let us now consider an n-dimensional
system X, = (x,l), xt(”) ), whose dynamics is ruled by a

discrete-time, stochastic linear evolution,

#0 for somet > 0, B1)

xa) , (B2)

X +1 = AX; + By, (B3)
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where A and B are n x n matrices and 3, is a f-dependent
vector of delta-correlated random variables with zero mean.
Equation (B3) can be iteratively solved, leading to

t—1
x, =A'xg+ Y AT'By, (B4)
s=0

as an immediate consequence, a simple relation holds between
correlations and matrix A, namely,

(x:x{) = A'(xox] ). (BS)

On the other hand, for this kind of system, the right-hand
side of Eq. (B2) reads

— /dxodx,(k)]-'(x,(k))%Ps(xt(k)yxo)[?s(xo)
Xo

9py(x)
_ / dxodx;k>f(x,<’<>)%ps(xf")!m), (B6)
0

ap, (k)
- / dx0dx,(k)]:(xf(k))Ps(Xo)[A’]k]pgxr—aJXO)’
Xt

where we have indicated by p(x,(k)|xo) the probability density
of x(k ) conditioned to the initial state of system Xg. The second
equality is obtained with an integration by parts with respect

to the variable x(()j ), bearing in mind that the last derivative

) 1o x,k) because p(x )|x0) depends

(k) _

can be switched from x;

on x,(k) and xé’ ) only through the linear combination x;

AT (()i). Integrating again by parts, this time with respect

to xt(k), one finally obtains

5F (M)

PRI = (FHav. (B7)

Calling R, the matrix of linear responses with the choice
F(x) = x, and taking into account Eq. (B5), we recover the
well-known formula

R =A"=CC)', (B8)

valid for linear Markov systems at discrete times, where we
have introduced the covariance matrix C, = (xlxo) From
Eq. (B7), it is now clear that in these systems one can observe
nonvanishing responses from x) to x®, for any possible
choice of F(x®), only if R # 0; therefore, the knowledge
of the matrix R, (i.e., F(x) = x) is sufficient to establish the
causal links in a linear Markov dynamics.

APPENDIX C: SKETCH OF THE COMPUTATION
OF EQ. (12)

In this Appendix, we sketch the computation to derive
Eq. (12). First, by multiplying Eq. (4) by x/,, and by x/ to
the right, and taking averages on the stationary joint PDF, we
get

— T 2
{Co =ACA" +B 1

C=AG.

For the simple model (8), by solving the above system one

finds
C0:2D1<1t3r :)’ \/—D1<1+4r 2rr>7

(C2)
where r = D, /D;.
Now we have to compute the amplitudes of the noises A
and A, in the two alternative models (9) and (10). A is given
by a linear regression analysis: Eq. (9) yields

D) = )
i((Xfiﬁ) %) = (D)) + A, (€3)

ie.,

Cl' =aC) + Ay,

in which the coefficients of the matrices Cy and C; are given
by Eqgs. (C2). Simple algebra leads to
1+4 2
A = Dlu. (C5)
1+3r
Instead, A, is clearly equal to Dy, since a similar regression
analysis on model Eq. (10) shows that the best autoregressive
model coincides with the original dynamics. The above values
of A and A, lead to Eq. (12).

APPENDIX D: SKETCH OF THE COMPUTATION
OF EQ. (14)

To compute the TE for model (8), it is useful to write down
explicitly the following quantities, bearing in mind that all
PDFs refer here to linear Gaussian processes:

1
In [p(x [V, )] = —5 In@7Dy)
a0
2D, :
(Dla)

! ()

In[p(x")] = —=In 2rC") = =2 (DIb)

[ (t )] 2 ( 0 ) 2C(§l

In[p(x), )] =

where, in the last equation, v = (x,41, x;)7, T = (vv'), while
| - | represents the determinant. Matrix Cp is defined by
Egs. (C2).

The above quantities have to be averaged over the joint

stationary PDF p(xt_lH, xt(l),x, ). Recalling Egs. (C2), we get

(In [p() b, 67)]) =
(In [p(q")]) =

1 1
E111(4712|2|)— va—'vT, (Dlc)

—3In(27Dy) 1/2,
—1In[27 Dy (2 4 6r)] — 1/2,

(D2a)

(D2b)
(in [p(x©,, xD)]) = =L In[4n>DI 2 + 8r + 4r>)] — 1.,
(D2c)
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The result in Eq. (14) is then readily recovered by noticing that

TE2_>1 = <lll

1 1
e 1xD)

1 (1)
t+1 x)

P

1 1 2 1 1 2 1
P 1D, xf >)> B <1n D D, 1) p(ely

> = %111[0%(2 +8r +4rH)] + —% In(D;) — %ln[Dl(Z +6r)].

(D3)
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