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We study the mobility and the diffusion coefficient of an inertial tracer advected by a two-dimensional
incompressible laminar flow, in the presence of thermal noise and under the action of an external force. We
show, with extensive numerical simulations, that the force-velocity relation for the tracer, in the nonlinear
regime, displays complex and rich behaviors, including negative differential and absolute mobility. These
effects rely upon a subtle coupling between inertia and applied force that induces the tracer to persist in
particular regions of phase space with a velocity opposite to the force. The relevance of this coupling is
revisited in the framework of nonequilibrium response theory, applying a generalized Einstein relation to
our system. The possibility of experimental observation of these results is also discussed.
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Introduction.—Understanding the response of a system
to an external stimulus from the observation of the
unperturbed dynamics represents a central issue in stat-
istical mechanics. For weak perturbations of an equilibrium
state, the fluctuation-dissipation theorem (FDT) solves
the problem, expressing the system response in terms of
correlation functions [1]. Generalizations of this result have
been recently derived to address the much more complex
issue of predicting the response in nonequilibrium con-
ditions [2–6], when detailed balance does not hold and
currents cross the system, or in the nonlinear response
regime, where higher order response functions have to be
taken into account [7–9]. All these approaches point out
the role played by the coupling among degrees of freedom
that emerges out of equilibrium, adding extra terms to the
standard FDT [10–14].
A paradigmatic problem within such a nonlinear

response theory is concerned with the dynamics of a tracer
particle, traveling in a complex medium under the action
of an external field F. In particular, one is interested
in the force-velocity relation vðFÞ, or the mobility
μðFÞ ¼ vðFÞ=F, and the diffusion coefficient DðFÞ of
the tracer particle. These curves can be strongly affected
by the interaction between the tracer and the surrounding
medium, and can show striking nonlinear behaviors. This
kind of problem has originated in the field of active micro-
rheology of complex fluids, such as emulsions, suspensions,
polymer, and micellar solutions [15,16], where information
on the structure of the host medium is inferred from the
motion of a biased probe embedded in it. In this context
inertia is usually negligible, whereas the force-velocity
relation in nonoverdamped systems, which play an impor-
tant role in fluid dynamics [17], seems much less studied.
One of the surprising effects observed in the force-

velocity relation of several models of biased tracers in

nonequilibrium systems is a negative differential mobility
(NDM). This means that the tracer velocity, after increasing
linearly according to linear response, displays a nonmono-
tonic behavior, characterized by a maximum for a certain
value of the external driving field. Just beyond this value,
the differential mobility dvðFÞ=dF becomes negative,
implying a slowing down of the particle motion at
increasing force. This kind of phenomenon, denoted with
the telling expression “getting more from pushing less,” has
been explained for nonequilibrium toy models in [18] and
can be observed in different systems, such as Brownian
motors [19], kinetically constrained models of glass form-
ers [20,21], and driven lattice gases [22–26], where analytic
approaches are possible [22,24,26]. In most of the afore-
mentioned systems the nonlinear behavior is due to a
reciprocal tracer-medium interaction; i.e., the tracer not
only feels the action of the solvent but influences it,
modifying its microstructure. More generally, within the
framework of nonequilibrium statistical mechanics, the
occurrence of NDM has been related to the concept of
dynamical activity of the tracer, which is a measure of
time-symmetric currents and expresses a “jitteriness” of the
particle during its motion [23,27,28].
Even more surprisingly, there exist cases of absolute

negative mobility (ANM), μ < 0, where the particle travels
against the external force. This phenomenon can be
realized in specific models, due the carefully tuned cou-
pling between colored noise, asymmetric spatial structures,
and driving field [29–32].
In this Letter we show that these kinds of behaviors can

take place in more realistic inertial tracer models, relevant
in fluid dynamics. In particular, we investigate the linear
and nonlinear response of an inertial particle moving in a
steady (incompressible) cellular velocity field, under the
action of an external force, and subject to thermal agitation.
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The presence of inertia implies a nontrivial deviation of the
particle’s motion from the trajectory of a fluid particle,
typically leading to the appearance of strongly inhomo-
geneous distributions—a phenomenon known as preferen-
tial concentration or particle clustering [33,34]. This can be
responsible for an enhanced probability of chemical,
biological, or physical interaction, as for instance, for
the time scales of rain [35], sedimentation speed under
gravity [36], or the planetesimals formation in the early
Solar System [37]. Here we discover that such a preferential
concentration strongly depends upon the external force,
leading to a rich nonlinear behavior for the average
particle’s velocity, showing NDM and, in particular cases,
even ANM. By an analysis of the tracer’s trajectories we
identify a possible mechanism responsible for such behav-
iors. Moreover we interpret our results within the frame-
work of nonequilibrium response theory, exploiting a
generalized Einstein relation (GER), derived recently in
[38,39], which makes clear the role played by the coupling
between the velocity field and the tracer dynamics.
The model.—We consider the following equations of

motion of an inertial tracer particle in two dimensions, with
spatial coordinates ðx; yÞ and velocities ðvx; vyÞ, subject to
an external force F along the x direction, and traveling
through a divergenceless cellular flow ðUx;UyÞ:

_x ¼ vx; _y ¼ vy ð1Þ

_vx ¼ −
1

τ
ðvx −UxÞ þ F þ

ffiffiffiffiffiffiffiffiffi
2D0

p
ξx ð2Þ

_vy ¼ −
1

τ
ðvy −UyÞ þ

ffiffiffiffiffiffiffiffiffi
2D0

p
ξy ð3Þ

Ux ¼
∂ψðx; yÞ

∂y ; Uy ¼ −
∂ψðx; yÞ

∂x : ð4Þ

Here ψðx; yÞ ¼ LU0=ð2πÞ sinð2πx=LÞ sinð2πy=LÞ is the
stream function and ξx and ξy are uncorrelated white noises
with zero mean and unitary variance. The velocity field
here considered corresponds to two-dimensional convec-
tion and shows a very rich behavior [40,41]. In addition, it
can be easily realized in a laboratory, e.g., with rotating
cylinders [42] or in ion solutions in an array of magnets
[43]. Let us stress that our system, even in the absence of
external driving F, is out of equilibrium because of the
steady velocity field represented by the nongradient forces
of Eq. (4). In what follows we measure length and time in
units of L and L=U0, respectively, setting therefore U0 ¼ 1
and L ¼ 1, which defines a typical time scale of the flow
τ� ¼ L=U0 ¼ 1. Another important ingredient of our
model is the presence of microscopic noise with molecular
diffusivityD0, which guarantees ergodicity and is related to
the temperature T of the environment by D0 ¼ T=τ [44].
We stress that, in the presence of an advection field, the
statistic of the phase space explored by the tracer,

fxðtÞ; yðtÞ; vxðtÞ; vyðtÞg, even at F ¼ 0, depends on both
τ andD0 in a nontrivial way, and the finite value of τ has an
important role for the concentration properties [33]. When
τ → 0 (fluid particle limit, where the tracer evolves
according to the equation _x ¼ U þ ffiffiffiffiffiffiffi

2D
p

ξ with D being
an effective diffusivity), because of U ¼ ðUx;UyÞ incom-
pressibility, the tracer visits the two-dimensional phase
space in a uniform way [45]. The same happens for τ → ∞,
when the tracer is insensitive to the field and uniformly
diffuses through the flow.
Negative differential and absolute mobility.—Here we

are mainly interested in the behavior of the stationary
velocity hvxi ¼ τF þ hUx½xðtÞ; yðtÞ�i, where h·i denotes
averages over trajectories of the particle with different
initial conditions and noise realizations. We first consider
the case τ > τ�. In Fig. 1(a) we show, as a function of F,
hvxi and the mobility μ ¼ hvxi=F (inset), for τ ¼ 10 and
different values of D0, as computed in numerical simu-
lations [47]. A linear regime at small forces, characterized
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FIG. 1. (a) Force-velocity relation hvxiðFÞ and mobility μ
(inset) for different values of D0, in the case τ ¼ 10. NDM is
observable for D0 ¼ 10−5 and D0 ¼ 2 × 10−5, around
F ∼ 4 × 10−3. (b) Force-velocity relation hvxiðFÞ in the case
τ ¼ 1 for D0 ¼ 10−5. Notice the negative peak, corresponding to
ANM, observed in a range of forces near F ∼ 6.5 × 10−2, which
is magnified in the inset.
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by a constant mobility depending on D0, is followed by a
complex nonlinear scenario which emerges at intermediate
values of the force. In particular, a nonmonotonic behavior
corresponding to NDM takes place, with a maximum
that slightly shifts and then disappears as D0 is increased.
This is expected because if the noise is strong enough the
effect of the velocity field U is averaged out. The same
happens for large enough forces, for which again the effect
of the velocity field U is negligible and, irrespective of D0,
the trivial behavior hvxiðFÞ ¼ τF is recovered. Notice
that this asymptotic linear behavior is different from the
saturation effect at large force usually observed in lattice
gas models [24].
An even more striking phenomenon is observed in cases

with τ ∼ τ�. In Fig. 1(b) we show the force-velocity relation
for τ ¼ 1: Again a complex nonlinear behavior can be
observed for intermediate values of F and, surprisingly,
ANM (i.e., hvxi=F < 0) is observed in a range around
F ∼ 0.065.
In order to get insight into the origin of the observed

NDM and ANM, we have studied typical trajectories of the
tracer as reported in Fig. 2. In panel (a) we show that
the motion of our tracers is realized along preferential
“channels” that are aligned to two main directions: some
of these channels are characterized by hvxi < 0 (we call
them “leftward”) and others by hvxi > 0 (called in the
following “rightward”). These preferential channels are seen
for not too strong values of the noise (roughly up to values
D0 ∼ 10−4) and independently of the value of the force, but
disappear reducing inertia. Both inertia and noise activate
random transitions between the channels [31]. The force
induces a bias in such transitions, determining, in general,
an average hvxi ≠ 0. In panel (b) we show a mechanism
for explaining how an increase of the positive force may
enhance the probability of transitions from rightward
channels to leftward channels, which can lead to NDM or
even ANM. The reasoning is the following. Initially the
particle is traveling along a rightward channel. For the
chosen F ¼ 0.065 (black arrows), it occurs that the particle
is pushed from region “A” to region “B” where the under-
lying velocity field is strongly negative: a transition to a
leftward channel is then realized. With a smaller (green
arrows) or larger (cyan arrows) force, the particle avoids
the adverse region B and continues its run along rightward
channels. This suggests that there exists a range of forces for
which the tracer is induced to visit more frequently channels
with velocity opposite to the force. Depending on howmuch
this effect is pronounced, NDM or ANM can occur.
Diffusivity.—Next we focus on the study of the diffusion

coefficient DxðFÞ, defined as

Dx ¼ lim
t→∞

1

2t
½hxðtÞ2i − hxðtÞi2�; ð5Þ

in order to understand how the FDT is modified in our
system. Here we consider the case τ ¼ 10 (other cases

show similar behaviors), which is reported in Fig. 3(a).
Notice that Dx is nearly independent of the force at small
forces and at large forces, where it coincides with the value
expected in the absence of the velocity field, Dx ¼ τ2D0. It
is remarkable that limF→0Dx ≫ limF→∞Dx: such a dis-
crepancy decreases when D0 is increased. In order to better
understand the role of the molecular diffusivity D0 in our
system, in the inset of Fig. 3(a) we report the behavior of
DxðF ¼ 0Þ as a function of D0. For large enough noise
amplitude, the scaling is linear, as expected, because the
diffusion coefficient is dominated by the microscopic
diffusivity. On the contrary, for D0 → 0, the particle
diffusivity diverges, similarly to what was found by
Taylor [49] for the dispersion of a fluid particle in laminar
flows in straight channels. In the case of Taylor diffusion of
a fluid particle in a shear flow, the behavior Dx ∼D−1

0 can
be easily understood in terms of long horizontal ballistic
motion, the duration of which increases asD0 decreases. In
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FIG. 2. Samples of the tracer’s trajectories for τ ¼ 1,
F ¼ 0.065, D0 ¼ 0. (a) History of the particle’s position
ðx; yÞ, recorded for a time length 760τ�, starting near (0,0)
(marked as a black spot); (b) the black arrows represent the same
trajectory for a time length ∼10τ� (folded into a single cell, for the
purpose of visualization), the green (dark gray) and cyan (light
gray) arrows start with the same initial condition but are realized
with F ¼ 0.04 and F ¼ 0.09, respectively, and the red arrows
illustrate the underlying velocity field.
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our system the understanding is not so simple, but the
divergence Dx ∼D−α

0 and the long channels observed in
Fig. 2(a) suggest a similar scenario.
Generalized Einstein relation.—The behaviors described

above can be interpreted within the context of response
theory. In equilibrium conditions, and in the linear regime,
the Einstein relation predicts a proportionality between the
mobility and the diffusivity, via the inverse temperature

μ ¼ μ0 ≡ 1

T
Dx: ð6Þ

In our system, the presence of the velocity field U
introduces significant nonequilbirium effects that are
clearly visible in Fig. 3(b), where we report the measured
mobility μ rescaled by μ0. Only for large enough values of
F, where the effect of U is negligible and the system can be
considered at equilibrium, the ratio μ=μ0 ∼ 1. Eventually,
for D0 large enough, the noise makes the velocity field
irrelevant and μ=μ0 ∼ 1 in all regimes.

The difference due to nonequilibrium effects can be
revisited in terms of a GER, derived for systems in out-of-
equilibrium steady states. According to this relation, the
particle mobility can be expressed as the sum of two
contributions: one proportional to the diffusion coefficient,
as in the standard Einstein relation (6), and the other
involving the correlation function with the time integral
of the velocity field Ux, computed along the trajectory of
the particle. As discussed in detail in [39], for a system
described by a set of stochastic equations as in Eqs. (1)–(4),
the GER explicitly reads

lim
F→0

μðFÞ ¼ 1

T
½DxðF ¼ 0Þ − CxΦðF ¼ 0Þ� ð7Þ

CxΦðFÞ ¼ lim
t→∞

1

2Tt
h½xðtÞ − xð0Þ�ΦðtÞic;F; ð8Þ

where

ΦðtÞ ¼
Z

t

0

Ux½xðsÞ; yðsÞ�ds; ð9Þ

and hAðtÞBðsÞic;F ¼ hAðtÞBðsÞiF − hAiFhBiF is the con-
nected correlation function measured at force F. We have
computed in numerical simulations the nonequilibrium
contribution due to the coupling with the field Φ. The
validity of the predictions of the GER (8) is shown—as dot-
dashed lines—in Fig. 3(b), for two cases at D0 ¼ 10−5 and
D0 ¼ 10−3. Let us stress that Eq. (8) can be exploited also
at nonvanishing forces: indeed the differential mobility
dhvxi=dF at a finite value of F is given by the same
expression, by measuring the two terms Dx and CxΦ at
force F. The prediction of the GER for dhvxi=dF is
negative where NDM appears, as we checked numerically:
NDM therefore can be interpreted as the consequence of
CxΦ becoming larger than Dx [23]. Also in the case τ ¼ 1,
for the force values with ANM, the GER is verified,
showing strong negative and positive differential mobilities
just before and just after the minimum of hvxiðFÞ.
Conclusions.—We have studied the effects of a driving

external force on the dynamics of an inertial particle
advected by a velocity field, in the nonlinear regime. We
have discovered nontrivial behaviors of the stationary tracer
velocity and of its diffusivity as a function of the force, such
as NDM and ANM. These effects are due to a complicated
combined action of the applied force, the particle inertia,
and the underlying velocity field. It turns out that, in some
force regimes, this coupling leads the tracer to persist in
regions of the velocity field that drag it against the force
direction, resulting in a slowing down of the tracer velocity,
or even producing a negative mobility [50]. The central role
played by the coupling with the velocity field clearly
emerges in the GER, which is satisfied in our nonequili-
brium system. The striking behaviors shown by the model
should be observable in experiments with biased inertial
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FIG. 3. (a) Tracer diffusivity DxðFÞ for different values of D0

[see legend of Fig. 1(a)] with τ ¼ 10. The continuous lines
represent the values τ2D0. In the inset it is plottedDxðF ¼ 0Þ as a
function of the microscopic diffusivity D0. (b) Mobility μ over
μ0 ¼ Dx=T, for τ ¼ 10. The dot-dashed lines represent the
predictions of the GER in two cases.
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tracers in laminar flows, realized, for instance, in setups
with rotating cylinders [42], two-sided lid-driven cavities
[52], or magnetically driven vortices [43,53].

We thank M. Cencini for useful discussions.

[1] R. Kubo, M. Toda, and N. Hashitsume, Statistical
Physics II: Nonequilibrium Statistical Mechanics (Springer,
New York, 1991).

[2] A. Crisanti and F. Ritort, J. Phys. A 36, R181 (2003).
[3] F. Corberi, E. Lippiello, and M. Zannetti, J. Stat. Mech.

(2007) P07002.
[4] U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani,

Phys. Rep. 461, 111 (2008).
[5] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[6] M. Baiesi and C. Maes, New J. Phys. 15, 013004 (2013).
[7] J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204

(2005).
[8] E. Lippiello, F. Corberi, A. Sarracino, and M. Zannetti,

Phys. Rev. B 77, 212201 (2008); E. Lippiello, F. Corberi, A.
Sarracino, and M. Zannetti, Phys. Rev. E 78, 041120 (2008).

[9] G. Diezemann, Phys. Rev. E 85, 051502 (2012).
[10] T. Speck and U. Seifert, Europhys. Lett. 74, 391 (2006).
[11] D. Villamaina, A. Baldassarri, A. Puglisi, and A. Vulpiani,

J. Stat. Mech. (2009) P07024.
[12] A. Sarracino, D. Villamaina, G. Gradenigo, and A. Puglisi,

Europhys. Lett. 92, 34001 (2010).
[13] L. F. Cugliandolo, J. Phys. A 44, 483001 (2011).
[14] A. Gnoli, A. Puglisi, A. Sarracino, and A. Vulpiani, PLoS

One 9, e93720 (2014).
[15] T. M. Squires and T. G. Mason, Annu. Rev. Fluid Mech. 42,

413 (2010).
[16] A. M. Puertas and T. Voigtmann, J. Phys. Condens. Matter

26, 243101 (2014).
[17] F. Toschi and E. Bodenschatz, Annu. Rev. Fluid Mech. 41,

375 (2009).
[18] R. K. P. Zia, E. L. Praestgaard, and O. G. Mouritsen, Am. J.

Phys. 70, 384 (2002).
[19] G. A. Cecchi and M. O. Magnasco, Phys. Rev. Lett. 76,

1968 (1996).
[20] R. L. Jack, D. Kelsey, J. P. Garrahan, and D. Chandler, Phys.

Rev. E 78, 011506 (2008).
[21] M. Sellitto, Phys. Rev. Lett. 101, 048301 (2008).
[22] S. Leitmann and T. Franosch, Phys. Rev. Lett. 111, 190603

(2013).
[23] U. Basu and C. Maes, J. Phys. A 47, 255003 (2014).
[24] O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, and R.

Voituriez, Phys. Rev. Lett. 113, 268002 (2014).
[25] M. Baiesi, A. L. Stella, and C. Vanderzande, Phys. Rev. E

92, 042121 (2015).
[26] O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, and R.

Voituriez, Phys. Rev. E 93, 032128 (2016).

[27] P. Baerts, U. Basu, C. Maes, and S. Safaverdi, Phys. Rev. E
88, 052109 (2013).

[28] C. Maes, arXiv:1603.05147.
[29] A. Ros, R. Eichhorn, J. Regtmeier, T. T. Duong, P. Reimann,

and D. Anselmetti, Nature (London) 436, 928 (2005).
[30] M. Kostur, L. Machura, P. Hänggi, J. Luczka, and P. Talkner,

Physica (Amsterdam) 371A, 20 (2006).
[31] L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hänggi,

Phys. Rev. Lett. 98, 040601 (2007).
[32] R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann,

Soft Matter 6, 1858 (2010).
[33] J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio,

and F. Toschi, Phys. Rev. Lett. 98, 084502 (2007).
[34] E. Calzavarini, M. Cencini, D. Lohse, and F. Toschi, Phys.

Rev. Lett. 101, 084504 (2008).
[35] G. Falkovich, A. Fouxon, and M. G. Stepanov, Nature

(London) 419, 151 (2002).
[36] F. De Lillo, F. Cecconi, G. Lacorata, and A. Vulpiani,

Europhys. Lett. 84, 40005 (2008).
[37] A. Bracco, P. H. Chavanis, A. Provenzale, and E. A. Spiegel,

Phys. Fluids 11, 2280 (1999).
[38] M. Baiesi, E. Boksenbojm, C. Maes, and B. Wynants, J.

Stat. Phys. 139, 492 (2010).
[39] M. Baiesi, C. Maes, and B. Wynants, Proc. R. Soc. A 467,

2792 (2011).
[40] W. Young, A. Pumir, and Y. Pomeau, Phys. Fluids A 1, 462

(1989).
[41] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, and

A. Vulpiani, Physica (Amsterdam) 134D, 75 (1999).
[42] T. H. Solomon and J. P. Gollub, Phys. Rev. A 38, 6280

(1988).
[43] P. Tabeling, Phys. Rep. 362, 1 (2002).
[44] Note that D0 refers to velocity (and not spatial) diffusion.
[45] The limit τ → 0 has been also considered in [46] and

references therein: there an anomalous diffusion has been
observed, but in a transient regime only.

[46] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[47] The integration of the stochastic equations of the model is

performed with a fourth-order Runge-Kutta algorithm [48],
with a time step dt ¼ 10−4. Numerical results shown in the
figures are averaged over more than 104 realizations, and
error bars fall within the symbols when not explicitly
marked.

[48] R. L. Honeycutt, Phys. Rev. A 45, 600 (1992).
[49] G. I. Taylor, Proc. R. Soc. A 219, 186 (1953); 67, 857 (1954).
[50] We note that the presence of persistent ballistic trajectories

can be suppressed in nonlaminar flows. For instance, we
verified the absence of NDM in the case of a synthetic
random field as in [51].

[51] J. Bec, J. Fluid Mech. 528, 255 (2005).
[52] H. C. Kuhlmann, M. Wanschura, and H. J. Rath, J. Fluid

Mech. 336, 267 (1997).
[53] M. S. Paoletti and T. H. Solomon, Europhys. Lett. 69, 819

(2005).

PRL 117, 174501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

21 OCTOBER 2016

174501-5

http://dx.doi.org/10.1088/0305-4470/36/21/201
http://dx.doi.org/10.1016/j.physrep.2008.02.002
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/1367-2630/15/1/013004
http://dx.doi.org/10.1103/PhysRevB.72.064204
http://dx.doi.org/10.1103/PhysRevB.72.064204
http://dx.doi.org/10.1103/PhysRevB.77.212201
http://dx.doi.org/10.1103/PhysRevE.78.041120
http://dx.doi.org/10.1103/PhysRevE.85.051502
http://dx.doi.org/10.1209/epl/i2005-10549-4
http://dx.doi.org/10.1209/0295-5075/92/34001
http://dx.doi.org/10.1088/1751-8113/44/48/483001
http://dx.doi.org/10.1371/journal.pone.0093720
http://dx.doi.org/10.1371/journal.pone.0093720
http://dx.doi.org/10.1146/annurev-fluid-121108-145608
http://dx.doi.org/10.1146/annurev-fluid-121108-145608
http://dx.doi.org/10.1088/0953-8984/26/24/243101
http://dx.doi.org/10.1088/0953-8984/26/24/243101
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
http://dx.doi.org/10.1119/1.1427088
http://dx.doi.org/10.1119/1.1427088
http://dx.doi.org/10.1103/PhysRevLett.76.1968
http://dx.doi.org/10.1103/PhysRevLett.76.1968
http://dx.doi.org/10.1103/PhysRevE.78.011506
http://dx.doi.org/10.1103/PhysRevE.78.011506
http://dx.doi.org/10.1103/PhysRevLett.101.048301
http://dx.doi.org/10.1103/PhysRevLett.111.190603
http://dx.doi.org/10.1103/PhysRevLett.111.190603
http://dx.doi.org/10.1088/1751-8113/47/25/255003
http://dx.doi.org/10.1103/PhysRevLett.113.268002
http://dx.doi.org/10.1103/PhysRevE.92.042121
http://dx.doi.org/10.1103/PhysRevE.92.042121
http://dx.doi.org/10.1103/PhysRevE.93.032128
http://dx.doi.org/10.1103/PhysRevE.88.052109
http://dx.doi.org/10.1103/PhysRevE.88.052109
http://arXiv.org/abs/1603.05147
http://dx.doi.org/10.1038/436928a
http://dx.doi.org/10.1016/j.physa.2006.04.086
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1039/b918716m
http://dx.doi.org/10.1103/PhysRevLett.98.084502
http://dx.doi.org/10.1103/PhysRevLett.101.084504
http://dx.doi.org/10.1103/PhysRevLett.101.084504
http://dx.doi.org/10.1038/nature00983
http://dx.doi.org/10.1038/nature00983
http://dx.doi.org/10.1209/0295-5075/84/40005
http://dx.doi.org/10.1063/1.870090
http://dx.doi.org/10.1007/s10955-010-9951-6
http://dx.doi.org/10.1007/s10955-010-9951-6
http://dx.doi.org/10.1098/rspa.2011.0046
http://dx.doi.org/10.1098/rspa.2011.0046
http://dx.doi.org/10.1063/1.857415
http://dx.doi.org/10.1063/1.857415
http://dx.doi.org/10.1016/S0167-2789(99)00031-7
http://dx.doi.org/10.1103/PhysRevA.38.6280
http://dx.doi.org/10.1103/PhysRevA.38.6280
http://dx.doi.org/10.1016/S0370-1573(01)00064-3
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1103/PhysRevA.45.600
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1088/0370-1301/67/12/301
http://dx.doi.org/10.1017/S0022112005003368
http://dx.doi.org/10.1017/S0022112096004727
http://dx.doi.org/10.1017/S0022112096004727
http://dx.doi.org/10.1209/epl/i2004-10409-9
http://dx.doi.org/10.1209/epl/i2004-10409-9

