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Abstract
Current research in statistical mechanics mostly concerns the investigation of out-of-equilibrium,
irreversible processes, which are ubiquitous in nature and still far from being theoretically
understood. Even the precise characterization of irreversibility is the object of an open debate:
while in the context of Hamiltonian systems the one-century-old proposal by M. Smoluchowski
looks still valid (a process appears irreversible when the initial state has a recurrence time that is long
compared to the time of observation (Smoluchowski 1916 Z. Phys. 17 557–85)), in dissipative
systems, particularly in the case of stochastic processes, the problem is more involved, and
quantifying the ‘degree of irreversibility’ is a pragmatic need. The most employed strategies rely on
the estimation of entropy production: this quantity, although mathematically well-defined, is often
difficult to compute, especially when analyzing experimental data. Moreover, being a global
observable, entropy production fails to capture specific aspects of irreversibility in extended
systems, such as the role of different currents and their spatial development. This review aims to
address various conceptual and technical challenges encountered in the analysis of irreversibility,
including the role of the coarse-graining procedure and the treatment of data in the absence of
complete information. The discussion will be mostly based on simple models, analytically
treatable, and supplemented by examples of complex, more realistic non-equilibrium systems.

At any time there is only a thin layer separating
what is trivial from what is impossibly difficult.

It is in that layer that discoveries are made...
(Andrei N. Kolmogorov)

1. Introduction

Understanding non-equilibrium phenomena (NEP) stands as a key frontier in modern statistical physics
[1–6]. This field has emerged from two distinct objectives. Firstly, there is the extensive effort, rooted in
Boltzmann’s seminal contributions, to address the long-standing and challenging problem of linking the
irreversible behavior of the macroscopic world with the reversible microscopic dynamics governed by
Hamilton’s equations [7]. In addition, there is a practical need to characterize the numerous non-equilibrium
(irreversible) phenomena pervasive in science, particularly in physics and chemistry, as well as in various
applications. Examples of such phenomena include transport, diffusion, and thermomechanical effects [8].

One of the most important characteristics of out-of-equilibrium systems is the presence of currents
induced by external constraints or fields, which lead to the breaking of time-reversal symmetry and
inhomogeneites between the system degrees of freedom (e.g. spatial inhomogeneities in extended systems).
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Mathematically, we can say that a system is considered out of equilibrium if detailed balance does not hold,
or equivalently, if the entropy production rate Σ is positive [9–12]. However, entropy production is difficult
to measure in real systems, and can be explicitly calculated only for Markov processes, such as those
described by Langevin and Master equations [12]. On the other hand, even when the entropy production is
known, being a global quantity, it does not directly inform us about the physical currents between degrees of
freedom [13]. For instance, even a system of linear Langevin equations can have a nonzero entropy
production and be consistently classified as out of equilibrium; in such a case, due to the absence of a spatial
structure, it is not trivial to individuate the currents [14, 15]. Furthermore, in general, quantifying entropy
production requires detailed knowledge of the underlying system, including all its degrees of freedom and
their interactions [15]. Conversely, in many practical situations, we only have access to a limited set of
observables, representing a projection or coarse-graining of the system. Thus, it is natural to wonder in
which cases and how we can infer non-equilibrium properties and characterize the breaking of time-reversal
symmetry using such partial information.

In this review, we discuss various aspects of a broad class of non-equilibrium systems, from Markov
chains to high-dimensional chaotic systems, analyzing both temporal and spatial aspects of non-equilibrium
states. Our aim is not to provide an exhaustive compendium of the many facets of non-equilibrium statistical
mechanics. Instead, we present a series of observations and ideas on specific aspects that need to be
addressed in everyday research. We focus on the practical challenges and difficulties in characterizing the
breaking of time-reversal symmetry, its connection with spatial structures, and the physical characteristics of
the underlying system. We will discuss the use of several tools to this end, such as correlation functions,
particularly those suited to detect asymmetries [16, 17], response theory and fluctuation-dissipation
relations [18–20], recently introduced thermodynamic uncertainty relations (TURs) [21, 22], and causation
analysis to characterize the irreversibility associated with non-reciprocal interactions between degrees of
freedom [23, 24].

In the first part, we primarily focus on analytically treatable models (mostly in the context of Markov
processes), which allow us to introduce the main tools of analysis and highlight key problems and subtleties
arising from coarse-graining and the lack of complete information in data analysis. In particular, we will pay
attention to the consequences of non-Gaussian perturbations, which can be relevant in small systems, and
the necessity of a finite scale resolution. We will then progressively consider more complex systems, drawing
examples from high-dimensional, spatially extended chaotic systems to realistic simulations of turbulent
flows [25, 26] or models for turbulence, where non-equilibrium properties and irreversibility manifest over
multiple spatio-temporal scales [27]. The motivation of comparing different tools is not to establish the one
which performs the best but instead to investigate potentials and limits of each method that should be
considered in real-world application.

The paper is organized as follows. Section 2, starting from the distinction between transient and
persistent out-of-equilibrium states, summarizes some fundamental aspects of non-equilibrium statistical
mechanics. In particular, we discuss the conceptual ingredients that are needed to a suitable thermodynamic
description of the system, such as the presence of many degrees of freedom, typicality and coarse-graining.
Some difficulties encountered in the understanding of experimental data and/or numerical calculations are
also outlined. Finally, we introduce the indicators that are most commonly used to quantify time-reversal
symmetry breaking, namely time-asymmetric correlation functions and entropy production rate. Section 3 is
devoted to Markov processes, with a focus on linear stochastic systems and jump processes. Through a
systematic use of the theory of stochastic processes, a general and well-defined mathematical formulation of
systems in and out of equilibrium is provided. Fluctuation–dissipation theorems and their relations with
equilibrium properties are extensively covered. Then, the problem of inferring the thermodynamic
properties of a system from partial information is discussed in analytically treatable models. On the one
hand, a no-go theorem stating the impossibility of inferring the equilibrium properties of a system by
measuring a single stationary degree of freedom, valid for Gaussian processes, is discussed. On the other
hand, it is shown that a generalized response allowing the understanding of the thermodynamic nature of the
underlying model can be computed by comparing experiments performed under different conditions.
Section 4 focuses on general strategies for the estimation of entropy production from data. More specifically,
we discuss the TURs, which are lower bounds on entropy production obtained by analyzing the signal to
noise ratio of a generic current, as well as some numerical brute-force techniques. Conceptual subtleties such
as the dependence on coarse-graining levels, or on the observed currents of these empirical proxies, are
carefully scrutinized in simple models: this study shows that useful information can be usually obtained only
in cases where a good understanding of the system is available ab origine. Finally, other approaches based on
the exit-time statistics or hidden Markov modeling are briefly discussed. Section 5 goes beyond entropy
production rate examining the potential implications of causation indicators in the analysis of
non-equilibrium systems. The two causal indicators taken into account are transfer entropy, which is an
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information-theoretic measure of information fluxes between variables, and response function. As discussed
there, the advantage of considering these indicators is that they not only discriminate between equilibrium
and out-of-equilibrium systems, but also provide information on how the time-reversal symmetry is broken.
Section 6 discusses non-equilibrium in turbulence: it is a remarkable case study where all the previous
theoretical considerations naturally apply. In particular, it is shown that both correlations and responses of
suitably defined observables not only are able to highlight the non-equilibrium nature of particles advected
by turbulent velocity field, but also reveal other interesting aspects such as energy and/or enstrophy cascades.
Finally, some conclusions are drawn in section 7.

2. Irreversibility in transient and persistent NEP

When discussing NEP, a first distinction can be identified between transient and persistent non-equilibrium.
The former displays a non-equilibrium behavior for a limited amount of time only, before reaching their final
equilibrium state, where the dynamics is reversible. Conversely, in persistent NEP time reversal symmetry is
continuously broken6. They are kept out of equilibrium indefinitely (at least, with respect to the experimentally
accessible times) by external drivings, or by intrinsically time-irreversible internal mechanisms.

A prototypical example of transient NEP is gas diffusion. Consider a large number N≫ 1 of particles,
initially localized in a small region of the available volume V∼ Ld of a d-dimensional box of side length L.
The particles of the gas will uniformly distribute over V, in a characteristic time of O(L2). The reverse process
will never be observed within astronomical time scales, as a consequence of Kac’s lemma [28] (see discussion
below): diffusion is therefore an irreversible process. Once the gas has occupied the whole available volume,
the system undergoes an equilibrium dynamics, meaning that the NEP is transient. For an example of
persistent NEP, one can think instead of the electric current j in a conductor, produced by an externally
imposed electric field E. The well-known Ohm’s law, j = σE, defines the linear dependence of the two
physical quantities, where the constant σ is the electric conductivity [29]. The presence of a preferential
direction determined by the electric field, and of a persistent current of charge carriers j, clearly indicates the
irreversible nature of the process. Remarkably, Ohm’s law straightforwardly arises from linear response
theory, specifically the Green–Kubo relation: σ, a non-equilibrium quantity, can be computed in terms of
equilibrium properties, i.e. time correlations [2, 20].

This review will mostly focus on persistent NEP. However, in the following we also briefly revisit some
general aspects of transient NEP, which played a crucial role in understanding the second law of
thermodynamics. These concepts clarify how irreversibility arises in macroscopic systems from their
microscopically reversible Hamiltonian dynamics, and will also be useful for the discussion of persistent NEP.

2.1. Transient NEP
2.1.1. The role of the number of degrees of freedom
Poincaré recurrence theorem states that a Hamiltonian system with N degrees of freedom in a confined
domain will reach again a state arbitrarily close to its initial condition, after a very long time. Therefore,
strictly speaking, transient NEP can be classified as non-equilibrium only when observed over a ‘short’ time,
i.e. much shorter than Poincaré recurrence one. It is known from Kac’s lemma that this time is of order eaN : a
here is a strictly positive constant, whose precise value depends on how close to the initial condition the
system needs to be found at recurrence, and is not really important for the following considerations. The
exponential dependence on N implies that, for a system made of a small number of particles, also the
recurrence time is relatively small, and irreversibility is not typical. Roughly speaking, this means that the
irreversible nature of the dynamics cannot be detected by just looking at a single trajectory, i.e. an averaging
procedure over many realizations is needed. We will come back to this point in the following.

To explain the relevance of the number of degrees of freedom for the occurrence of irreversibility, we
discuss the spreading of an ink drop [30], represented as a system of Nt tagged particles in a fluid, initially
uniformly distributed in a small region V0. We can study this phenomenon by considering a system of Nt

particles interacting among themselves, as well as with the Ns solvent particles (Ns ≫ Nt). In mathematical
terms, the ink drop and the solvent correspond to phase-space points evolving through a symplectic
dynamics that mimics the Hamilton equation (see [30] for details). A simple way to monitor the mixing
process of the ink amounts to counting the number of ink particles n(t) in a region V at time t (see
figures 1(a)–(d)). In figures 1(e) and (f), we show the evolution of n(t) in a single realization and its average
over many realizations in two different cases: (e) for a small number of tagged particles, where in a single
realization n(t) does not display any irreversible tendency to a final state, and only the average ⟨n(t)⟩ shows

6 We prefer to use the term ‘persistent’ instead of ‘stationary’, which is not completely general. For instance, an electric noisy circuit with
a periodic forcing is in a persistent, but clearly not stationary, non-equilibrium state.

3



New J. Phys. 27 (2025) 041201 D Lucente et al

Figure 1. Irreversible spreading of an ink drop. Panels (a)–(d): time evolution of the ink particles. Ink particles start (a) uniformly
distributed in V0 and the instantaneous occupation n(t) is monitored in the (orange) box V, panels (b)–(d) show the evolution
till the ink particles are uniformly distributed in the whole contained. Panels (e) and (f) show the instantaneous occupation
n(t)/neq (black curve) and its average ⟨n(t)⟩/neq (red curve) in the case of few Nt = 8 and many Nt = 2.5104 ≫ 1 ink particles,
respectively. In (e) the average is over 500 independent initial conditions starting from V0. When the number of particles is large
(f), the irreversible behavior is well evident even looking at a single realization of n(t), this is not the case when their number is
small (e). See [30] for further details. Adapted from [30], Copyright (2016), with permission from Elsevier.

clear irreversibility; (f) for a large number of tagged particles (Nt ≫ 1), where the irreversible behavior is well
evident even looking at a single realization of n(t). In everyday experience, we have usually access to a single
realization of a certain phenomenon. In order to decide whether it is reversible or not, we need the trajectory
to be typical [31]. Given a system with many degrees of freedom, we say that its state is typical if its
macroscopic observables (e.g. kinetic energy, density in a given region) are close to their averages. If this is
the case, the (ir)reversible nature of the phenomenon is clear from a single realization. This is true only for
macroscopic bodies, made of many interacting degrees of freedom.

The example above also exemplifies the conceptual difference between the physical irreversibility in a
single (macroscopic) system X, and the relaxation of a phase-space probability distribution ρ(X, t) towards
an invariant distribution. The latter is a property of an ensemble of initial conditions, which is verified
whenever for large t one has ρ(X, t)→ ρinv(X), independently of the initial density distribution ρ(X,0).
Although this property is quite important from a mathematical point of view, it is not the mark of a
genuinely irreversible behavior, as demonstrated by the above example.

The difference between relaxation of the probability distribution to an invariant one and the
irreversibility in a unique system can be understood considering a low-dimensional symplectic chaotic
system, e.g. the Arnold cat map [32]:

xt+1 = xt + yt mod1 (1a)

yt+1 = xt+1 + yt mod1 . (1b)

This map is chaotic and mixing, i.e. ρ(X, t)→ ρinv(X) (with X= (x,y)), but at variance with the behavior
of a macroscopic system, it is impossible to observe any qualitative difference between a single direct
trajectory X0,X1, . . . ,Xt−1,Xt and its time reversed Xt,Xt−1, . . . ,X1,X0. Even considering an ensemble of
initial conditions, each of them evolving independently of the others, their behavior cannot represent the
dynamics of a macroscopic body. Having a large number of interacting degrees of freedom is therefore a
necessary condition for observing transient irreversibility of macroscopic systems7.

7 We remark that it is possible to have interesting results in agreement with statistical mechanics even in non interacting system [33].
Nonetheless, some (even weak) interaction among the particles is usually required to observe a genuine thermodynamic behavior, and
thus irreversibility. For instance, consider N≫ 1 particles in a box, whose velocities at the initial time are extracted from the Maxwell–
Boltzmann distribution at temperatureT1 for half of them and T2 ̸= T1 for the other half. In the absence of interaction, themomentum of
each particle is conserved and, consequently, the time evolution of some macroscopic observables (e.g. the fourth moment of the particle
momenta) will not attain the microcanonical equilibrium value.
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2.1.2. Irreversibility and typicality
Consider a system with N≫ 1 degrees of freedom, interacting in some way, and an observableO depending
on all (or at least many) of them. It is generally expected that, if the initial condition is far enough from
equilibrium, i.e.

O (0) = ⟨O⟩eq + δO (0) , with |δO (0) | ≫ σO , (2)

where σO denotes the magnitude of the equilibrium fluctuations of the observableO, then almost all
trajectoriesO(t) will be close to the average ⟨O(t)⟩, excluding very unlikely cases. In other words, the
behavior ofO(t) is expected to show an irreversible behavior (close to ⟨θ(t)⟩), and in addition to be typical.

A general mathematical proof of the above statement is still missing. However, the result can be proved
rigorously in certain stochastic processes (e.g. the celebrated Ehrenfest model [34]) and for dilute gases [35],
in the so-called Grad–Boltzmann limit8. To exemplify this result, without entering into mathematical detail,
we discuss here some numerical simulations supporting the scenario that for a generic macroscopic
observableO satisfying (2), one has

Prob{O (t)≃ ⟨O (t)⟩} ≃ 1 . (3)

The system we consider can be viewed as a simplified model of a piston [30], i.e. a channel containing N
particles of massm, closed by a fixed vertical wall on one end, and by a frictionless moving wall of massM
(the piston itself) on the other. We denote with xn(t) the coordinate of the nth particle parallel to the
channel, in the framework of the fixed wall, and with X(t) the position of the piston, so that 0⩽ xn ⩽ X ∀n.
If we assume a constant force F to act on the piston, and we take into account the interactions between the
particles inside the channel, the Hamiltonian of the total system reads:

H=
P2

2M
+
∑
i

|pi|2

2m
+
∑
i<j

U
(
|qi − qj|

)
+Uw (q1, . . .,qN,X)+ FX ,

where U is the interacting potential between the particles, and Uw denotes the interaction of the particles
with the piston. In the case of non-interacting particles9, one has U = 0, and Uw is the hard-wall potential,
yielding elastic collisions. The dynamics is not chaotic, and it is easy to find the ‘equilibrium’ position of the
piston, ⟨X⟩eq, and its variance σ2

X. In the presence of interactions such as, e.g. U(r) = U0/r12 and
Uw = U0

∑
n |xn −X|−12, it is not possible to determine analytically the equilibrium statistical properties of

the system, however the problem can be easily studied numerically (see [30] for details). The system starts at
t= 0, with the piston at rest (Ẋ(0) = 0) in X(0) = X0, and the initial microscopic state is set as an
equilibrium configuration of the gas in the volume imposed by the piston position at a given temperature T0.
When the initial state is far enough from equilibrium, i.e. |X0 −Xeq| ≫ σX, the evolution of X(t) is
irreversible, as shown in figure 2: damped oscillations around the equilibrium position are clearly detectable.
From a conceptual point of view the important result is that the single trajectories are typical, i.e. close to the
average, both for the chaotic and the non-chaotic case (i.e. either with or without inter-particle interactions).
We also stress that, as one can directly inspect from the figure, the qualitative features of the chaotic and
non-chaotic system are essentially indistinguishable with respect to irreversibility: chaos plays little role in
irreversible behaviors (as well as for other statistical properties [36]).

2.1.3. Coarse-grained description
An aspect that will become important in the remainder of the paper is the level of description adopted when
studying a given phenomenon or system. For the sake of simplicity, let us reconsider again the problem of
diffusion. Similarly to the example of the ‘ink’ drop of figure 1, one can start from the microscopic
(deterministic, Hamiltonian) dynamics of the particles of interest and of the solvent (in real world, the
tagged or colloidal particles and the molecules of the gas or liquid in which they are embedded). Or, one can
change the level of description and mimic the microscopic reversible dynamics in term of a suitable

8 Consider a system of hard spheres of radiusσ, withN particles per unitary volume. TheGrad-Boltzmann limit corresponds to increasing
the number of particles while decreasing their size, in such a way that the collision rate approaches a constant value, i.e. N→∞, σ→ 0
and Nσ2 → constant. By doing so, the volume occupied by the particles scales as Nσ3 → 0, consistently with the physical interpretation
of dilute-gas limit.
9 Notice that even if the particles do not interact among each-other, their interaction is mediated by the collisions with the moving wall
(the piston). As a consequence energy is redistributed.
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Figure 2. Evolution of the piston position X(t): (a) for the interacting particle (chaotic) model, (b) for the non-interacting
(non-chaotic) particle model. In both cases the number of ‘gas’ particles is N= 1024 withm= 1 while the piston has mass
M= 10, the initial temperature is T0 = 10, and the initial displacement of the piston position is X(0) = Xeq + 10σeq. Black curves
denote X(t) in a single realization; red curves refer to the ensemble average ⟨X(t)⟩, and in (b) the horizontal blue dashed line is
the analytical equilibrium value. The results are taken from [30], where more details can be found. Adapted from [30], Copyright
(2016), with permission from Elsevier.

stochastic process. For instance, the diffusion phenomena in a box can be described with a stochastic model,
e.g. the overdamped Langevin equation [37]

γ
dx

dt
=−∇U(x)+ γ

√
2Dη , (4)

where η is a white noise (i.e. ⟨ηi(t)ηj(s)⟩= δijδ(t− s)), and the potential U(x) is zero inside the box and
divergent on the boundary, so to confine the particles. Relaxing the overdamped approximation, one can use
the (full) Langevin equation [37]

dx

dt
= v ,

dv

dt
=−γv−∇U(x)+ γ

√
2Dη .

(5)

Therefore, practically, there is the freedom to adopt different mathematical descriptions that are, under some
aspects, equivalent up to a certain coarse-graining level. For the specific case of diffusion, the underlying idea
is that the effect of fast collisions with the solvent molecules is modeled by the white noise term. As for the
original, microscopic description, also in this case the irreversibility of the diffusion process can appear only
if we look at a large number of particles, initially close, evolving with (4) or (5). Only in a few special cases, it
is possible to perform experiments with good control following a system with many degrees of freedom and
repeating many times the measurements with different initial conditions and then computing averages:
therefore, usually the transient NEP can be described just at a qualitative level.

Let us notice that the overdamped description (4) can be seen as a coarse-graining in time of the
underdamped one (5): the former dynamics is described by only d variables, x ∈ Rd, while the latter lives in
2d dimensions. Therefore, in general, the result of the computation of some quantities (e.g. entropy)
depends on the used model, even if the physical phenomenon is the same. Such an unpleasant fact is an
unavoidable aspect of the coarse-graining procedure. For a discussion of this problem under the point of
view of entropy production see [38].

2.2. Persistent NEP: entropy production rate
Consider again the case of the conductor subject to an externally imposed electric field. If we can follow the
position (or the velocity) of a charge carrier for a long time in a single experiment, we can realize that a
current is present. Since there is a preferential direction of motion, and, hence, the time-reversal symmetry of
the process is persistently broken, we can conclude that the system is in a (persistent) non-equilibrium state.
The larger the current, the farther the system is from equilibrium.

The characterization of the non-equilibrium nature of a system in the general case is, of course, not as
simple as this: in fact, in many cases the detection of the currents, which are responsible for the irreversible
nature of the process, is a very challenging task. The problem needs, therefore, to be formalized in precise
mathematical terms, e.g. by means of a systematic use of stochastic processes. The aim is to provide a general
criterion valid independently of the details of the physical system.

A natural attempt in this direction could be to look at two observable functions of the state, X(t), of the
system, A(t)≡ A(X(t)) and B(t)≡ B(X(t)), and to check whether their correlations show time-reversal
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symmetry, i.e. if

⟨A(t)B(0)⟩= ⟨A(0)B(t)⟩ .

To identify a non-equilibrium system, it would then be sufficient to find two functions A(t) and B(t) for
which the above relation does not hold. One might be tempted to define a ‘degree of irreversibility’ related to
the quantity

∆CAB (t) = ⟨A(t)B(0)⟩− ⟨A(0)B(t)⟩ ,

such as, e.g.
´∞
0 dt|CAB(t)|, to quantify the time-reversal symmetry breaking. In [16, 17] it was proposed for

instance to use a correlation function of the form

∆Cxx2 (t) = ⟨x(t)x2 (0)⟩− ⟨x(0)x2 (t)⟩ (6)

where x represents a generic observable of the system, but, of course, other choices are possible. Correlations
functions of this kind can detect asymmetries (viz. irreversible behaviors) and thus inform us about the
non-equilibrium character of the system from a single variable. However, the above approach has two main
drawbacks.

First,∆CAB depends both on the choice of observable and the reference frame, meaning it is not an
intrinsic quantity. Secondly, for processes characterized by Gaussian statistics, functions such as (6) may be
trivially zero even if the system is out of equilibrium (see e.g. section 3).

Another way, which has a rather solid mathematical base, to decide whether a system is in a state of
non-equilibrium (and to introduce an adequate characterization of the distance from equilibrium) is based
on the comparison between the probability of forward (or direct) and inverse (or backward) trajectories. The
idea is to recognize whether the direct trajectory is more typical than the inverse one.

The first step is to identify the direct and inverse trajectory. In a mechanical system, one has for the
former

X(T )
→ = {Q(t) ,P(t)}0<t<T

where Q and P are the generalized coordinates and momenta. The inverse trajectory is then defined as

X(T )
← = {Q(T − t) ,−P(T − t)}0<t<T ,

taking into account the fact that, when the motion is reversed, the momenta P change sign because they are
proportional to dQ/dt. In the general case, the state of the system is described by a vector x(t) = (x1(t),
x2(t), . . .,xD(t)), and the direct trajectory reads

X(T )
→ = {x1 (t) ,x2 (t) , . . .,xD (t)}0<t<T

while the inverse one is

X(T )
← = {ϵ1x1 (T − t) , ϵ2x2 (T − t) , . . ., ϵDxD (T − t)}0<t<T ,

where ϵi =±1 denotes the parity of the variable xi:+1 (−1) for variables that are even (odd) with respect to
time reversal. Notice that sometimes it can be not trivial to determine the parity [39]. The task is particularly
challenging when the variables represent internal degrees of freedom and their parity is generally determined
based on physical intuition. This clearly has an impact on the definition of entropy production, as
demonstrated by the debate about the equilibrium nature of active Orstein-Uhlenbeck particles [40, 41].

Once X(T )
→ and X(T )

← are identified, to evaluate the equilibrium properties of the system we need to
compare the Prob(X(T )

→ ) with Prob(X(T )
← ). To this aim it is convenient to define the entropy production

rate [42]

Σ= lim
T→∞

〈
1

T
ln

Prob
(
X(T )
→

)
Prob

(
X(T )
←

)〉= lim
T→∞

Σ(T ) (7)

where the average ⟨·⟩ is made with respect to Prob(X(T )
→ ). The entropy production rate does not suffer from

the same limitation of∆CAB: it is an intrinsic quantity, i.e it does not depend on the used variable x since it
has the form of a Kullback–Leibler divergence. In addition, it is bounded from below by zero (Σ⩾ 0) and it
is equal to zero (Σ= 0) if and only if the forward and the backward path have the same probability, i.e. if

7
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∆CAB = 0 for every choice of the observables A,B. Another remarkable properties of Σ is that it cannot
increase if some variables are integrated out [14, 43–45], that is Σ⩾ Σcg for

Σcg = lim
T→∞

〈
1

T
ln

´ dX1 · · ·dXkProb
(
X(T )
→

)
´
dX1 · · ·dXkProb

(
X(T )
←

)
〉

. (8)

This equation defines the coarse-grained entropy production as the marginalization of equation (7).
However, alternative definition exist [46–48]: in this context it has been shown that, in particular cases (e.g.
when starting from a reversible deterministic system), a coarse-graining protocol that does not commute with
time-reversal operation can result in an increased entropy production rate [46, 49]. Note that equation (8)
requires the use of the coarse-grained path, which is generally non-Markovian. If an approximation is used
to compute the path probabilities, an increase in coarse-grained entropy production can be observed [50].

Although Σ is a well-defined quantity, it is often not sufficient to capture all the non-equilibrium
characteristics, in particular temporal or spatial asymmetries. Furthermore, several practical difficulties have
to be faced when calculating Σ: among the others, incomplete knowledge of the state and/or limited
resolution of the measurement procedure. In such cases, one has to resort to alternative approaches, e.g. to
study suitable (or generalized) response functions, or correlation functions able to detect the asymmetries.
The identification of these indicators often relies on the knowledge of the physics of the system under
investigation.

As stated in the Introduction our aim is to review such practical difficulties for the characterization of the
irreversibility and to exemplify possible way out on the basis both of simplified systems and more complex
examples taken from practical research. In particular, in the following section we provide a detailed
discussion of the aforementioned problems in more specific situations, within the framework of linear
stochastic processes, beginning with Markovian processes and then going beyond this class, e.g. considering
Gaussian processes with colored noise or stochastic differential equations with Poisson noise.

3. About non-equilibrium in linear stochastic processes

In the case of Markov processes, it is possible to provide an expression for the entropy production rate Σ in
terms of the transition probabilityWt(x|y), i.e. the conditional probability of having x at time t given y at
time 0, and of the stationary probability density π(x) = limt→∞Wt(x|y) which satisfy the chain rule
π(x) =

´
dyπ(y)Wt(x|y). The result is (see appendix A.2)

Σ= lim
t→0

1

t

ˆ
dx π (x)

ˆ
dyWt (y|x) ln

Wt (y|x)
Wt (x|y)

=

= lim
t→0

1

t

ˆ
dx dy Pt (x,y) ln

Pt (x,y)

Pt (y,x)
(9)

where Pt(x,y) = π(x)Wt(y|x) is the joint probability of having x at time 0 and y at time t. Equation (9)
makes it explicit that, in the case of Markov processes, the equilibrium/non-equilibrium nature of the process
can be decided by looking at the violation of the detailed balance condition [37], i.e

Pt (x,y) = π (x)Wt (y|x) = π (y)Wt (x|y) = Pt (y,x) , (10)

which is indeed the condition that establishes the invariance under time reversal of the transition
x↔ y ∀t> 0. Note that equation (9) is formal and require explicit knowledge of both the stationary
distribution π(x) and the propagatorWt(y|x). Thus, despite its good mathematical properties, entropy
production is often hardly accessible, because the analytical computation of equation (9) is not always
feasible, and moreover its measure in experiments is usually hard as it is based on estimation of probability
distributions in possible high-dimensional spaces.

3.1. Equilibrium condition in Gaussian processes
Gaussian stochastic processes, particularly time-continuous ones, are commonly employed as useful effective
models for describing, at least under some conditions, the dynamics of various physical and biological
phenomena [51–56]. Given their amenability to analytical calculations, these processes are excellent cases for
testing physical theories. In order to clarify some non-trivial peculiarities inherent to this class of processes,
we summarize here some well-known aspects of their equilibrium properties and we discuss the problem of

8
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unveiling temporal irreversibility from experimental signals. Let us consider the stochastic differential
equation for the Ornstein-Uhlenbeck process in D dimensions:

ẋ+Ax= ξ+h(t)
〈
ξi (t)ξj (t

′)
〉
= Dijδ (t− t ′) , (11)

where the real part of eigenvalues of A (a D×D real matrix) is positive (so that the system relaxes to a
stationary probability density), D is the covariance matrix of the noise ξ and h is an external field introduced
just to make the response function explicit. For simplicity, we are considering only even variables under
time-reversal, although most considerations are true for odd variables as well. By direct integration of
equation (11) we have

x(t) = e−(t−t
′)Ax(t ′)+

ˆ t

t′
dse−(t−s)A [ξ (s)+ h(s)] (12)

from which a simple computation [45] leads to explicit expressions for response and correlation functions:

Rij (t− t ′) =
∂ ⟨xi (t)⟩
∂hj (t ′)

∣∣∣∣
h=0

R(τ) =

{
e−τA τ ⩾ 0

0 τ < 0
(13)

Cij (t− t ′) =
〈
xi (t)xj (t

′)
〉∣∣
h=0

C (τ) =

{
e−τAC τ ⩾ 0

Ce−|τ |A
T

τ < 0
(14)

C (0) = C=

ˆ ∞
0

dse−sADe−sA
T

⇐⇒ D= CAT +AC . (15)

Note that the equations above, since they involve just average values, hold not only for Gaussian processes,
but for any type of δ-correlated noise. However, in the case of Gaussian noise, we can add an explicit and
compact expression for entropy production rate Σ too, which reads (see appendix A.2)

Σ= Tr
{(

CAT −AC
)
D−1A

)
= Tr

{
(ATD−1 −D−1A)AC

}
. (16)

For equilibrium systems, i.e. Σ= 0, one recovers the celebrated Onsager reciprocal relations

AC= CAT ⇐⇒ ATD−1 = D−1A ⇐⇒ DAT = AD . (17)

Note that, since the paths distribution is Gaussian, i.e.

Prob
(
X(T )
→

)
∼ exp−1

2

∑
ij

ˆ
dt

ˆ
dt ′xi (t)Dij (t− t ′)xj (t

′) (18)

using the property (ˆ
dsD (t− s)C (s− t ′)

)
ij

= δijδ (t− t ′) , (19)

it is possible to show that the condition

Prob
(
X(T )
→

)
= Prob

(
X(T )
←

)
(20)

is equivalent to C(t) = C(−t). Let us stress the fact that in order to understand if the system is in equilibrium
it is necessary to have the knowledge of all dynamical variables in the system, a practical difficulty in
real-world experiments. At equilibrium, a very important relation holds between correlation and response:
since CAT = AC and CAT +AC= D, one has 2AC= D; therefore, the derivative of C(t)must satisfy, ∀t> 0,

dC (t)
dt

=−1

2
R(t)D . (21)

Such equation expresses the equilibrium condition for a linear Gaussian process in the familiar form of a
fluctuation-dissipation theorem (FDT).

It is interesting to study the above relation in the reference frame that has the eigenstates of the
symmetric matrix D as a basis, or, equivalently, when the covariance matrix of the noise is diagonal, i.e.
Dij =

〈
ξi(t)ξj(t ′)

〉
= 2Ti δijδ(t− t ′). In this case the contribution of the noise can be interpreted as the effect

9
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of D thermal baths, with temperatures {Ti}i=1,...,D. If we look at the i-th single dynamical variable only, we
find

dCii (t)
dt

=−TiRii (t) . (22)

Note that we obtained an equilibrium condition of the form (21) despite having D different temperatures.
This is possible with a non-symmetric drift matrix A which satisfies the condition AijTj = AjiTi, condition
that implies a very special property for A, i.e. AijAjkAki = AijAkjAji , ∀i < j < k [45]. In the same way then, the
violation of equality equation (22) can be exploited as a measure of non-equilibrium of a system. In these
cases typically the expression above is written in terms of their Fourier transforms C̃( f) and R̃( f) (see [45]
for details about the derivation), i.e.

C̃ ( f) = 2Re
{
R̃( f)

}
C=− 1

2π f
Im

{
R̃( f)

}
D . (23)

These equilibrium conditions turn out to be fundamental in some cases, for example when a Markovian
process is projected onto a space of lower dimension, e.g. simply by considering only one or two variables. In
this case, the projected dynamics is, in general, not Markovian anymore, and it contains memory terms. A
precise definition of non-equilibrium is therefore more tricky. Indeed, as we will discuss in the next sections,
it is possible to design non-Markovian out-of-equilibrium processes with time-reversal symmetry and
vanishing entropy production by simply projecting a multidimensional Markov process onto a space of
smaller dimension. In these situations, one possible mathematical formulation of non-Markovian
equilibrium system relies on the generalized FDT which relates the response to external forcingR to the
time-derivative of correlation functions (R∝ Ċ). Before entering this topic, however, we will briefly review
some known results on the fluctuation-dissipation relations, and about the possibility to exploit them to
infer the equilibrium properties of a system.

3.2. Fluctuation-dissipation relations
The first general fluctuation-dissipation relation has been derived by Kubo for Hamiltonian systems [39]. In
a nutshell, the idea is to consider weak perturbations of an equilibrium system whose dynamics is encoded in
the unperturbed HamiltonianH0(x). The perturbed Hamiltonian

H (x, t) =H0 (x)−F (t)A(x)

can be used to derive an expression for the average variation of a generic observable B(x) due to the
perturbation A(x), modulated by the time-dependent function F(t). Without entering into the details of the
derivation (which are discussed in [2, 19, 20, 39, 57]), we just recall the Kubo formula

⟨∆B(t)⟩= ⟨B(t)⟩H−⟨B⟩H0
=

ˆ t

−∞
d t ′RBA (t− t ′)F (t ′) , (24)

whereRBA(t) is defined as

RBA (t) = β

〈
B(t)

dA(0)

dt

〉
H0

=−β
〈
dB(t)

dt
A(0)

〉
H0

=−β dCBA (t)
dt

, (25)

and β = 1/T is the inverse of temperature. Equation (25) describes the response of the system to an
infinitesimal impulsive perturbation and can be reformulated as

χBA (t) =

ˆ t

0
d t ′RBA =−β {CBA (t)−CBA (0)} , (26)

where χBA(t) is the susceptibility or admittance. This derivation is valid for systems close to equilibrium,
since it relies on the assumption that the unperturbed stationary distribution is the canonical one
(π(x)∝ e−βH0(x)). Several attempts to generalize the above formula to non-equilibrium systems have been
made. For instance, in [58], it has been shown that a FDT in the form of equation (26) can be restored for the
fluctuations of a non-equilibrium process in cases where the non equilibrium force does not change the
property of the thermal bath. Later, it has been shown [59] that, in Markovian system, it is always possible to
define suitable observables satisfying equation (26). Moreover, a generalized fluctuation relation for a large
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class of systems admitting a non-singular invariant measure has been derived in [18, 20, 58]. This result
relates the response to an initial perturbation δxj(0) with a properly defined correlation function, i.e.

Rij (t) = lim
δxj(0)→0

⟨δxi (t)⟩
δxj (0)

=−
〈
xi (t)

∂ lnπ (x)

∂xj

〉
, (27)

where the average is performed on the unperturbed dynamics. The variation of a generic observable can be
written as

⟨∆B(t)⟩=−
∑
j

〈
B(t)

∂ lnπ (x)

∂xj

∣∣∣∣
t=0

δxj (0)

〉
. (28)

Despite its generality, sometimes equation (27) is not very practical, because it requires the explicit
knowledge of the stationary measure π(x). For this reason, other forms of generalized fluctuation-dissipation
relations involving derivatives of the propagator only have been derived for stochastic systems driven by white
noise [60–62]. Interestingly, it has been also shown that under general hypothesis a generalized fluctuation
theorem holds in the form of an equilibrium contribution plus a correction given by the correlation of the
observable and the dynamical activity (frenesy) of the system [63]. It should be noted that equation (27) is a
functional relation between correlations and responses that does not depend on the equilibrium nature of
the system. This is particularly evident in linear systems where it takes the form C(t) =R(t)C(0) ∀t> 0
meaning that the temporal evolution of the correlation is ruled by the deterministic part of the dynamics.

Some authors, starting from the failure of equation (25) in non-equilibrium systems, introduced the
concept of effective temperatures [64]. For a critical discussion of this topic see [65, 66]. While the violation
of a generalization of equation (25) for stochastic processes effectively discriminates between equilibrium
and non-equilibrium systems, the interpretation in terms of effective temperature is not always able to
provide relevant indications regarding the system under investigation (see [14, 66] for details).

To understand the usefulness of fluctuation-dissipation relations in discriminating equilibrium and
non-equilibrium, it is convenient to discuss the relation between response and correlation in the case of a
Brownian particle evolving through a generalized Langevin equation for the velocity of the particle. Such
relation is found by means of the Mori-Zwanzig formalism to derive effective stochastic equations, and its
general form reads [67, 68]

v̇+

ˆ t

0
dt ′ γ (t− t ′)v(t ′) = ξ (t) t> 0 , (29)

where the memory kernel γ(t− t ′) is a delayed friction force and the correlated noise verifies

⟨ξ (t)ξ (t ′)⟩= ν (t− t ′) .

We highlight that if

γ (t) = γ0δ (t)+Θ(t)
D∑

i=1

γi e
−λi t ,

whereΘ(t) is the Heaviside step function, the equation can be regarded as a D−dimensional linear system
projected onto a one-dimensional space (an example will be discuss in 3.3.1, see equation (41)). When γ is
not a simple combination of exponential functions, equation (29) can still be interpreted as a projection of
an infinite dimensional linear system.

Independently of the physical interpretation, equation (29) can be conveniently studied in Fourier
space, i.e.

ṽ( f) =
ξ̃ ( f)

i2π f+ γ̃ ( f)
= µ̃( f) ξ̃ ( f) , (30)

having defined the complex mobility as µ̃( f) = (i2π f+ γ̃( f))−1. The relation between velocity correlation
C(t), noise correlation ν and mobility µ takes now the form

C̃ ( f) = |µ̃( f) |2ν̃ ( f) . (31)

At the same time, if we multiply equation (29) by v(0), performing an average over the noise we get [67, 68]

C̃ ( f) = 2
〈
v2
〉
|µ̃( f)|2Re{γ̃ ( f)} , (32)
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so that, by comparing equation (31) with equation (32), we obtain the relation to be satisfied by friction γ
and noise ν in an equilibrium process [2, 19, 39], namely

ν̃ ( f)

2Re(γ̃ ( f))
=
〈
v2
〉
= T , (33)

or equivalently

C (t) = C (−t) = 2Tµ(t) t⩾ 0

⟨ξ (t)ξ (t ′)⟩= ν (t− t ′) = Tγ (|t− t ′|) , (34)

where the equality
〈
v2
〉
= T follows from equipartition. Note that the first equation, which links correlation

to response, is completely analogous to equation (21) and, by simple time-differentiation, to equation (25).
The previous relation can also be inverted to obtain the so-called first- and second-kind
fluctuation–dissipation relations [19]

Re{µ̃( f)}= 1

2T

ˆ
dte−i 2π f tC (t) ,

Re{γ̃ ( f)}= 1

2T

ˆ
dte−i2π f tν (t) , (35)

where the first can be regarded as an extension of the Einstein relation between mobility and diffusion
coefficient, while the second one corresponds to a generalization of Nyquist results connecting dissipation
and noise correlation [2]. We stress that while equation (27) has been derived under general hypotheses and
holds also out of equilibrium, the relations (25) and (34) are instead only valid at equilibrium. For this
reason, violations of equation (34) have been used by Harada and Sasa to quantify the average rate of energy
dissipation in a class of Langevin equations [69, 70].

3.3. A no-go theorem for Gaussian processes
To highlight how information on all the variables which describe the system under investigation, as well as
on the response, is essential to infer the equilibrium properties of a system, we now discuss a no-go theorem
that holds for every Gaussian stochastic process. We set the discussion in the framework of time-continuous
processes, but it can be easily generalized to any kind of process with Gaussian statistics for all relevant
probabilities. First of all, the linearity of equation (11) allows us to integrate over some components to get an
integro-differential stochastic equation for the remaining components of the process (see example in 3.3.1
equation (41)), i.e.

Lx= ξ (36)

where L=
{
Lij

}
i,j=1,D

is a set of linear operators (e.g. differentiation or integration) acting on the subset of

dynamical variables and the noise ξ(t) will be in general colored with zero mean ⟨ξi(t)⟩= 0 and covariance
matrix

〈
ξi(t)ξj(t ′)

〉
= νij(t− t ′). The above formalism is a compact notation for discussing both under- and

over-damped Markov linear systems as well as their projections onto low-dimensional sub-spaces which in
general result in non-Markovian dynamics [45]: note however that equation (36) represents the most general
class of stochastic linear processes. We recall the fundamental fact that, since the statistics of processes
described by equation (36) is Gaussian (multivariate in both time and variables) only averages and
correlations are needed to fully specify the process.

The explicit stationary properties of equation (36) can be obtained in Fourier space, where the operator

L̃( f) can be easily computed, and the correlation function C̃( f) can be computed as
〈
x̃( f)x̃†( f)

〉
. In this way

response and correlations read [45]

C̃ ( f) = R̃( f) ν̃ ( f)R̃( f)† ,

R̃( f) = L̃( f)−1 (37)

where M† denotes the conjugate transpose of matrix M. From the above formula, one immediately realizes
that—apart from special cases—it is not possible to infer both the response R̃( f) and the noise correlation
ν̃( f) from the knowledge of C̃( f) only. As a consequence we have that, in the case of Gaussian noise, since the
process is completely determined by its first two moments, one cannot discriminate between the infinitely
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many models sharing the same correlation C̃( f). For instance, it is immediately evident that it is not possible
to find a unique model for the following correlation function:

C̃ ( f) = ν(
(2π f)2 +λ2

)(
(2π f)2 +µ2

) µ > λ (38)

C (t) = ν

2(µ2 −λ2)

(
e−λ|t|

λ
− e−µ|t|

µ

)
, (39)

Simple computations show that the three following processes are all compatible with C̃( f) in (39)

I


ẋ+λx= ξ

⟨ξ (t)ξ (t ′)⟩= νe−µ|t−t
′|/2µ

R(t) = Θ(t)e−λt
II


ẋ+µx= ξ

⟨ξ (t)ξ (t ′)⟩= νe−λ|t−t
′|/2λ

R(t) = Θ(t)e−µt

III


ẍ+(λ+µ) ẋ+(λµ)x= ξ
⟨ξ (t)ξ (t ′)⟩= νδ (t− t ′)
R(t) = Θ(t)

(
e−λt − e−µt

)
/(µ−λ) .

Note that any two-dimensional matrix with trace equal to λ+µ and determinant equal to λµ could be
considered a drift compatible with the correlation function above by providing a suitable covariance for the
noise. This would not be an issue if all compatible models had the same nature (i.e. if they were all
equilibrium/non-equilibrium processes), but unfortunately this is not the case: by time-differentiating C(t)

dC (t)
dt

=− ν

2(λ+µ)

(
e−λt − e−µt

µ−λ

)
, t⩾ 0

we can note that only the stochastic process III satisfies the fluctuation-dissipation relation equation (22),
once the temperature T is fixed in such a way to satisfy the usual relation between friction and noise variance
2T(λ+µ) = ν.

3.3.1. An example: the Brownian gyrator
In the following we discuss in some details a system described by equation (11) focusing on the situation
where just one variable is experimentally accessible. It is natural to wonder whether such information is
sufficient to decide about the equilibrium/non-equilibrium nature of the underlying model. As shown in the
following this is impossible. Here we consider the case of the so-called Brownian gyrator [51, 71–73],
consisting of the two-dimensional linear system{

ẋ+ ax= by+
√
2Txξx

ẏ+ dy= cx+
√

2Tyξy
. (40)

Explicit computation shows that, whenever Onsager reciprocal relations are not satisfied, i.e.

CAT −AC=∆∝ bTy − cTx ̸= 0 ,

the system experiences a systematic torque: defining θ = arctan(y/x), a rotational current

jθ =
〈
θ̇
〉
≃ ⟨ẋy− ẏx⟩/

〈
x2 + y2

〉
∝∆

arises and the entropy production rate is proportional to the square of this current, Σ∝ j2θ. The ‘effective’
dynamics of the accessible variable x is non-Markovian ẋ+ ax− bc

´ t
−∞ e−d(t−t

′)x(t ′) = η (t)

⟨η (t)η (t ′)⟩= 2
(
Txδ (t− t ′)+Tye

−d(t−t ′)/d
) (41)

and its correlation function Cx(t) = ⟨x(0)x(t)⟩ in Fourier space reads

C̃x ( f) =
c0 + c1 (2π f)

2(
D− (2π f)2

)2
+ T 2 (2π f)2

where


T = a+ d= λ+ +λ−
D = ad− bc= λ+λ−
c0 ∝ Txd2 +Tyb2

c1 ∝ Tx

∆∝ bTy − cTx

.
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Thus, once we choose Cx(t) and∆, we have only five equations to determine the parameters: two for the
trace T and the determinantD of the drift matrix, two for the coefficients c0 and c1 of the correlation
function, and one for the expression of∆. Therefore, being the problem underdetermined, it seems possible
to build models with different entropy production values while, since Cx(t) = Cx(−t) for any 1-D Gaussian
process, the time-series of x will appear always invariant under time-reversal. Actually, by solving the system
of equations above with the conditions Tx > 0 and Ty > 0, we can prove that the system is surely
out-of-equilibrium if the ratio c0/c1 falls outside of a certain interval (λ−,λ+) determined by the eigenvalues
of the matrix A. Nevertheless, this result is based on the crucial assumption that both variables of the system
are even under time reversal. In fact, if one of the two variables changes sign under time reversal (in this case
∆∝ abTy + cdTx [45]), the non-equilibrium condition related to the ratio c0/c1 becomes exactly the
opposite. This then means that, if we have no information about some variables of the system or how these
change under time reversal, we have no hope of deducing the equilibrium properties of a system and it is
necessary to acquire more information, for example with perturbation-response experiments with which we
are typically able to separate the contributions of the drift from that of the noise and infer the equilibrium
properties of the system by looking at the violation of a generalized fluctuation theorem.

However, the above consideration does not exclude the possibility to obtain some guesses by running
experiments where the measure of response is meant in a broader and more general way. In some cases, it is
also possible to measure the entropy production rate of a system performing experiments under slightly
different conditions. As an explicit example, we consider again the case of the Brownian Gyrator
equation (40) and we assume to be able to manipulate the temperature Tx of one thermal bath. In this case,

useful information are obtained by comparing the xx correlation function at temperatures T(1)
x to T(2)

x

(C(1)
x (t) and C(2)

x (t) respectively). Indeed, from the correlation functions we can fit the relaxation times 1/λ

and 1/µ and the four coefficients c(1,2)λ,µ which are functions of the system parameters a,b, c,d,T(1,2)
x and Ty,

i.e.

{
C(1,2)
x (t) = c(1,2)λ e−λt + c(1,2)µ e−µt

r(1,2) = λµ
(
λc(1,2)µ +µc(1,2)λ

) →



T(1,2)
x = λc(1,2)λ +µc(1,2)µ

d=

√(
r(2) − r(1)

)
/
(
T(2)
x −T(1)

x

)
b2Ty = r(1,2) −T(1,2)

x d2

a+ d= λ+µ
bc= (λ+µ− d)d−λµ

.

Although we cannot uniquely determine the model, we get a peculiar combination of parameters that
enables us to compute the exact value for Σ in both cases:

Σ(1,2) =

(
cT(1,2)

x − bTy

)2

2(a+ d)T(1,2)
x Ty

=

(
(bc)T(1,2)

x − b2Ty

)2

2(a+ d)T(1,2)
x

(
b2Ty

)
Figure 3 shows an application of the formula above on model (40) simulated for two different

values of Tx.

3.4. Non-equilibrium induced by Poisson noise
Although the use of Gaussian noise has rather obvious motivations, in some contexts, e.g. in small systems,
this assumption appears inadequate, and other kinds of noise must be considered. We now examine another
wide class of stochastic process with independent and stationary increments, which naturally arises in certain
physics experiments: the compound Poisson process [75–77]. This type of noise, common in granular
systems [15, 78–81], has been considered to model active forces [82–84], neural systems [85] and anomalous
diffusion [86]. In this dynamics jumps of random amplitude occur at random times, distributed according to
a Poissonian statistics. We are interested in understanding how the equilibrium/non-equilibrium nature of
the system changes, with respect to models characterized by Wiener noise only, when this additional noise is
taken into account. Consider for instance the following linear equation

{
ẋ+Ax= ξ (t)+ ζ (t)
ζ (t) =

∑
ku

(k)δ (t− tk)


ξ ∼ GD (ξ)

u(k) ∼ P
(
u(k)

)
tk − tk−1 ∼Qλ (tk − tk−1) = λe−λ(tk−tk−1)

(42)

where y∼ P(y)means that P(y) is the probability density function (PDF) of the stochastic process y, and
ξ(t) is the usual Wiener process with

〈
ξi(t)ξj(t ′)

〉
= Dijδ(t− t ′). The amplitude of the jumps u=

{
u(k)

}
k
are

i.i.d. drawn from a generic distributionP(u) with covariance matrix
〈
u(k)i u(k

′)
j

〉
= Γijδkk′ , while the intervals
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Figure 3. Histogram of entropy production rate estimated with our approach from 40 independent realizations of process
equation (40) simulated at two different system parameters. The distributions of the outcomes are correctly centered around the
theoretical values (dots line) both for equilibrium and out-of-equilibrium systems [74]. The parameters used for numerical

simulations are a= 8
3
, b= c=−d=− 2

3
, Ty =

1
2
and T

(1)
x = 1

5
(orange) or T

(2)
x = 1

2
(blue). Adapted from [74]. © The

Author(s). Published by IOP Publishing Ltd CC BY 4.0.

Figure 4. Examples of direct (left) and time-reversed (right) trajectories for processes driven by a Gaussian and Poisson noise, the
amplitude of the jumps are sampled from Gaussian distribution with covariance matrix Γ. We keep the variance of the total noise
ν ′ = ν+λΓ constant and we vary the fraction of Poissonian noise of the process. It is evident that, as the Poissonian
contribution increases, the time-reversed trajectory becomes more and more incompatible with the direct one, i.e. it is difficult to
find any piece of the latter in the former.

∆t= tk − tk−1 between two consecutive jumps are i.i.d. and extracted from an exponential distribution
λe−λ∆t. It is easy to understand that a system driven only by ζ(t) cannot be at equilibrium. Consider the
time interval between two jumps: in the direct path, the system relaxes toward its mean value, while in the
time-reversal one, the system moves away from its stationary state. The impossibility of observing the reverse
paths is quite obvious and it is well illustrated in figure 4 showing direct (left) and inverse (right) trajectories
of a one-dimensional Ornstein-Uhlenbeck process driven by Gaussian or Poissonian noise.

More formally, one can prove that such processes lack detailed balance. Indeed, this property must be
satisfied separately by the jump process and by the continuous part. Regarding the discontinuous part, it
takes the form

π (x)P (y− x) = π (y)P (x− y) . (43)

Thus, assuming a symmetric distribution of jump amplitudes P(u) = P(−u) and a generic spatially
non-uniform stationary measure (π(x) ̸= π(y) for x ̸= y), the detailed balance condition cannot be satisfied.
Interestingly, despite its non-equilibrium nature, the relationship between correlation C(t) and responses
R(t) has the same structure of a Gaussian process (i.e. C(t) =R(t)C= e−tAC) but with different noise
matrix D ′ = D+λΓ = CAT +AC. This implies that the usual equilibrium relations valid for Gaussian
systems (Onsager AC= CAT and generalized fluctuation-dissipation relations Ċ(t) =−R(t)D ′) are not
sufficient anymore to conclude that the system is in equilibrium. The above results are just a consequence of
the linear structure of the system and the absence of moments of degree higher than the second in the

15

https://creativecommons.org/licenses/by/4.0/


New J. Phys. 27 (2025) 041201 D Lucente et al

Figure 5. Degree of irreversibilityΦ(t) for Gaussian (black) and Poissonian (red) process for a two-dimensional linear process.
Using the same nomenclature of (40) for elements of the drift matrix A, the parameters used for numerical simulations are

a= 122.9, b= 1, c= 0, d= 26.1. Regarding the noise, in the Poissonian case we consider λ= 1261, Γ =

(
2.002225 0

0 0

)
and

D=

(
0 0
0 1647

)
while in the Gaussian regime D=

(
2524.8 0

0 1647

)
. Note that parameters are chosen to make the

two-point correlation function C(t) identical for both noises and their values have been obtained by fitting a real experimental
signal of a granular system (see [15] for further details). Adapted (figure) with permission from [15], Copyright (2023) by the
American Physical Society.

expressions of C(t) andR(t). When instead we take into consideration quantities that depend on such higher
moments, we can better appreciate the differences with respect to a purely Gaussian process. For instance, the
entropy production rate Σ, as proven in the appendix of [74], reads

Σ= Tr
[
(∆+λΓ)D−1A

]
∆= CAT −AC . (44)

The expression is formally analogous to equation (16), but it should be noted that only the Gaussian
‘temperatures’, described by the matrix D, enter the expression of Σ, while the Poisson noise contributes
through the stationary covariance λΓ , see [74]. This observation clarifies why such processes are often called
‘athermal’[78, 80, 81, 87]. A direct inspection shows that Σ> 0 and the minimum is attained for AC= CAT,
i.e. in correspondence of ‘classical’ equilibrium∆= 0 as defined by Onsager [74]. Finally, since the system is
not Gaussian, its non-equilibrium nature can be inferred from higher-order correlation functions even from
a single time-series. As mentioned in section 2.2, Pomeau suggests to compare

〈
x(0)x3(t)

〉
and

〈
x3(0)x(t)

〉
[16]: this choice allows us to estimate the degree of irreversibility of a process. For instance, figure 5 shows
the differences between Gaussian and Poissonian noise for the quantity

Φ(t) =
〈
x(0)x3 (t)− x(0)3 x(t)

〉
/
〈
x4
〉

in the case of a two-dimensional linear process.

4. Estimates of entropy production

4.1. Scale-dependent entropy productionΣ(ϵ,∆t)
Measuring entropy production represents a formidable challenge, both because it requires knowledge of all
the variables of the system and because of the considerable amount of data to obtain reliable estimations.
Here we discuss the role played by resolution, i.e. the relevance of time sampling and coarse graining,
introducing the concepts of scale-dependent entropy production Σ(ϵ,∆t) (in analogy with the
ϵ-entropy [88–90] used in dynamical system). In a nuthshell, the idea is:

1. Introduce a partition
{
B(ϵ)
i

}
1⩽i⩽K

of size ϵ of the phase space.

2. Define an empirical Markov chain

πi = 1B(ϵ)
i

(x(t))

πiPij = 1B(ϵ)
j

(x(t+∆t)) · 1
B(ϵ)
i

(x(t))
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where we have dropped from πi and Pij the ϵ and∆t dependence and 1A(x) is the characteristic function
of set A. i.e.

1A (x) =

{
1 if x ∈ A

0 otherwise

and f(x) is the time average of f (x), i.e

f(x) =
1

n

n∑
k=1

f(x(tk))

where tk = t0 + k∆t and n≫ 1.
3. Add a regularization for the missing reverse transitions. For example, if we have Pij > 0 but Pji = 0, we

introduce an offset parameter δ, we impose Pji = δ < 1/tmax or Pji = δPij (δ≪ 1) and we rescale
appropriately the empirical frequencies in order to have a well normalized probability (i.e.

∑
jPij = 1). In

this way we avoid the divergence arising from logPji10.
4. Compute the entropy production rate of such Markov chain as

Σ(ϵ,∆t) =
1

∆t

∑
ij

πiPij log

(
Pij
Pji

)
.

5. Take the limit ϵ→ 0 and∆t→ 0 of Σ(ϵ,∆t).

In the limit of infinite data and for ϵ→ 0 and∆t→ 0 one has Σ(ϵ,∆t)→ Σ [74]. However, we stress that
Σ(ϵ,∆t) in general is just a proxy, neither a lower nor an upper bound for the entropy production rate Σ.
The reason is that the coarse-grained process is not Markovian, while the scale-dependent entropy
estimation relies on a Markovian approximation and therefore can exceed the entropy production of the
microscopic system [50]. Let us highlight the relevance of scale resolution for the behavior of Σ(ϵ,∆t)
through an example. Consider the one-dimensional system

ẋ=−∇xV(x)+ f + ξ (t)+ ζ (t) , (45)

V(x) =
LV0

2π

(
1− cos

2π x

L

)
. (46)

which describes a particle moving on a tilted periodic potential subject to Gaussian (
〈
ξ2
〉
= 2T) and Poisson

(
〈
ζ2
〉
= 2λΓ) noises. Such a system is widely employed as a minimal model for transport phenomena [84,

87, 91–95], and several properties have been established. The pulling force f induces a stationary current js
(even in the Gaussian case) and Σ is positive. In Gaussian systems, the relation between entropy production
rate and current is [10, 11, 96]

Σ∝ j2s
T
, (47)

while for the system driven by Poisson noise it takes the form

Σ=
js
T
f +∆Σp (48)

where

∆Σp =
λV0L

2πT

〈
cos

2π x

L

〉(
1− e−2(πΓ/L)2

)
(49)

and ⟨·⟩ is the average over the stationary measure (see [74] for the derivation). In order to understand the
effect of scale-resolution on the entropy production measurements, it is important to identify the
characteristic scales of the system. The deterministic part of the dynamics has two relevant time-scales: the
relaxation time τ r inside each well and the average exit time τ e. The other characteristic times come from

10 One can always evaluate a posteriori the goodness of regularization by observing how the results depend on the offset δ. Typically,
if the sample is large enough and the fraction of unobserved reverse transitions is small, the results depend very little on the type of
regularization and do not undergo significant variations even if the offset decreases by a couple of orders of magnitude and this happens
in the cases we show.
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Figure 6. Empirical entropy production rateΣ(ϵ,∆t) as a function of∆t for a particle in a symmetric periodic potential V(X)
and pulled by a constant force f, ϵ≃ 4 · 10−3. Left panel showΣ(ϵ,∆t) for two different Poisson jump rates τ p (τp = 0.05 red,
τp = 0.005 blue). Right panel shows the convergence ofΣ(ϵ,∆t) towards the theoretical values (horizontal lines) for different
levels of Poisson noise (75% ,95%) for τp = 0.005 (left).

Poisson noise, which has an intrinsic temporal scale τp = 1/λ (the average inter-events time) while the

average amplitude size σp ∼
√
u2 fixes the characteristic length scale. For coarse-graining resolutions ϵ

greater than σp, the scale-dependent entropy production misses the contribution of Poisson noise since
transitions to different cells due to jumps are unlikely. Therefore, if the temporal resolution∆t is much
bigger than τ p the contribution of Poisson noise to the scale-dependent entropy production Σ(ϵ,∆t) cannot
be appreciated. However, regarding the temporal behavior of Σ(ϵ,∆t) one should discuss separately the two
cases τr < τp and τr > τp. In the former, the noisy part of the dynamics is dominated by Poisson noise and
hence the dynamics never resembles its Gaussian counterparts. In the latter, instead, since in a time-interval
of order τ r a large number of jumps occur, central limit theorem applies and the statistic of ζ on this
time-scale is well described by a Gaussian process. Thus, for τr ≫∆t≫ τp the scale-dependent entropy
production Σ(ϵ,∆t) takes values close to the ones computed for Gaussian system, i.e. Σ(ϵ,∆t)∼ j2s /Teff with
Teff = T+λΓ, while for∆t≪ τp the contribution of Poisson noise is correctly taken into account.

The above considerations are supported by numerical simulations, as shown in figure 6. The left panel
shows that the Gaussian plateau arises only for intermediate temporal resolution (τr ≫∆t≫ τp). From a
close inspection of the right panel, it becomes evident that differences between Gaussian and non-Gaussian
cases (as well as differences between different Poisson noises) only arise for∆t< τp.

4.2. TURs
We have already seen that entropy productionΣ in its most general definition is a powerful concept but it has
several disadvantages, particularly when Σ has to be estimated from experimental/numerical data. In the
cases where the full dynamical equations are known, Σ can take the form of a time-integrated functional of
some complicated function of—in principle—all the degrees of freedom involved in such a dynamics.
Therefore, a partial empirical observation cannot faithfully estimate the entropy production: in fact, not even
its average rate. The estimation of Σ is even more challenging for those physical systems that do not benefit
from an accurate theoretical modeling: as we have already seen in section 4.1, general recipes starting from
experimental data of a few observables—possibly at a coarse resolution in time and space—are hardly useful
for approximating the entropy production rate.

In recent years, several works have been devoted to understanding the relation between the average
entropy production rate (or other quantities related to it) and the currents crossing non-equilibrium
systems, especially in its steady state [97]. It is clear that one cannot hope to get—in general—information
about the total entropy production rate starting from any average current. Indeed complex systems, typically
involving many time-scales and several relevant variables, can be traversed by many physical currents and the
total entropy production rate is somehow the result of the combination of all of them [98]. The clearest
example of such a principle is found in irreversible thermodynamics [1], where

Σ=
n∑

α=1

AαJα (50)

where Aα is the α-th affinity or thermodynamic force, while Jα is the associated average current. A detailed
treatment of this decomposition principle can be found in the Schnakenberg network theory [99], that
decomposes a non-equilibrium Markov process (living in a discrete space of states) into fundamental cycles
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(such as those in an electric circuit) each crossed by its own current:

Σ=
n∑

α=1

A
(→
Cα

)
J
(→
Cα

)
(51)

where
→
Cα are the n fundamental cycles of the graph associated to the process, A(

→
Cα) is the affinity or

thermodynamic force that acts directly in cycle α (a kind of total asymmetry in the transition rates of the

edges of that cycle), while J(
→
Cα) is the average net current in that cycle. Close to equilibrium the currents are

linear combinations of the affinities with coefficients that compose the symmetric Onsager matrix. We do
not intend to delve into the details of such a theory, but it is clear that equations (50) and (51) require lot of
information to retrieve a valid estimate of Σ. An interesting alternative to this direct measurement is
represented by the so-called TURs [100], which establish a link between the entropy production and the first
two cumulants of the fluctuations of any kind of current measured in the system (instead of knowing the
average of all of them and also the corresponding affinities).

The most common TUR discussed in the recent literature provides a lower bound for the integrated (in a
time t) entropy production Σt in the form of a ‘precision rate’ for the fluctuations of any non-equilibrium
current integrated for the same time t, Jt, in the system (in the following we take kB = 1 for the Boltzmann
constant):

Σt ⩾ 2
⟨Jt⟩2

Var(Jt)
. (52)

The relation (52) was first derived for all continuous-time Markov process with a discrete number of states in
[21] and then generalized to Markov processes in steady states in [101]. We note that in a steady state for
large t, one has Σt = tΣ, ⟨Jt⟩= tJ and Var(Jt)∼ 2DJt, where DJ is the diffusivity associated to the current rate
whose average we denote by J, leading to a rate version of equation (52):

Σ⩾ J2

DJ
. (53)

The power of this relation comes from its generality: it stands true for a very wide set of situations and
physical systems, and it involves any observable current. Its downside, obviously, is in the fact that it only
provides us with an inequality which cannot, in general, be proved to be tight.

In the few years after the TUR was first proved, several follow-up results have better enlightened the
origins of the inequality and its applicability to non-equilibrium thermodynamics, see [100] for a first review
with perspectives. To better understand the meaning of equation (52), it is interesting to discuss what
happens in the close-to-equilibrium limit: in that case, as mentioned above, the linearity between currents
and affinities makes the entropy production rate take a bilinear form Σ=

∑
β,γ LβγAγAβ .11 The Einstein

relation implies that the diffusion coefficient for the fluctuations of the time-integral of the current Jα is
Dα = Lαα, therefore the TUR relation for the α current reads [21]

Σ

J2α/Dα
=

Lαα
∑

β,γ LβγAβAγ∑
β,γ LαβLαγAβAγ

⩾
(
1+

∑
β,γ ̸=αGβγAβAγ

J2α

)
⩾ 1, (54)

where in the last passage we have used the fact that Gβγ = (LααLβγ − LαβLαγ) can be proven to be a positive
semi-definite matrix (this is a consequence of the fact that the Onsager matrix L is also positive
semi-definite). From these few lines of calculations, one learns that, in the equilibrium limit, the equality is
obtained if Aβ = 0 for each β ̸= α.

Generalizations of the TUR and its applications to various inference problems, particularly for the
maximum efficiency of molecular motors and for the minimal number of intermediate states in enzymatic
networks, are discussed in [97]. Several techniques have been employed to derive TURs, including large
deviation theory [101, 102], bounds to the scaled cumulant generating function (see for instance [103, 104]
and [104, 105]), and other approaches. An interesting way to derive it, is the application of the generalized
Cramér–Rao inequality [106], which includes quantifying the Fisher information of the Onsager–Machlup
measure of the path and a virtual ‘tilt’ of the original dynamics. However, such a strategy cannot be directly
applied to a system with underdamped dynamics, for which can be shown through explicit example that

11 This form is much more general than the case discussed above of Markov processes on a network, it encompasses all cases where a
discrete set of currents can be identified in a system close to equilibrium.
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equation (52) does not hold [107]. Notwithstanding, generalization of such inequality can be derived
pursuing alternative approaches (see [108, 109]). The Cramér–Rao approach has been used to derive
generalized TURs that are optimized to give a lower bound for diffusivity of a tracer particle under the action
of non-linear friction and non-equilibrium baths with multiple time-scales and multiple temperatures [110,
111]. A recent more direct derivation of TUR, with a discussion about how it can be saturated, has been
proposed in [112].

As discussed in [102], the TUR bound is most useful if it is tight, but there are two main reasons why it
might be loose: (1) the distribution of the current fluctuations is non-Gaussian and (2) the choice of the
current can be sub-optimal, i.e. it does not contain enough information about the total entropy production.
First applications to the problem of inferring Σ from the study of currents fluctuations were obtained in
works [102, 113].

In order to give an idea of the limits of the TUR strategy in the entropy production inference, in the
following we discuss some interesting attempts to evaluate it. In [102], a diffusion process in two dimensions
is studied, with an external field driving the system across the four wells of a landscape. The transitions
among the four quadrants, each containing one of the wells, are measured to play the role of J as mentioned
earlier. This task requires measuring all the degrees of freedom, i.e. the process in its full dimensionality. The
authors concluded that the TUR can underestimate the entropy production by a factor which is between 0.2
and 0.8 and, interestingly, the error on the estimate is not seriously affected by the strength of the external
driving, but rather, it is affected by the depth of the wells. The estimated power of the TUR increases when
the wells are deeper, likely because the coarse-graining into four quadrants is closer to the physics of the
process. In [113], a two-dimensional ‘bead-spring’ model, in practice a Brownian Gyrator with conservative
coupling and different temperatures, was studied and the authors compared two approaches to estimate Σ:
(1) an empirical direct measurement of the entropy production from a vectorial time-series of the numerical
solution of the model (an approach that not only requires knowledge of all relevant degrees of freedom, but
even when all d.o.f. can be measured it is doomed to fail as the dimensionality of the problem increases); (2)
a measure of the average and variance of a scalar current obtained from some projection of all the d.o.f.: these
two cumulants are easy to obtain with a small amount of data and can be plugged into equation (53) in order
to get an estimate of Σ; the authors first proved that an optimal choice (leading to estimates close to the real
value of Σ in the same order of magnitude) of the measured current is jF =

´
dxF(x) · j(x) where F(x) is the

thermodynamic force acting on the system at point x and j(x) is the local current, where both quantities are
empirically determined (by averaging over a long trajectory) but, again, they require the knowledge of all the
degrees of freedom of the system. Further investigation about the power of inference of the TUR was
conducted in [114], where a deterministic method to estimate entropy production based on the TUR for
classical Markovian dynamics was suggested, by computing an ‘optimal’ current that maximizes the lower
bound. In this context, it was shown that the optimal current saturates the TUR for overdamped Langevin
dynamics driven by Gaussian white noise, but, as it will become clear in the following, for general Markovian
processes this is not always granted. Inference, however, relies on a wise choice of a basis for currents (in
principle any functional basis) and again the measurement of all the relevant degrees of freedom. Thus, real
applications in [114] are limited to simple systems such as a four states Markov jump process, a driven
Brownian particle that circulates on a ring with a periodic potential, finally a multidimensional bead spring
model (a Gaussian continuous process), where the knowledge of all the variables is needed. Notably, other
strategies relying upon the measurement of an optimal current have been proposed [115, 116]. In [115], the
authors build a large set of currents as random linear combinations of empirical microscopic currents and
define the optimal choice as the one that maximizes the bound in the limit of infinitely short trajectories. It is
shown that such a procedure provides estimates of the average entropy production rate arbitrarily close to
the real value and, moreover, can also be used to obtain its probability distribution. In [116] instead, the
authors consider the possibility of finding the best estimate (largest bound) by using machine learning
procedures. All the methods discussed so far improve the bound through an optimization scheme for the
observable to be measured. In [117], the authors adopt a completely different point of view. Introducing a
continuous family of stochastic dynamics the authors derive a tighter version of the TUR connecting entropy
production rate and currents between different members of the family. In addition, it is shown that this
bound is saturated by an appropriate choice of the observable. A more practical approach consists in
improving TURs by considering more information besides the fluctuations of a current: this obvious concept
has been put in an interesting form in [118], where it has been shown that

ηJ +χ2
Jt,Z ⩽ 1 (55)

ηJ =
2⟨Jt⟩2

Var(Jt)Σt
(56)
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χJt,Z = Cov(Jt,Z)/
√

Var(Jt)Var(Z) (57)

where χJt,Z is the Pearson correlation coefficient between Jt and any variable Z, while Cov(a,b) is the
covariance between variables a and b. Note that the usual TUR states that ηJ ⩽ 1 while the term χJt,Z is
bounded (−1⩽ χJt,Z ⩽ 1) and actually improves the estimate. It is also important to mention that, recently,
another relation, named Variance Sum Rule, connecting the entropy production to force fluctuations has
been derived [119]. The power of this relation is that it is an equality, rather than an inequality and it has
been successfully applied to determine the entropy production in experiments with an optically trapped
colloid and with in-vivo red blood cells. At first glance, the approach requires the explicit knowledge of the
process in its full dimensionality and the forces acting on the system; however the novelty of this recipe
makes it difficult to estimate its future applications.

Although in specific cases TURs have been proven to survive in the thermodynamic limits [120], from
the previous discussion we understand that for systems with many degrees of freedom and several currents in
general lead to loose bounds. There is an interesting case, however, where the TUR could be useful in a
‘re-normalised’ form also in the case of several degrees of freedom. That is the case where a single
macroscopic current is measured, of the form

Jmacro
t =

1

n

n∑
α=1

Jαt , (58)

and the Jα are all related to equivalent degrees of freedom. A typical example of this condition is the case of
flagella in microscopic living systems, for instance the tail of a sperm cell or the two flagella making a C.
reinhardti algae swim (both examples belong to the same category of flagella that are constituted by a
so-called ‘axoneme’ with a very conserved structure, occurring also in other cells or living beings) [121]. In
these flagella, a travelling wave produces the noisy periodic beating—which is responsible for swimming
under viscous conditions. The accumulation of periods (phase) of the travelling wave represents an
integrated current Jmacro whose fluctuations could be used in the TUR to estimate the entropy production of
the flagellum. However such a wave is produced by the concurrence of nmolecular motors (‘dyneins’)
innervating the axoneme, with n∼ 103–105 (depending on the length of the flagellum, which on its turn
depends upon the organism and/or its age) [122]. Each molecular motor performs its own periodic motion
whose accumulated phase represents a microscopic current Jα: the dynein is known to be close to optimal in
the TUR sense, as the bound is smaller than the real dissipation rate by a factor η≈ 0.2–0.5 (see [123]). If the
organism dissipates energy almost only in the ATP consumption for feeding the molecular motors, as it
happens for a sperm cell, then the total dissipation rate of the structure is of order n times the dissipation rate
of a single molecular motor. While the average of Jmacro

t is the same as the average of the molecular motor
currents, i.e. ⟨Jmacro

t ⟩= tJmacro = tJα for any α (all motors are equivalent), its diffusivity Dmacro can take
values between a minimum Dα/n in the case of totally asynchronous motors, and a maximum Dα in the
extreme case of totally synchronized motors. Then, in the case of totally asynchronous motors, the TUR is
close to be saturated (with similar efficiency η) because J2macro/Dmacro = nJ2α/Dα and the macroscopic
dissipation rate is n times larger than the motor one. On the contrary, in the extreme case of totally
synchronized motors, the real total entropy production rate is n times larger than the TUR bound which take
a similar value to the bound for the single molecular motor J2macro/Dmacro = J2α/Dα. Recent experiments with
sperms flagella and a study of synchronization models with different kinds of noise suggest that the second
situation is more likely to happen in real axonemes, corroborating a conjecture of strong coupling between
adjacent molecular motors, see [124, 125].

As discussed before, when the statistics of the process under investigation is Gaussian and a limited set of
variables can be measured (smaller than the complete set of relevant degrees of freedom) the discrimination
of equilibrium from non-equilibrium is basically impossible on a general ground, since the same empirical
time series is compatible with both equilibrium and non-equilibrium models. However, in particular cases,
one may invoke additional hypothesis and assumptions that restrict the field of compatible models, making
the discrimination possible. For instance in [110] it is seen that a TUR can be proven for the diffusion of the
position θ(t) of a tracer particle under the influence of multiple baths, taking the form:

⟨∆θ (t)2⟩⩾ 2⟨∆θ (t)⟩2

Σext
t + I

(59)

where Σext
t is the part of the entropy production (integrated along the time t), which only originates from the

presence of an external driving force (i.e. excluding the entropy produced because of heat flowing between
different thermal baths), while I is related to the Fisher information for a linear perturbation of the
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Figure 7.MSD of a large intruder immersed in a vibrated granular fluid at high density, see [110]. The equilibrium guess is
constructed by connecting the two slopes of the ballistic and the diffusive regime following what we would expect at equilibrium
from equation (60). The experimental data are below the equilibrium guess and therefore equation (60) is violated, i.e. the data
are not compatible with equilibrium. The inset shows an MSD (in the dilute regime) whose form is compatible with
thermodynamic equilibrium. Adapted (figure) with permission from [110], Copyright (2023) by the American Physical Society.

dynamics [43]. When the multiple baths are at thermal equilibrium, it appears that equation (59) reduces to
a simpler expression

⟨∆θ (t)2⟩⩾ t2

at+ b
(60)

where a= 1/(2D) being D the diffusivity of the tracer particle, while b=m/T beingm and T the mass and
temperature of the tracer particle: in this way the full bound can be deduced by observing the mean squared
displacement in the long time limit (∼Dt with D the diffusivity) and in the short one (∼T/mt2) and
therefore an immediate evaluation of the validity or violation of inequality (60) can be done, see an example
with experimental data in figure 7. If the inequality is violated, then the equilibrium hypothesis can be
immediately ruled out. If the inequality is not violated, however, nothing can be said about the equilibrium
or non-equilibrium character of the system. A similar situation has been discussed in the recent [126], where
constraints on the power spectrum of a continuous stochastic process can be used in the same way: it can
exclude equilibrium in specific situations.

4.3. An application for TUR andΣ(ϵ,∆t): the Poissonian–Brownian gyrator
Let us now illustrate with a practical example some critical issues related to the techniques described above.
Consider the case of Brownian gyrators defined in section 3.3.1 by equation (40) when the drift is isotropic
(d= a and c= b) and add a Poissonian jump process with rate λ just along the x component, i.e.


ẋ+ ax= by+ ξ +

∑
k ukδ (t− tk)

〈
ξ2
〉
= 2Tr(1− p)

ẏ+ ay= bx+ ξ ′
〈
ξ ′2

〉
= 2T(1− r)

λσ2 = 2Trp
〈
u2k
〉
= σ2 ∀k

(61)

We have seen that, for a purely Gaussian process, when the quantity∆= b(Ty −Tx) is different from zero (in
our model when p= 0 and r ̸= 1/2), such system exhibits a non-zero probability current that makes it rotate
around the origin. We can better appreciate this by noting that the average of the angular momentum
⟨l(t)⟩= ⟨x(t)ẏ(t)− yẋ(t)⟩ ∝∆ is different from zero. Therefore, it seems natural to consider the integral of
the angular momentum A(t) =

´ t
0 dt
′l(t ′) to estimate the entropy production through the TUR shown in
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Figure 8. Currents in Brownian Gyrator. Left: the average rotation angle traveled by the system as a function of time, different plots
represent different values of r. The angular velocity of the system can be obtained by looking at the slope of the lines. Right: lower
bounds obtained by looking at the TUR computed with the ‘integrate currents’ A(t) (green) and θ(t)(blue) compared to the true
value of entropy production (red). See footnote for details of the numerical simulations that produced the figures of this section.

Figure 9. Currents in Poissonian Gyrator when Onsager equilibrium condition holds (r= 0.5). Left: average rotation angle for
increasing Poisson noise contribution p ∈ [0.1,0.9]. We can note that, although the average of angular momentum ⟨l(t)⟩ vanish,
the system is clearly rotating around the origin faster and faster as p increases. Right: comparison between the TURs and the true
value of entropy production. The TUR computed with A(t) it is not significant, the one computed with θ(t) is better but,
however, two orders of magnitude smaller than the true value.

section 4.2 equation (52). As figure 8 shows12, this estimate (green line) is quite good. For comparison we
show the TUR estimate obtained using a different current, i.e. the rotation angle θ(t) =

´ t
0 dt
′ω(t ′) where

ω(t ′) = d
dt ′ arctan [y(t

′)/x(t ′)] (blue line), which appears considerably worse. Note that, at equilibrium for
r= 0.5, rotation is absent and Σ= 0. But, what does it happen when we add jumps to the equation? Once r
and λ are fixed, we can study the contribution of Poissonian noise by varying parameter p in the interval
[0,1]. In this way the two-time correlations do not change as p varies and this means that, for example, the
average of the angular momentum ⟨l(t)⟩ will not depend on the fraction p of Poissonian noise present in the
system. We know from the previous section that the addition of a Poissonian noise, even in the case of
Onsager equilibrium (for which r= 0.5 corresponds to AC−CAT =∆= 0), brings the system out of
equilibrium and with an entropy production rate which is strictly positive Σ∝ p/(1− p). Because of the lack
of sensitivity of A(t) to the Poissonian noise, the TUR computed with the integrated angular momentum
A(t) will not be significant, although a rotation of the system is observed and increases as the Poissonian
noise increases (figure 9). This is because the statistic of the rotation θ depends on all the moments of the
path distribution, not only on the second one, making it well affected by the amount of Poissonian noise. As
clear from figure 9, the estimate obtained with the TUR is now better if θ(t) is used instead of A(t), however
in both cases it is not particularly good. The worst results with TURs in the case of Poissonian noise is
coherent with what discussed above, i.e. that optimal estimates can be reached only in the case of Gaussian
fluctuations, provided that proper currents are measured.

One can also verify the possibility of stall points: with the addition of Poissonian noise, just as the system
rotates even when∆= 0, in the same way the system may stop rotating even when∆> 0. As we show in the
left panel of figure 10, although we weakly break the Onsager condition (r= 0.6), we can find a value of p (in
our case p= 0.5) for which there is no rotation at all. The rotation current changes sign when going through

12 All numerical simulations are based on the exact algorithm described in the appendix A.3 and themain parameters are a= 6.25 · 10−2,
b= 2.18 · 10−2, T= 10−2 and λ= 1/960. In this way the correlations are O(1) and the two typical time scales due to the drift are
approximately τ< = 120 and τ> = 240 steps (our time step is fixed to 1), well below the average time between two jump 1/λ= 960.
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Figure 10. Currents in Poissonian Gyrator when Onsager equilibrium condition is broken (r= 0.6). Left: as the Poissonian
contribution increases the angular current changes sign. Right: TUR estimates are quite bad for both A(t) and θ(t). Note that, for
each value of p, the one obtained with A(t) is more or less the value that the entropy production rate would have in the case of
pure Gaussian noise (p= 0).

Figure 11. Σ(ϵ,∆t) for the Poissonian Gyrator (61). Left: we fix∆t= 1 and we look at the trends with ϵ→ 0. Right: we fix
ϵ= 4.5 · 10−2 and we look at the trends with∆t→ 0. The simulations have r= 0.5 and p= 0.9. The typical displacement for
∆t= 1 is order

√
⟨dx2 + dy2⟩ ≃ 0.1.

this stall point. Obviously, as we show in the right panel of figure 10, these points have destructive
consequences on the TUR estimates.

We conclude this section with a comparison of TUR-estimates with the numerical algorithm described in
the section 4.1. Compared to the examples of figure 6, for which we had to partition a simple
one-dimensional ring, in the case of gyrator we have to deal with an unbounded two dimensional phase
space. This requires additional approximations (e.g. to partition the system only up to a certain distance
from the origin and neglect the dynamics that occur outside) that could spoil the effectiveness of our method
which, when informed with a finite statistics, tends to be too sensitive to several details, e.g. to the
regularization necessary to manage the large number of the missing reverse transitions: it seems practically
impossible to sample effectively the dynamics and extrapolate Σ from Σ(ϵ,∆t) for ϵ,∆t→ 0. In figure 11 we
show the dependence on ϵ and∆t of Σ(ϵ,∆t) for different lengths T of the samples used to estimate the
transition probabilities, from some millions to a billion of steps. We can note that, although the order of
magnitude seems reasonable, a precise value of Σ cannot be deduced from the trend we obtained even with
very expensive numerical simulations.

Finally, in order to mitigate at least the problem of under-sampled dynamics, we can ask ourselves what
we would have obtained by looking at a single variable of the system, one of the two components x or y, the
distance from the origin ρ=

√
x2 + y2 or the angle θ = arctany/x. The results are shown in figure 12 and

they indicate once again how important it is the choice of the observable. Even ignoring the problem of the
limit for ϵ→ 0, see the right panel of figure 12, we see that the best entropy production estimate is obtained
by considering the signal x(t). This is due to the fact that variable feels directly the effect of the jumps. The
estimates provided by the signals ρ and θ are in between those provided by x and y separately as ρ and θ are
non-linear combination of these two signals.

The above analysis shows, in general, how difficult it is to have a correct estimate of the entropy
production rate from experimental or numerical data, even in simple cases.

4.4. Exit times statistics and hiddenMarkovmodeling
An alternative strategy that has been proposed in recent years consists in using other observables, rather than
current fluctuations, in order to prove or disprove the hypothesis of an equilibrium model underlying the
empirical data. Such a strategy is typically not aimed to retrieve an exact value for the entropy production
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Figure 12. Σ(ϵ,∆t) computed with 1D signals. Left: dependence on∆t at fixed little ϵ ofΣ(ϵ,∆t) for several observable. Right:
dependence on ϵ at fixed∆t= 1 ofΣ(ϵ,∆t) computed with the x-component only.

rate, but again some kind of lower bound which should be sufficient, when not zero, to put in evidence the
non-equilibrium nature of the system. One of the underlying ideas, here, is to exploit the
information-theoretic formulation of entropy production to decompose it into different contributions
depending on the experimentally accessible information. These approaches are interesting because they have
unveiled non-trivial aspects of the theory of stochastic processes, but at the same time they suffer from the
same limitations encountered in the TURs, i.e. the general and obvious fact that partial information cannot
account for the full information required to characterize the entropy production of a given dynamics.

To be more specific, let us consider a Markov process s taking values in finite (countable) space
Ω= {1 · · ·N}. According to equation (7), the entropy production of such process reads

Σ(Ω) = lim
t→∞

1

t

∑
s(t)

P
(
s(t)

)
log

 P
(
s(t)

)
P
(
s(t)←

)
 . (62)

Generally, in an experiment the micro-space Ω is not accessible and only some macroscopic quantities a(s)
can be measured. Denoting Γ the state-space corresponding to these macroscopic observables, a general
result in information theory [14, 43] guarantees

Σ(Ω) ⩾ Σ(Γ) = lim
t→∞

1

t

∑
a(t)

P
(
a(t)

)
log

 P
(
a(t)

)
P
(
a(t)←

)
 . (63)

Starting from the above formula, several bounds can be established depending on the assumptions on the
dynamics in the state-spaces Ω and Γ.

For example, in [127] the authors provide a semi-analytical formula for an efficient estimation of the
right-hand-side of equation (63) based on the theory of products of random matrices. Their results rely on
the assumption that the set of ‘macroscopic’ variables a consists in a sub-set of the micro-state s, for instance
s= {s1, s2} and a= s1. Moreover, their approximation requires the knowledge of the dynamics behind the
observations and therefore is not practical for modeling real-world experiments. In [47], a new approach for
estimating the entropy production from time-series measurements is proposed. The central result consists in
an analytical expression for the entropy production of a semi-Markov process, i.e. a generalization of Markov
processes where the waiting-time distributions can be non-Poissonian. It is shown that the entropy
production rate has two different sources. One source accounts for the irreversibility generated by transitions
between the states of the process regardless of the transition-times distribution, while the second
contribution is due to the non-exponential distributions of the exit times. Treating molecular motors and
partially hidden Markov networks, the authors provided evidence that their method is able to detect time
irreversibility even in the absence of observable currents. This approach, however, is limited to scenarios
where the coarse-graining operation commutes with time-reversal [48], as it fails to correctly identify broken
detailed balance in other cases [49]. In [128, 129] the problem is approached from a different perspective.
Motivated by models used in neuroscience, the authors consider the case of multipartite dynamics. In short,
each micro-state s= (s1, · · · , sD) is a list of D degrees of freedom corresponding to separate units in the
system, and for sufficiently short sampling times two successive micro-states s= (s1, · · · , sD) and
s ′ = (s ′1, · · · , s ′D) differ by the value of one unit only (si = s ′i for all i ̸= j). For these systems, the authors show
that the entropy production rate can be decomposed into two contributions Σ= Σind +Σint. The term Σind
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is related to single unit time series (s1, · · ·sD) considered independently one from each other taking the form

Σind = lim
t→∞

1

t

D∑
i=1

∑
si

P(si) log

(
P(si)

P(si,←)

)
(64)

while the term Σint = (Σ−Σind)⩾ 0 accounts for the interaction between units. Moreover, exploiting a
hierarchy of bounds on entropy production, obtained by including more and more macroscopic variables a
in the coarse-grained description (see [130] for further details), it is also shown that the interaction term can
be further decomposed in contributions which accounts separately for nth order interactions (interactions
among n⩽ D units). Another particularly fascinating approach in this framework consists in studying the
transition statistics of the system, i.e. for instance the distribution of the waiting times for the return or the
passage of some observables through a given value. This approach has been studied for instance in [131,
132]. Differently from [47], the authors do not make additional assumption on the coarse-grained dynamics,
and instead they look for the Markov model with hidden variables, compatible with the observed waiting
times distribution, that minimizes the entropy production. If this minimum entropy production is non-zero,
then the observed data must originate from a non-equilibrium system. In Skinner [132] this approach has
been applied to experimental data for gene regulatory networks, mammalian behavioral dynamics, and
numerous other biological processes such as the heartbeat regulation in humans, dogs, and mice. As for [47],
the interest of this approach is that it can retrieve some non-zero lower bound for the entropy production
even with data that are time-reversal symmetric, e.g. when there are no visible currents. The bound coming
from jump rates, however, can be quite loose, especially in these last cases. An alternative approach is
presented in [133], that uses all observable data (not only transition rates) to find an underlying hidden
Markov model responsible for generating the observed non-Markovian dynamics. Recently, some authors
realized that considering non-conventional coarse-graining procedures in which macroscopic variables a are
identified with microscopic transitions (i.e. transitions between microstates s and s′) leads to
semi-Markovian dynamics for the coarse-grained processes [134]. Thus, in complete analogy with [47, 133],
a lower bound for the entropy production rate is derived that equals the sum of two non-negative
contributions, one due to the statistics of transitions (conditional probabilities of observed occurrence of the
system in some state) and a second due to the statistics of intertransition times. The applications to
experimentally validated biophysical models of kinesin and dynein molecular motors, and in a minimal
model for template-directed polymerization reveals, again, that this strategy is suitable for detecting
irreversibility even in the absence of net currents in the transition time series. A general theory encompassing
all the above-mentioned cases was developed in [50, 135]. This theory does not make any kind of
assumptions about the dynamics of coarse-grained variables, but instead considers the observables in a very
general way as a joint collection of events and waiting times. By exploiting these generalized waiting times
distribution, the authors formulate entropy estimators resembling the formulas appeared in [47, 133, 134]
whose efficiency can be evaluated from the data themselves. Furthermore, in certain cases, these estimators
allow one to retrieve information regarding the topology of the underlying network. As with other estimators
based on waiting times, with this approach it is possible to obtain non-zero entropy production even if all
macroscopic events are invariant under time-reversal. To do so, however, the joint distribution ψ(t1, · · · , tk)
of the waiting times should not be invariant under time-reversal, i.e. ψ(t1, · · · , tk) ̸= ψ(tk, · · · , t1) for some
{t1, · · · , tk}, and, as clearly explained in [50], the difference ψ(t1, · · · , tk)−ψ(tk, · · · , t1) play the role of a
steady current. To conclude the section, we recall that in certain cases serious limitations appear for the above
approaches. Imagine that the states-space Ω contain the states of a discrete-time Markov chain while the
coarse-grained space Γ contains just two elements {a0,a1} with a0 = {1} and a1 = {2, · · · ,N}. As shown
in [45], the resulting process is a 2-state semi-Markov process and the entropy production vanishes,
regardless of whether the Markov chain defined on Ω satisfies or not detailed balance. For this class of
processes it therefore seems impossible to determine the thermodynamic nature of the system without
making further assumptions on the models that generate the observations.

5. Lack of equilibrium and causation indicators

As discussed in the previous sections, entropy production quantifies the degree of irreversibility in the
dynamics of non-equilibrium systems. Due to its global nature, it lacks sensitivity to the structural details of
a system, e.g., inhomogeneity in temperature and chemical gradients, or non-reciprocal interactions [136,
137], such as asymmetries in the couplings between different sites or degrees of freedom. Therefore, if one is
interested in the specific description of the internal currents driving the system out of equilibrium, it is
mandatory resorting to more microscopic or local observables. To this goal, promising candidates are the
transfer entropy (TE) [138, 139] and Response functions [2, 140], which are usually employed to detect
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causal relationships between system variables [13, 141]. In fact, it is intuitively expected that the presence of a
physical current—usually a signature of time-irreversibility—determines an information flow and, therefore,
causal relations among different parts of the system. In this section, we show by means of simple models that
local causal indicators can provide insights into how spatial asymmetries and non-reciprocal interactions
drive the system towards non-equilibrium states.

Before delving into the definitions of TE and response functions, it is essential to make a brief excursion
through the notion of causation that stands as a cornerstone concept across various disciplines, including
philosophy, natural and social sciences and engineering. Also, it helps the comprehension of our everyday
experience, allowing us to make informed decisions. Cause-effect principles are implicitly or explicitly
employed when quantitative theories are developed in terms of equations involving parameters and
quantities. Nowadays, in the era of Big Data and Artificial Intelligence, the concept of causation is gaining
even more importance.

The philosopher David Hume was among the pioneers in formalizing the concept of causation [142], by
proposing the idea of simultaneous recurrence of events: a causal relationship between A and B (represented
symbolically as A→ B) can be inferred when the consistent observation of B is always preceded by A. In
more precise words, finding causation between a set {X1,X2, . . . ,XM} of events, variables, or observables etc
means to construct a directed graph where each Xi represents a node and the causal connections are oriented
links pointing from Xi (cause)→ Xj(effect). In this respect, causal indicators, algorithmic procedures and
statistical tests become fundamental tools to establish quantitatively the connections among nodes [143].

Two different strategies can be followed in the definition of causal indicators. The first one, deriving
directly from Hume’s view, can be referred to as observational, because causality is detected only by
observation of time series of events or data. In a nutshell, the goal is to understand from data whether, and to
what extent, the knowledge of a certain variable is useful to the actual determination of present and future
values of another one. In other words, if one observes that knowledge of the past states of variable Y(t)
improves the accuracy of forecasting future values of X(t), it can be deduced that Y has a certain influence on
X: in symbols, Y→ X. This is the spirit of Granger Causality [144] as well as of TE [138].

The other approach, termed interventional, assumes that two variables are in a cause-effect relationship if
an external action on one of them changes the observed value of the other. J. Pearl formalized this idea
through the notion of ‘Do’ operation [145], used to express interventions where a variable is set to a specific
value to see the system’s response. In this context, causality coincides with the possibility to predict the result
of the intervention. The interventional definition is a more physics-inspired interpretation of cause-effect
relationships that can be quantified by a well-known observable, the response function [28]. This approach
to the study of causation has been recently analyzed and used in a series of works [23, 24, 141, 146–148].

In the following, we briefly provide a mathematical definition of these two causal indicators, also leading
to their operational employment.

5.1. Transfer entropy
TE from process Xt to process Yt is a concept borrowed from information theory introduced by Schreiber
[138] in the context of stochastic processes and dynamical systems and then reformulated by Paluš et al [149]
as conditional mutual information. Generally speaking, the entropy transfer from the evolution of the degree
of freedom xj(t) to the evolution of the degree of freedom xi(t) is defined as the information (uncertainty)
that we gain (lose) on the future states of xi, if we not only consider the history of xi, but we also include the
past of xj. It quantifies the causal influence of xj on xi, in formulae,

TEj→i (τ) =

〈
ln

P
[
xi (t)

∣∣X(τ)
i ,X(τ)

j

]
P
[
xi (t)

∣∣X(τ)
i

] 〉
. (65)

Here t is a time index, X(ℓ)
i = {xi(t− 1), . . . ,xi(t− τ)} and X(τ)

j = {xj(t− 1), . . . ,xj(t− τ)} are the past
states of variables xi(t) and xj(t) respectively. The angular-brackets denote the average over the joint

probability density P
[
xi(t),X

(τ)
i ,X(τ)

j

]
, while P

[
xi(t)

∣∣X(τ
i ,X

(τ
j

]
and P

[
xi(t)

∣∣Xτ
i

]
are the probability

densities of xi(t) conditioned to the past histories. Notice that TE identically vanishes for i= j and is by
definition asymmetric, TEj→i ̸= TEi→j, thus naturally incorporating a direction of the entropy/information
transfer from xj → xi, that is generally different from xi → xj. Note that the asymmetry is a natural
consequence of the non-interchangeability between conditioning and conditioned events.

As clear from equation (65), TE measures how much information is gained on the future of xi when

taking into account the past history, X(τ)
j ,

TEj→i =H
[
xi (t) |X(τ)

i

]
−H

[
xi (t) |X(τ)

i ,X(τ)
j

]
, (66)
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where H [A|B] indicates the conditional Entropy of the state A given the state B. Note that equation (66)
implicitly assumes stationary processes.

The TE among degrees of freedom of a multivariate linear Gaussian Markov system
(Ornstein-Uhlenbeck process often employed in this review),

ẋ=−Ax+ ξ ,

can be easily expressed in terms of their time correlations Cij(t) =
〈
xi(t)xj(0)

〉
,

TEj→i (t) =−1

2
ln

(
1−

αij (t)

βij (t)

)
(67)

where

αij (t) =
(
CiiCij (t)−CijCii (t)

)2
, (68)

βij (t) =
(
CiiCjj −C2

ij

)(
C2
ii −C2

ii (t)
)
, (69)

see [13, 141] for the derivation, and we indicate with Cij = Cij(0) the correlation matrix at zero lag (i.e. the
covariance matrix). The asymmetry αij(t) ̸= αji(t) and βij(t) ̸= βji(t) is a straightforward consequence of the
TE asymmetry emerging also in the Gaussian formulation.

It is possible to show that TEj→i(∞) = 0, either by definition (65) invoking the independence of events
far away in time, or using the correlation decay at large times in equation (67) implying that αij(∞)→ 0.
Analogously, one expects TEj→i(0) = 0. As a consequence, in many cases, TE is expected to have a skewed
bell-shaped curve as a function of the time lag t.

5.2. Response function
The other causal indicator that could be useful to employ in out-of-equilibrium systems is the response
function, which belongs to the interventional framework: indeed, the coordinate xj causally influences the
coordinate xi, if a perturbation of xj results in a variation of the measured value of xi. In formulae, we say that
xj influences xi, if

Rij (t) = lim
δxj(τ)→0

δxi (τ + t)

δxj (τ)
̸= 0 for some t> τ , (70)

i.e. a small perturbation on xj(τ) at time τ results in a non-zero future variation on the average of xi(t+ τ)
over its unperturbed evolution. In equation (70), we again assume statistically stationary dynamics as in
equation (66). If δxj is small enough, it is well known that the quantity (70) can be related to the spontaneous
correlations in the unperturbed dynamics by one of the pillars of non-equilibrium statistical mechanics, the
fluctuation-response theorem (FRT) [20], also known as fluctuation-dissipation theorem. When the process
x(t) is stationary with invariant PDF Ps(x), the response (70) assumes the clear and general expression
equation (27) seen in section 3.

It should be remarked that equation (27) holds for systems with an invariant PDF and in general cases, it
expresses the response in terms of complicated multivariate correlation functions. However, in systems
governed by stochastic linear dynamics, even with no Gaussian noise, the response turns out to be related
only to the two-time correlation function, [24]

R(t) = C (t)C−1 . (71)

as we already proven in section 3 equation (13).

5.3. A toy model with non-reciprocal interactions
The link between non-reciprocal interactions, causation and lack of equilibrium can be appreciated by
considering linear systems, which are fully analytically solvable. As a first example, we consider the minimal
non-equilibrium model discussed in [24]: a system of three variables xt, yt and zt, whose values are updated
at discrete times according to the rule

xt+1 = axt + εyt + η
(x)
t (72a)

yt+1 = axt + ayt + η
(y)
t (72b)

zt+1 = axt + azt + η
(z)
t , (72c)
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Figure 13. Entropy production rate and response asymmetry in a simple toy model with non-reciprocal interactions. The system
is sketched in panel (a), where solid lines refer to a value a= 0.5 in the interaction matrix (see equation (72)) and the link
corresponding to the dashed line is taken as a varying parameter ε. Panel (b) shows the entropy production rate (red) and the
response asymmetry R̃zy − R̃yz (green). Both quantities are rescaled by their values at ε= 0.1.

where, ηt ’s are independent Gaussian variables with zero mean and unitary variance, while a and ε are
assigned constants. The model is sketched in figure 13(a). When ε= 0, the variable x is independent of y and
z, and drives them in the same way: the system is thus symmetric with respect to the exchange of y and z. As
soon as ε> 0, a feedback mechanism indirectly couples z to y (meaning that the former is influenced by the
latter). The presence of non-reciprocal interactions drives the system out of equilibrium, and, thanks to
linearity, the entropy production rate can be easily computed. Figure 13(b) shows that the entropy
production rate is nonzero for every choice of ε.

Although the system is still out of equilibrium at ϵ= 0, when ε is increased, the entropy production rate
of the system increases as well, suggesting that the dynamics is becoming more irreversible. The origin of this
increment of the time-reversal asymmetry can be understood by looking at the causation indicators
introduced in the previous section. By computing the difference between the response function (integrated
in time)

R̃zy =
∞∑
t=0

Rzy (t)

and

R̃yz =
∞∑
t=0

Ryz (t) ,

one gets a quantitative estimator of the y,z causation asymmetry. This difference is reported in figure 13(b);
as expected, it vanishes when ε= 0, meaning that equilibrium is broken by other mechanisms (in this case,
the x,y and x,z asymmetries).

This simple example shows that, in the presence of non-reciprocal interactions, response functions (or
any other reliable indicators of causation) provide detailed information on the origin of the time-reversal
asymmetries that drive the system out of equilibrium. While the entropy production rate is a global quantity,
which only signals to what extent the system is out of equilibrium, causation indicators are actually able to
unveil the asymmetries that are responsible for the non-equilibrium state [150]. In the following section, we
will analyze a case where the scenario is enriched by the presence of temperature gradients.

5.4. Oscillators with non-reciprocal interactions and temperature gradient
In this section, we apply TE and response functions to characterize the effect of spatial symmetry-breaking in
an example of linear out-of-equilibrium extended systems [13].

Consider a system of N interacting particles whose individual positions are denoted by {xj}, with j
ranging between 1 and N. Particles are coupled via nearest-neighbor elastic forces

Fj =−kL
(
xj − xj−1

)
− kR

(
xj − xj+1

)
.

Periodic boundary conditions x0 ≡ xN, xN+1 ≡ x1 are implemented, and by setting

kL = k0 − ε

kR = k0 + ε,
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Figure 14. Asymmetry indicators in the ring model. Panel (a): scheme of the interactions between the particles, as well as the
temperature gradients. Panel (b): asymmetry indicators and entropy production rate for∆T= 0, as a function of ε. All quantities
are rescaled setting their value at ε= 0.1 equal to unity. Panels (c)–(e): heat maps of the quantities considered in panel (b) as a
function of ε and∆T. Again, all quantities are rescaled with their value for ε= 0.1 and∆T= 0. Parameters:
T0 = 1,k0 = 1,N= 20.

the symmetry of the interactions is broken as soon as ε ̸= 0. Each particle is also subject to a restoring force
−k0 xj, and to the action of an inhomogeneous thermal bath with site-dependent temperature Tj. The
stochastic dynamics of xj can thus be written, in the overdamped limit, as

γẋj =−3k0xj + kLxj−1 + kRxj+1 +
√

2γkBTj ξj (73)

where ξj is zero-mean white Gaussian noise. Hereafter, we adopt dimensionless units corresponding to
Boltzmann constant kB = 1 and viscous coefficient γ= 1.

The system stays in equilibrium if ε= 0 and the bath is homogeneous, Tj ≡ T0. It can be driven out of
equilibrium by breaking the detailed balance, in two ways: (a) switching the interactions asymmetry on,
ε> 0, so that mechanical currents are induced across the ring; (b) enforcing a thermal gradient

Tj = T0 +∆T

(∣∣∣j− N

2

∣∣∣− N

4

)
,

where∆T is a suitable constant.
In the absence of mechanical asymmetry, ε= 0, the above choice leads to a heat flux from the hottest sites

(j= 0, j=N) to the coldest site (j = N/2). A schematic representation is shown in figure 14(a). The model
has therefore two different sources of spatial asymmetry: the non-reciprocity of the interactions and the
temperature gradient.

The dynamics can be written in the form of a linear stochastic process

ẋ=−Ax+ ξ,

where A is a N ×N circulant matrix and ξ is a noise with diagonal correlations, i.e. νij =
〈
ξi ξj

〉
= 2Tiδij. The

properties of circulant matrices ensure that all the eigenvalues of A have a positive real part. As proven in
section 3.2 (see also [37]), for such a system the correlation and response functions are respectively

C (t) = e−AtC (∀t> 0) , R(t) = Θ(t) e−tA
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Θ(t) being the unitary step-function, and the covariance matrix C= C(0) of the stationary state verifies
AC+CAT = ν. Moreover, entropy production rate can be written as Σ= Tr

(
∆ν−1A

)
where∆= CAT −AC

measures the violation of Onsager’s condition.
All the quantities previously introduced for the characterization of out-of-equilibrium systems can be

explicitly computed. In figure 14, we compare the behavior of Σ with two observables∆R and∆TE that
quantify the spatial asymmetry of the response and of the TE. The former is defined as

∆R=

∣∣∣∣∣∣
N/4−1∑
j=1

R̃j,N/4 −
N/2−1∑

j=N/4+1

R̃j,N/4

∣∣∣∣∣∣ (74)

where

R̃ij =

ˆ ∞
0

dtRij (t) .

This ‘integrated response’, inspired by the Kubo relations [19], takes into account the cumulative effect of j
on i. The imbalance∆R is therefore vanishing when the effect of the particle N/4 on the first N/4− 1
neighbors on the left and on the right is the same, while it is larger than zero if a spatial asymmetry is present.

Similarly, for the TE rate we introduce the unbalance

∆TE=

∣∣∣∣∣∣
N/4−1∑
j=1

TEj,N/4 −
N/2−1∑

j=N/4+1

TEj,N/4

∣∣∣∣∣∣ . (75)

Figure 14(b) shows that, for vanishing temperature gradient,∆R and∆TE provide the same kind of
information, and their value is monotonically related to the entropy production rate. This is consistent with
the fact that the (mechanical) asymmetry in the dynamics is the only source of equilibrium violation. In
figures 14(c)–(e) a nonzero temperature gradient is also included, and the qualitative difference between
response and TE becomes evident: while the former only depends on the interaction forces between the
particles, the latter is dramatically affected by the presence of heat flow.

The above example clarifies that the information coming from the analysis of the entropy production has
to be complemented by other asymmetry indicators in order to provide an exhaustive description of the local
currents leading the system out of equilibrium.

6. Turbulence: a case study

In the previous sections we have mostly focused on simple, mainly stochastic, models; in this section, we end
our tour considering an important instance of persistent non-equilibrium phenomenon, namely the
turbulent state realized in incompressible flows at high Reynolds number [151].

The evolution of the velocity field, u(x, t), of an incompressible (∇ · u= 0) fluid is ruled by
Navier–Stokes equation [152]:

Dtu≡ ∂tu+ u ·∇u=−∇p

ρ
+ ν∆u+ f , (76)

where Dt denotes the material derivative, p= p(x, t) the pressure, ρ the (constant) mass density, ν the
kinematic viscosity and f a stirring force. For ν= 0 and f= 0, equation (76) becomes the Euler equation
that, in the presence of an ultraviolet cutoff, is known to be an equilibrium system [153]. In viscous fluids
(ν ̸= 0), the force f injects energy at a scale L at a rate (per unit mass):

ε= ⟨f · u⟩ , (77)

where ⟨[. . .]⟩ denotes an average over space and time. The nonlinear terms of equation (76) preserve the total
kinetic energy but redistribute it among the scales. In particular, in three dimensional (3D) turbulence,
energy is transferred to smaller and smaller scales till it is dissipated by the viscous forces. Thus, the system
eventually reaches a (non-equilibrium) statistically stationary state, where, on average, the injection and
dissipation rates balance. Such a process, which is a peculiar feature of 3D turbulent fluids, is dubbed ‘direct
energy cascade’ [154]. A simple handwaving argument (see e.g. [155]) can be used to understand why in 3D
turbulence the energy flows from large to small scales. Rewriting equation (76) for the vorticity (ω =∇× u)
and ignoring forcing and dissipation, we obtain ∂tω+ u ·∇ω = ω ·∇u, where the term in the r.h.s., usually
called the vortex stretching term, is clearly responsible for the increase of the square vorticity, i.e. of the
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enstrophy. However, the above equation is nothing but the 3D Euler equation, which preserves energy, so for
enstrophy to grow energy should be transferred to the small scales, which contribute the most to enstrophy.

In the turbulent state there is a large separation between the scale of energy injection L and that of
dissipation [151], which can be estimated by dimensional argument as η = (ν3/ε)1/4—i.e. the so-called
Kolmogorov scale. In the inertial range, η≪ r≪ L, both energy injection and dissipation are negligible and
the statistical properties are believed to be universal and display non-trivial scaling laws [154]. Moreover, the
system is characterized by a wide spectrum of timescales from τL = L/urms (where urms = ⟨|u|2⟩1/2) at the
largest scale to τη = (ν/ε)1/2 at dissipative scales. Formally, the limit of infinite scale separation, or infinite
Reynolds number, Re= UL/ν→∞, (U being a typical large-scale velocity) is called ‘fully developed
turbulence’. Therefore, turbulence is a multi-scale phenomenon involving many spatial scales each with its
characteristic time.

By performing some statistical analysis, it is not hard to prove that turbulent systems are out of
equilibrium: the nonzero average energy flux across scales, when computed in wavevector space, is roughly
the sum of third-order moments of the velocity field, and this nonzero skewness of the velocity PDFs is
incompatible with statistical equilibrium.

In the following, we will explore two less straightforward aspects of turbulence. First, as first
demonstrated in [25], we will show how asymmetric correlation functions can reveal and somehow quantify
the irreversible and thus non-equilibrium character of turbulence by looking at the motion of a single fluid
tracer (adopting the so-called Lagrangian view of turbulence), that is by looking at the evolution of a very
small, neutrally buoyant particle transported by the flow. Clearly, a single particle trajectory provides only a
partial information on the state of the fluid velocity field and, as previously discussed (see, e.g. sections 3.3.1
and 4.2) inferring and quantifying non-equilibrium properties from partial observation is, in general,
nontrivial. Second, we will show that asymmetric correlation functions and response functions, thoroughly
employed in the previous sections, can be used to reveal the non-equilibrium (equilibrium) character of the
physics at scales smaller (larger) than the energy injection scale, as shown in [27] in the context of shell
models for turbulence, which constitute a simplified laboratory for turbulent phenomenology that will be
detailed below. Before discussing these two aspects, we mention other non-conventional approaches to the
study of the nonequilibrium nature of the energy cascade, such as that proposed in [156] where, using ideas
from stochastic thermodynamics, an integral fluctuation theorem is verified for experimental data of velocity
differences measured at various scales r in the inertial range.

6.1. Lagrangian irreversibility
The dynamics of a fluid tracer, which in a laboratory can be realized by considering a very small particle
having the same density of the fluid, is ruled by the following equation

Ẋ(t) = V(t) = u(X(t) , t) , (78)

where X(t) denotes the position of the Lagrangian tracer at time t, and V(t) is the velocity field at the particle
position. How to recognize the signature of the non-equilibrium turbulent state by looking at the dynamics
of fluid tracers was first discussed in [25, 157] where, using both experimental and numerical Lagrangian
trajectories, it was shown that tracers experience slow buildups of kinetic energy followed by sudden
discharges, a phenomenon dubbed ‘flight-crash’ event: a clear sign of time irreversibility at the level of a
single tracer particle, and yields breaking of the detailed balance condition since forward and backward
transitions are not equiprobable (see section 2.2). This can be revealed by studying the statistics of the tracer
kinetic energy per unit mass, E(t) = 1

2 |V(t)|
2.

Figure 15 displays a qualitative demonstration of a flight-crash event. In particular, figure 15(a) displays
the 3D evolution of a tracer trajectory with color-coded the rate of energy change, i.e. Lagrangian power
p(t) = dE(t)/dt= A(t) ·V(t) (A(t) = V̇(t)). While figure 15(b) shows the time evolution of the kinetic
energy with a zoom (figure 15(c)) in the region where energy slowly increases and suddenly decreases. The
dissimilarity between the rate of increase and decrease of kinetic energy can be measured statistically by the
probability of observing an energy change after a time increment τ , E(t+ τ)− E(t). According to the
mechanism described above, the PDF of this quantity is expected to be skewed, so that a good measure of
irreversibility could be the non-dimensional third-order moment

ΦE (τ) =
⟨[E(t+ τ)− E(t)]3⟩

⟨E(t)⟩3
. (79)

The above quantity, whose numerator, owing to statistical stationarity, can be expressed as the asymmetric
correlation function ⟨E(t+ τ)E2(t)⟩− ⟨E2(t+ τ)E(t)⟩ [16] (see also section 2.2), is negative (figure 16) and
its modulus grows at short time separation as τ 3. The short-time behavior is indeed controlled by the third
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Figure 15. Qualitative explanation of the asymmetry in the statistics of energy increments. (a) Cut of a tracer trajectory in a
turbulent flow. Color codes the instantaneous power p(t) = dE(t)/dt= A(t) ·V(t). (b) Time evolution of the tracer kinetic
energy E(t). (c) Enlargement of (b) with the same color coding of (a) to show the so-called ‘flight-crash’ event where energy grows
slowly and decreases quickly. After [25]. The trajectory was taken from the database [158] and refers to tracers evolving in
turbulent flow at Reλ ≈ τL/τη ≈ 400 obtained by direct numerical simulations with 20483 collocation points, as described in
[159].

Figure 16. Correlation function of the particle kinetic energy computed as the third moment of the energy increment, as a
function of τ , with inverted sign and time axis normalized by the Kolmogorov time τη . The small time behavior is cubic in τ , as
shown by the dashed line. Data were taken from [158], see also caption of figure 15.

moment of the Lagrangian power, p(t), and the statistics of the latter has been shown to display a
non-trivially power law dependence on the Reynolds number [25], which was rationalized in terms of the
multifractal model of turbulence [26].

The statistical analysis of flight-crash events can thus be connected with other statistical properties of
turbulent flows, and it is quite significant that they allow for detecting non-equilibrium by looking at a very
small portion (a single fluid element) of a turbulent flow.

6.2. Coexistence of equilibrium and non-equilibrium in a shell model of turbulence
In 3D turbulence, owing to the direct energy cascade as briefly summarized in the introduction to this
section, the energy flow from the scale of injection toward that of dissipation so that the range of scales in
between has a clear non-equilibrium character. What happens at scales larger than that of injection is less
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clear. Numerical and experimental studies [160, 161] support the view [154] according to which the statistics
of these large scales are compatible with statistical equilibrium, as for the Euler equation with ultraviolet
cutoff [153]. This is evidenced, for instance, by energy equipartition taking place between these modes. Yet
recent works [162, 163] showed that an equilibrium description is not completely correct because long-range
interactions exist between small and large scales. Such feature is responsible, e.g. for a dependence of the
spectrum at wavenumber smaller than the forced one from the specific forcing employed [163].

In principle, an answer to this riddle could be given by analyzing suitable time correlation functions.
However, this is not an easy task in direct numerical simulations of equation (76) for several reasons
including the fact that the phenomenon of sweeping (i.e. the advection of small-scale eddies by larger-scale
eddies) can complicate the behavior of time correlations [164]. For this reason, in [27], this problem was
approached in the framework of shell models in which, while retaining the main features of the turbulent
energy cascade, sweeping is absent by construction.

The key idea of shell models [165–167] is to consider a collection of N interacting complex variables un,
n= 1, . . . ,N, associated with wavenumbers kn = k02n−1 describing a sequence of spherical shells in k-space
with exponentially-growing radii. The shell variables un roughly represent velocity fluctuations at length
scales∼1/kn. Mimicking the Fourier representation of the Navier–Stokes equation, each shell variable
evolves with an equation of the form

u̇n = iknQ [u,u]− νk2nun + fn , (80)

where the last two terms represent dissipation and forcing, while quadratic term Q(u,u)models the
nonlinear (advection) term of equation (76). In principle, Q(u,u) should couple each mode to all the others
in a way to preserve the conservation laws of the Euler equation. In shell models, owing to the idea of locality
[155] (i.e. that the most relevant interaction involves close-by wavenumbers), only nearest and
next-to-nearest neighbors interactions are retained (we shall comment this assumption at the end of the
section). For Sabra shell model [168], the quadratic term reads

Q [u,u] = 2un+2u
∗
n+1− 1

2un+1u
∗
n−1+

1
4un−1un−2 , (81)

where ∗ denotes complex conjugation, and boundary conditions uk = 0 for k< 1 and k>N. The coefficients
are chosen such that, as for the Navier–Stokes equation, in the inviscid unforced case (ν = fn = 0), two global
conserved quantities exist, the total energy E=

∑N
n=1 en and total helicity H=

∑N
n=1(−1)nknen, where:

en = |un|2/2 (82)

is the energy content of shell n. Shell models have a multiscale character, each shell variable having its own
typical timescale. This is needed to reproduce the large hierarchy of time- and length-scales present in real
turbulent flows.

As many studies have made clear, shell models share many features with turbulent flows, such as a well
defined direct energy cascade with an energy flux ε, in the shells in between forcing and dissipation, which

on average equal the energy injection and dissipation rates. The flux out of shellM, Π(E)
M , due to the

nonlinear term can be computed as

Π
(E)
M =−

M∑
n=1

den
dt

= kMIm
[
2u∗Mu

∗
M+1uM+2 + u∗M−1u

∗
MuM+1/2

]
. (83)

Figure 17 shows the average energy per shell ⟨en⟩, which in shell models is also the energy spectrum. As
clear from the figure, there is a clear difference between shells larger or smaller (i.e. scales below or above)
than the two forced shells (indicated by filled symbols): larger ones are in the range of direct energy cascade,
and show the expected scaling behavior of the energy spectrum (main panel) and a constant positive energy
flux (inset). Conversely, shells smaller than the forced ones display energy equipartition and zero energy flux.
Asymmetric time correlation functions [16] have been then studied to further inquire about the statistical
character at scales above and below the forcing scale. In particular, in [27] it was studied

Ψen (τ) =
⟨e2n (t)en (t+ τ)⟩− ⟨en (t)e2n (t+ τ)⟩

⟨e3n (t)⟩
, (84)

in order to quantify time irreversible fluctuations shell by shell. Its behavior for shells larger or smaller than
forcing is shown in figure 18. The correlation functions in the cascade range (main panel), i.e. at scales
smaller than the forced ones, display a clear non-zero signal a nontrivial dependence on τ , which is linked to
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Figure 17. Numerical simulation of Sabra shell model with N= 30 shells and forcing on shells nf = {13,14} (filled circles). Main:

energy spectrum, showing equipartition for n< nf and anomalous scaling ⟨en⟩ ∼ k
−ζ(2)
n ∼ 2−nζ(2) for n> nf. ζ(2) = 0.74(4) is

the second-order anomalous exponent, and the black solid line indicates this scaling law. Inset: average energy flux out of shellM,
which is zero for n< nf and equal to ε= 1 for n> nf. Adapted (figure) with permission from [27], Copyright (2024) by the
American Physical Society.

Figure 18. Asymmetric time correlation functions (84) for shells with index larger (main panel) and smaller (inset) than forced
shells, which represent smaller and larger scales, respectively. The functions in the inset range from n= 5 (darker) to n= 11
(lighter). Adapted (figure) with permission from [27], Copyright (2024) by the American Physical Society.

energy gains and losses experienced by these shells [27]. Conversely, at scales larger than the forced ones the
correlations are compatible with zero as expected for a reversible dynamics, i.e. at equilibrium.

Further insights into the different physics at scales larger/smaller than the forcing scale can be obtained
by studying how a perturbation on the energy of a given shell influences the energy content of nearby shells.
This can be realized by inspecting the following ‘energy response functions’:

Rm,n (t) =
δen (t)

δem
, (85)

in which the initial impulsive perturbation on shellm is of the order of typical energy fluctuations measured
on that shell. Figure 19 displays a comparison between response functions when perturbation and responses
are in the cascade range (panel (a)) or in the equipartition range (panel (b)). The former functions are
rescaled as, δemRm,n(t)/⟨en⟩= δen(t)/⟨en⟩, thereby measuring the average energy deviation relative to the
corresponding steady-state value. Dissimilarities between panels (a) and (b) are recognizable: while the
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Figure 19. Energy response functions (85) measured at shells larger (filled symbols, shades of red) or smaller (empty symbols,
shades of green) than the perturbed shell. (a) Rescaled response functions for shells in the cascading range: the perturbation acts
at shellm= 20 and the response is shown for three shells smaller (greenish curves) and larger (reddish curves) within the inertial
range; (b) response functions for shells in the equipartition range: the perturbation acts at shellm= 7 and the response is shown
for two shells smaller (greenish curves) and larger (reddish curves) within the equipartition range. Adapted (figure) with
permission from [27], Copyright (2024) by the American Physical Society.

functions in the cascade range show initially both positive and negative values, then followed by a decay to
zero, those in the equipartition range are all positive and reach a common positive asymptotic value. In a few
words, the former behavior is connected to the presence of an underlying energy flux directed toward small
scales, while the latter is easily explainable with equilibrium statistical mechanics, assuming the small scales
to form a conservative (sub)system. For the cascade range, it is also interesting to note the differences
between the responses at shell larger and smaller than the perturbed shell, while the former initially gain in
energy the latter lose energy, an asymmetry which is absent in the equipartition range. Such an asymmetry is
reminiscent of those that have been discussed in section 5. More details can be found in [27].

These results reveal that the shell model with intermediate-scale forcing shows an interesting coexistence
of equilibrium and non-equilibrium properties, at scales respectively larger and smaller than forcing. We
conclude with a word of caution in extending these findings to real turbulent flows. As discussed earlier one
of the assumptions used to build the shell model is that in the quadratic term of equation (81) only
local-in-scale interactions are retained. As discussed in [162, 163] the main obstacle in having statistical
equilibrium at scales larger than the forcing one is the presence of non-local interactions. It would thus be
very desirable to devise a numerical study to inspect properly defined correlation and/or response functions
in direct numerical simulations of the Navier–Stokes equation to test the equilibrium/non-equilibrium
character of these scales.

7. Final remarks and conclusions

In this review, we discussed several tools and methods for the characterization of different facets of the
statistical features in non-equilibrium systems and some readers might feel that the matter was excessively
scattered. Such a feeling is somehow correct, however, it is not entirely our responsibility. Rephrasing Lev
Tolstoy famous incipit, we can say that all the equilibrium systems share quite similar features, each
non-equilibrium system has its own peculiarity.

In a nutshell, all the properties of an equilibrium system are embodied in the dependence of its partition
function on temperature, pressure, applied fields, and other state variables. Conversely and unfortunately, in
non-equilibrium systems, there is nothing similar to the simple and elegant recipes one can use in the
equilibrium case. It is natural to wonder about the reasons behind such a significant difference.

Let us remind the grounds of the (apparent) simplicity of the equilibrium statistical mechanics13: once
the proper invariant distribution, i.e. the microcanonical one, has been chosen, one has a way to builda
consistent mathematical theory. On the contrary, in non-equilibrium system it is not easy at all, apart in few
special cases, to determine the invariant distribution.

By considering the features of a chaotic dissipative system, e.g. the Navier–Stokes equation, we can
understand the great difficulties in building a theory for the statistical theory of NE systems. Unlike the
Hamiltonian cases, the asymptotic dynamics of a dissipative chaotic system will take place on a strange
attractor whose invariant measure cannot be smooth, i.e. it is not continuous with respect to the Lebesgue
measure, and usually, it is described by a multifractal measure [28]. This unpleasant technical problem can

13 Actually there is not general consensus on the conceptual aspects of the statistical mechanics, but this is not relevant for our discussion
[169].
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be prevented by introducing a small noise, such that the problem of the singularity of the invariant measure
is removed. Such a procedure is not only a mathematical trick, because it is quite natural to assume that any
system is inherently noisy, e.g. due to the influence of the external environment [170].

Once the mathematical difficulties about the non-singular character of the invariant measure are
removed, one has to find the invariant distribution of a corresponding Fokker–Planck equation of the
system. This is surely a well-defined problem, but rather difficult even in low-dimensional systems. For
instance, up to now, nobody has been able to find the invariant probability distribution of the Lorenz model
with noisy terms. Therefore, we have that even for noisy chaotic dissipative systems there is not a
well-defined (operative) protocol to determine the invariant probability. This is the first clear difference with
Hamiltonian systems.

In addition, the stationary distribution provides answers to some questions only, i.e. mean values; while
to understand the dynamical features, such as correlation functions and responses, a more detailed ability is
needed to master the system under investigation.

Beyond the obvious technical difficulties of dealing with nonequilibrium, one has to treat a plethora of
different problems that are absent in equilibrium cases. In particular, in out-of-equilibrium
high-dimensional systems, the interplay among different degrees of freedom or in general among their parts
generates a wealth of features that cannot be described in a simple framework.

The need of studying and measuring dynamical quantities implies a knowledge of the system along all of
its characteristic time scales: such time scales can grow in number and reduce in separation, when the
dimensionality of the system increases, making the analysis of irreversibility difficult or even impossible.
Building upon this general problem, in this Review we have shown with several examples and approaches,
the elusive nature of entropy production, which is usually considered a central quantity in characterizing
irreversibility. Entropy production is a global quantity which requires knowledge of all important currents in
a system, and can be severely underestimated if some part of the system is not accessible, for instance for lack
of space or time resolution. On the contrary, we have shown how a ‘skillful’ use of correlation and response
functions in certain cases can be more informative and characterize non-equilibrium in the lack of a precise
knowledge of the system. There are of course possible pitfalls, particularly in the case of linear systems where
the coarse-graining may completely remove any signature of irreversibility, but there are also several
interesting recent results which suggest how inference of the so-called ‘distance from non-equilibrium’ in a
system can be improved.
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Appendix

A.1. Entropy production rate for Markov processes
The definition of entropy production rate Σ for a continuous process is

Σ= lim
T→∞

〈
1

T
ln

Prob
(
X(T )
→

)
Prob

(
X(T )
←

)〉= lim
T→∞

Σ(T ) (86)

where X(T )
→ and X(T )

← denote the direct and inverse path respectively, and the average ⟨·⟩ is taken with respect
to the probability Prob(X(T )

→ ) of the direct path. In the case of Markov processes it is possible to provide an
expression for Σ in terms of the transition probabilityWt(x|y) of going from state y to x in a time t,
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normalized as
ˆ

dxWt (x|y) = 1 ,

and of the stationary measure

π (x) = lim
t→∞

Wt (x|y) .

In order to see this, we first divide the interval [0,T ) into n sub-intervals of length∆t= T /n, and we
approximate the probability of the direct X(T )

→ and the inverse X(T )
← continuous-time trajectories with the

probabilities of the discrete-time paths

Prob
(
X(T )
→

)
≃ P(x(0) = x0,x(∆t) = x1, . . .,x(T ) = xn)

= π (x0)
n∏

i=1

W∆t (xi|xi−1)

and

Prob
(
X(T )
←

)
≃ P(x(0) = xn,x(∆t) = xn−1, . . .,x(T ) = x0)

= π (xn)
n∏

i=1

W∆t (xi−1|xi) .

By replacing the above expressions into equation (86), we can compute a discrete-time approximation of
Σ(T ), which will in general depend on∆t. The exact value will be recovered at the end of the calculation by
taking the limit∆t→ 0, keeping T fixed. We get

Σ
(T )
∆t =

1

n∆t

ˆ
dx0. . .dxnπ (x0)

n∏
i=1

W∆t (xi|xi−1)

{
ln
π (x0)

π (xn)
+

n∑
i=1

ln
W∆t (xi|xi−1)
W∆t (xi−1|xi)

}
=

=
1

∆t

ˆ
dxπ (x)

ˆ
dyW∆t (y|x) ln

W∆t (y|x)
W∆t (x|y)

=

=
1

∆t

ˆ
dxdyP∆t (x,y) ln

P∆t (x,y)

P∆t (y,x)
= Σ∆t (87)

where P∆t(x,y) = π(x)W∆t(y|x) is the joint probability of having x at time 0 and y at time t. In the
computation above, we exploited the identity

ˆ
dxdyπ (x)W∆t (y|x)(lnπ (y)− lnπ (x)) = 0

and the chain rule π(x) =
´
dyπ(y)W∆t(x|y). Note that, as expected, in the case of Markov processes Σ(T )

∆t

does not actually depend on T . This means that the T →∞ limit appearing in the definition (86) is trivial.
The value of Σ for the continuous-time case is then recovered in the limit∆t→ 0.

A.2. Entropy production rate for Gaussian linear processes
Let us consider the D-dimensional linear stochastic dynamics driven by a Gaussian noise, i.e.

ẋ+Ax= ξ ξ ∼ GD (ξ) =
e−

1
2ξ

TD−1ξ√
|2πD|

for which a direct computation allow us to write the evolution x→ y in a time t as

y= e−tAx+η ,

where η is a Gaussian noise η ∼ GMt(η) with covariance matrix

Mt =

ˆ t

0
ds e−sADe−sA

T

.
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In this way, we have an explicit expression for the transition rate

Wt (y|x) =
ˆ

dηGMt (η)δ
(
y− e−tAx−η

)
= GMt

(
y− e−tAx

)
(88)

and then, since limt→∞Mt = C, we have an explicit expression even for the stationary measure

π (y) = lim
t→∞

Wt (y|x) = GC (y) =
e−

1
2 y

TC−1y√
|2πC|

.

We can compute Σ∆t from equation (87) by averaging with the joint probability

P∆t (x,y) = π (x)W∆t (y|x) = GC (x)GM∆t

(
y− e−∆tAx

)
(89)

the logarithm of the ratio P∆t(x,y)/P∆t(y,x) as prescribed in equation (87), i.e.

Σ∆t =
1

2∆t

〈(
x− e−∆tAy

)T
M−1∆t

(
x− e−∆tAy

)
+ yTC−1y

〉
+

− 1

2∆t

〈(
y− e−∆tAx

)T
M−1∆t

(
y− e−∆tAx

)
+ xTC−1x

〉
=

=
1

∆t

〈
xT

(
e−∆tAT

M−1∆t −M−1∆t e
−∆tA

)
y
〉
=

=
1

∆t

〈
xT

(
e−∆tAT

M−1∆t −M−1∆t e
−∆tA

)
e−∆tAx

〉
=

=
1

∆t
Tr
{(

e−∆tAT

M−1∆t −M−1∆t e
−∆tA

)
e−∆tAC

}
.

In doing the above steps, we took advantage of the fact that the marginal distributions
´
dyP∆t(x,y) and´

dxP∆t(x,y) are identical, and they coincide with the stationary measure: this implies that several averages
involving only one variable among x and y cancel each other out, since they appear twice, with reversed
signs. The last two steps are the consequence of

ˆ
dyW∆t (y|x)y= e−∆tAx

and 〈
xTBx

〉
= Tr(BC) = Tr(CB) ∀B .

At the leading order of∆t, since M∆t ≃∆tD and e−∆tA ≃ 1−∆tA, we have

Σ∆t =
1

∆t

{
Tr
(
D−1AC

)
−Tr

(
ATD−1C

)}
+Tr

{(
ATD−1 −D−1A

)
AC

}
+O (∆t)

It can be seen that the term of order 1/∆t vanishes because of the cyclic property of the trace and the
symmetry of D and C:

Tr
(
D−1AC

)
= Tr

(
CD−1A

)
= Tr

(
ATD−1C

)
.

Recalling the equality AC+CAT = D valid for Orstein-Uhlenbeck processes [37], we finally get, taking the
limit∆t→ 0,

Σ= Tr
{(

CAT −AC
)
D−1A

)
= Tr

{
(ATD−1 −D−1A)AC

}
.

A.3. Simulation algorithm for linear stochastic processes
Linear stochastic processes, such as ẋ+Ax= ξ+ ζ in which Poissonian random jumps ζ are added to a
typical Gaussian noise ξ, can be exactly simulated, with an error due exclusively to the numerical precision of
the calculator and the goodness of the random number generator. The idea is based on the fact that, in the
absence of jumps, the propagatorWt(x ′|x) from x to x ′ in a time t is well known, it is Gaussian with mean

e−tAx and covariance matrix Mt =
´ t
0 dse

−sADe−sA
T
. This means that, regardless of the value of t and in

absence of jumps, we can obtain the value of x ′ simply by adding to the value e−tAx a random vector z
extracted from a normal distribution GMt(z). The presence of jumps it is only a small complication to this
rule. In fact, once the sampling frequency f = 1/δ with which we want temporally discretize the trajectories
of the system has been chosen, we just have to know in advance the time of the next jump and appropriately
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break the evolution into two pieces, before and after the jump, in the time interval at which the jump occurs.
Now we describe the algorithm in the general case in which the jumps affect only some components and the
Poissonian rates and the distribution of the intensity with which these processes occur may be different
between one component and another. All other cases, for example that of an equal rate for all components or
a distribution of dependent jumps, should be simpler. Let δ the sampling time, A the drift matrix, D the
covariance matrix of Gaussian noise, J the set of component afflicted by jumps and {λi,Pi(u)}i∈J the set of
rates and intensity distribution of such jumps. First of all, we note that, for any value of t, we are able to
numerically computeR(t) = e−tA and Mt =

´ t
0 dse

−sADe−sA
T
through appropriate matrix diagonalizations

and analytical simplification. Then we assume that we have the appropriate random number generators for
all distribution we consider: the multi-normal one whatever the covariance matrix Mt is, the Poissonian one
λe−λt and the set of {Pi(u)}i∈J for jumps intensity. With such assumptions the flow of the algorithm can be
organized into following routines.

INIT Set the initial state x, extract with probability λi e−λi ti the times of the next jumps for all the
components in J , store such times in a set T = {ti }i∈J , call UPDATE, then set t= δ and call
SELECT;

UPDATE Find the index k of the smallest time τ = tk in the set T , delete tk from such set and shift all other
remains times ti → ti − τ ;

SELECT if τ > δ call GAUSS, print x and set t= δ, otherwise call JUMP;
GAUSS Iterate with recursion ruleR(t)x+ zt → x with zt ∼ GMt(zt), set τ = τ − t and call SELECT;
JUMP iterate withR(τ)x+ zτ → x, then set xk = xk + u where u is extract from the distribution Pk(u),

set t= t− τ then extract a new time tk ∼ λke−λkt for the index k, add this time to set T , call
UPDATE then call SELECT.
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