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Mean-field approach for a statistical mechanical model of proteins
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We study the thermodynamical properties of a topology-based model proposed by Galzitskaya and
Finkelstein for the description of protein folding. We devise and test three different mean-field
approaches for the model, that simplify the treatment without spoiling the description. The validity
of the model and its mean-field approximations is checked by applying them to theb-hairpin
fragment of the immunoglobulin-binding protein~GB1! and making a comparison with available
experimental data and simulation results. Our results indicate that this model is a rather simple and
reasonably good tool for interpreting folding experimental data, provided the parameters of the
model are carefully chosen. The mean-field approaches substantially recover all the relevant exact
results and represent reliable alternatives to the Monte Carlo simulations. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1580108#
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I. INTRODUCTION

The free-energy landscape of protein molecules rep
sents the key-information for understanding processes of
molecular self-organization such as folding.1–4 The free-
energy landscape, indeed, determines all observ
properties of the folding process, ranging from protein s
bility to folding rates.5–9 Unfortunately, for real proteins, so
phisticated all-atom computational methods fail to charac
ize the free-energy surface, since they are currently limite
explore only few stages of the folding process. As an al
native, one can argue that, taking into account all the co
plex details of chemical interactions is not necessary to
derstand how proteins fold into their native state. Rath
elementary models incorporating the fundamental phy
of folding, while still leaving the calculation and simula
tions simple, can reproduce the general features of the f
energy landscape and explain a number of experimenta
sults. This attitude, typical of a statistical mechanics
proach, agrees with the widely accepted view that
surprising simplicity underlies folding’’~Baker10!. In fact
several experimental11–14and theoretical studies15–18indicate
the topology of protein native state as a determinant facto
folding. As examples, one can mention the fact that e
heavy changes in the sequence that preserve the native
have a little effect on the folding rates.19,20 Moreover, the
latter are found to correlate to the average contact ord21

which is a topological property of native state. Finally, pr
teins with similar native state but low sequence similar
often have similar transition state ensembles.15,20

Within this context, elementary models22–26 which cor-
rectly embody the native state topology and interactions,
believed to be useful in describing the energy landscap
real proteins. In this paper, we study one of such topolo

a!Electronic mail: cecconif@roma1.infn.it
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based models proposed by Galzitskaya and Finkels
~GF!,27 which was developed to identify the folding nucleu
and the transition state configurations of proteins. The mo
employs a free-energy function with a reasonable formu
tion of the conformational entropy, which is certainly th
most difficult contribution to describe. The energetic ter
instead, takes into account only native state attractive in
actions. In the original paper,27 the model was combined
with a dynamic programming algorithm to search for tran
tion states of various proteins. To reduce the computatio
cost of the search, two kinds of approximations were int
duced: The protein was regarded as made up of ‘‘ch
links’’ of 2–4 residues, that fold–unfold together; beside
only configurations with up to three stretches of contiguo
native residues were considered in the search~‘‘triple-
sequence approximation’’!. As shown in Ref. 28, the effec
of such assumptions is a drastic entropy reduction of
unfolded state and possibly of the transition state. This p
duces free energy profiles very different from the true on
thus spoiling the evaluation off2values.

Here, we apply the model in a more general statisti
mechanical philosophy: Namely, we develop three differ
mean-field approaches of increasing complexity, and co
pare their prediction with the exact results, obtained by
haustive enumeration of all the configurations, in the case
a 16-residues-long peptide~C-terminal 41-56 fragment of the
streptococcal protein G-B1!29 which is known to fold, in
isolation, to ab-hairpin structure.25 Our main goal here is to
test the model against experimental findings and to test
mean-field predictions against the exact results. In the fu
we will use this knowledge to apply the appropriate mea
field approach to the case of real proteins, for which exha
tive enumeration is unfeasible.

The paper is organized as follows: In the next secti
we present and describe the main features of the GF mo
In Sec. II, we introduce and discuss three mean-field
8 © 2003 American Institute of Physics
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1249J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Statistical mechanical model of proteins
proximations: The usual scheme, and two other approac
stemming from the knowledge of the exact solution for t
Muñoz–Eaton model.28 In Sec. III, we apply the model an
its mean-field approximations to study the folding transiti
of the b-hairpin and discuss our results.

II. DESCRIPTION OF GALZITSKAYA–FINKELSTEIN
MODEL

The GF model assumes a simple description of
polypeptide chain, where residues can stay only in an
dered ~native! or disordered~non-native! state. Then, each
micro-state of a protein withL residues is encoded in a s
quence of L binary variables s5$s1 ,s2 , . . . ,sL%, (si

5$0,1%). Whensi51 (si50) the i th residue is in its native
~non-native! conformation. When all variables take the val
1 the protein is correctly folded, whereas the random c
corresponds to all 0’s. Since each residue can be in one o
two states, ordered or disordered, the free energy lands
consists of 2L configurations only. This drastic reduction o
the number of available configurations represents, of cou
a restrictive feature of the model, however, follows the sa
line of the well known Zimm–Bragg model30 widely em-
ployed to describe the helix to coil transition in heteropo
mers.

The effective Hamiltonian~indeed, a free-energy func
tion! is

H~s!5«(
i , j

D i j sisj2TS~s!, ~1!

whereS(s) is given by

S~s!5RFq(
i 51

L

~12si !1Sloop~s!G . ~2!

R is the gas constant andT the absolute temperature. Th
first term in Eq.~1! is the energy associated to native cont
formation. Non-native interactions are neglected: This
sumption, that can be just testeda posteriori, is expected to
hold if, during the folding process, the progress along
reaction coordinate is well depicted on the basis of the na
contacts~that is, the reaction coordinate~s! must be related to
just the native contacts!. Moreover, such progress must b
slow with respect to all other motions, so that all non-nat
interaction can be ‘‘averaged-out’’ when considering t
folding process.9 D i j denotes the elementi , j of the contact
matrix, whose entries are the number of heavy-atom cont
between residuesi and j in the native state. Here we con
sider two amino-acids in contact, when there are at least
heavy atoms~one from aminoacidsi and one fromj ) sepa-
rated by a distance less than 5 Å. The matrixD embodies the
geometrical properties of the protein. Notice that, in the sp
of considering the geometry more relevant than the seque
details, every~heavy! atom–atom contact is treated on equ
footing: The chemical nature of the atoms is ignored,
gether with a correct account for the different kind of inte
actions.

The second term in~1! is the conformational entropy
associated to the presence of unfolded regions along
chain, and vanishes in the native state.
Downloaded 13 Mar 2009 to 150.146.8.107. Redistribution subject to AIP
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More precisely the first term in Eq.~2! is a sort of ‘‘in-
ternal’’ entropy of the residues, that can be attributed to
ordering of the main and side-chains’ degrees of freed
upon moving from the coil to the native state. Indeed,qR
represents the entropic difference between the coil and
native state of a single residue, as can be noticed by con
ering that in the fully unfolded state the first and last te
vanish, and the entropy is given byqLR.

The quantityRSloop in Eq. ~2!, instead, is the entropy
pertaining to the disordered closed loops protruding from
globular native state;31 it reads

Sloop~s!5(
i , j

J~r i j !sisj )
k5 i 11

j 21

~12sk!. ~3!

According to Ref. 27, we take32

J~r i j !52
5

2
ln u i 2 j u2

3

4

r i j
2 2a2

Aau i 2 j u
. ~4!

In this context a disordered loop is described by a strand
all ‘‘0’’s between two ‘‘1’’s: For instance the configuration
11000000111100011 contains two loops involving 6 and
residues respectively. The product in expression~3! warrants
that only uninterrupted sequences of ‘‘0’’ can contribute
the loop entropy. The configuration of a disordered loop g
ing from residues (i 11) to (j 21), with i and j in their
native positions, is assimilated to a gaussian chain of be
(Ca atoms! with end-to-end distancer i j , the latter being the
distance between Ca atoms of residuesi and j in the native
state. The parametersa53.8 Å andA520 Å are the aver-
age distance of consecutiveCa’s along the chain and persis
tence length respectively. Other forms forSloop could also be
used~see, e.g., Ref. 22!; yet, here we are interested in eval
ating the original GF model and devising good mean-fi
approximations to it, and we will not discuss this subject a
further. The interested reader may refer to the origi
articles27,31 for a derivation of Eq.~4!.

III. MEAN-FIELD APPROACHES TO THE GF MODEL

Mean-field approach~MFA! is certainly the first attemp
to investigate the thermodynamical properties of comp
systems, because it provides a qualitative picture of
phase diagram that in many cases is only partially modifi
by more accurate refinement of the theory. In its variatio
formulation, MFA, for a system with HamiltonianH and
corresponding free-energyF, starts from the Bogoliubov–
Feynman inequality

F<F01^H2H0&0 , ~5!

where H0 is a solvable trial HamiltonianF0 is the corre-
sponding free-energy, both depending on free parametex
5$x1¯xL% ~variational parameters!. Such parameters hav
to be chosen to minimize the second member of~5! to get the
minimal upper bound ofF and accordingly its better ap
proximation. This method defines a variational free-energ

Fvar5F01^H2H0&0 , ~6!

whose minimization leads to the self consistent equati
that in their general form read
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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1250 J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 P. Bruscolini and F. Cecconi
K ]H0

]xl
L

0

^H2H0&02 K ~H2H0!
]H0

]xl
L

0

50, ~7!

with l 51,...,L. We implement different versions of the MF
for the GF model that differ each from the other by t
choice of the trial Hamiltonian.

A. Standard mean-field approach „MFA1…

To implement the standard MFA for the GF model, w
regard the free energy function~1! as an effective Hamil-
tonian.

The trial Hamiltonian we choose, corresponds to app
ing an inhomogeneous external field with strengthsx
5$x1 , . . . ,xL% along the chain

H05(
i 51

L

xisi , ~8!

with xi to be determined by minimizing the variation
free-energy33

Fvar~x,T!5(
i 51

L

f 0~xi ,T!1^H2H0&0 , ~9!

where( i f 0(xi ,T) is the free energy associated toH0 ,

f 0~xi ,T!52
1

b
ln$11exp~2bxi !%. ~10!

Thermal averages, performed through the HamiltonianH0 ,
factorize ^sisj . . . sk&05^si&0^sj&0 . . . ^sk&0 . The approxi-
mate average site ‘‘magnetization’’mi5^si&0 depends only
on the fieldxi , and is given by

mi5
]F0

]xi
5

1

11exp~bxi !
. ~11!

Instead of working with external fieldsxi ’s, it is more intui-
tive to use the corresponding ‘‘magnetizations’’mi ’s, writing
Fvar as a function of themi ’s. Due to the choice ofH0 , Eq.
~8!, and to the expression~11!, evaluating the thermal aver
age^H&0 amounts to replacing, in the Hamiltonian Eq.~1!,
each variablesi by its thermal averagemi ~11!. In the end we
get

Fvar~m,T!5«(
i j

D i j mimj2TS~m!1RT(
i 51

L

g~mi !,

~12!

where g(u)5u ln(u)1(12u)ln(12u) and S(m) is obtained
from Eq. ~2! by substitutingsi→mi . The last term corre-
sponds toF02^H0&0 in Eq. ~6!: It is the entropy associate
to the system with HamiltonianH0 and is the typical term
that stems from this kind of MFA.33 Carrying out the mini-
mization of function~12! with respect tom leads to self-
consistent equations:

g8~mi !5«(
j

D i j mj2RTS q2
]Sloop~m!

]mi
D . ~13!

Equation ~13! can be solved numerically by iteration an
provide the optimal values of the magnetizations that
denote bym* . Once the set of solutionsm* is available, we
Downloaded 13 Mar 2009 to 150.146.8.107. Redistribution subject to AIP
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can compute the variational free-energyFvar(m* ) that repre-
sents the better estimation of the system free-energyF.

In a mean-field approach, the~connected! correlation
function between residuesi and j ,

ci j ~T!5^sisj&2^si&^sj&, ~14!

can be recovered through a differentiation ofFvar(m,T)

ci j
21~T!5bS ]Fvar

]mi]mj
D

m*
, ~15!

where the subscript indicates that the derivative is evalua
on the solutionsm* . Explicitating each term ofFvar we ob-
tain the expression

ci j
21~T!5

d i j

mi* ~12mi* !
1«bD i j 2S ]2Sloop~m!

]mi]mj
D

m*
.

~16!

The correlation function matrix is given by the inversion
above matrix.

B. Second mean-field approach „MFA2…

The quality of the MFA improves when we make a le
naive choice forH0 . One of the possibleH0 is suggested by
the Muñoz–Eaton model25,34,35 that was proven to be fully
solvable in Ref. 28. In fact, even if the two models are n
equivalent, there is an interesting formal relationship b
tween that model and the present one. In the Mun˜oz–Eaton
model, the~effective! energy of a configuration results from
the contributions coming from the stretches of contiguo
native residues it presents, plus an entropic contribution fr
each of the non-native residues.28,34

Here the effective energy Eq.~1! boils down to the con-
tributions of stretches of contiguous non-native residues~the
loops!, plus the sum of pairwise interactions of native re
dues. This latter term makes the model harder to solve t
Muñoz–Eaton’s one. If we neglect this interaction, and
place it with a residue-dependent contribution, the model
be mapped on the Mun˜oz–Eaton model. Indeed, a tria
Hamiltonian of the kind

H0~x!5(
i 51

L

xisi2TS~s!, ~17!

with S($si%) given by Eqs.~2! and ~3!, can be recast asH0

5C1HME upon the substitutionsi→(12si), where C
5(xi is a constant, and

HME5(
i , j

S ui j )
k5 i

j

skD 1(
i

m isi , ~18!

with

ui j 52RT@Ji 21,j 112Ji , j 112Ji 21,j1~12d i , j 21!Ji , j #,
~19!

m i52RT~q1Ji 21,i 11!2xi ~20!

@hereJi , j5J(r i j ) of Eq. ~4!; J0,i5Ji ,L1150]. Now the trial
Hamiltonians reads formally as the Mun˜oz–Eaton Hamil-
tonian: see Eq.~1! of Ref. 28, where the symbolmi was used
instead ofsi .
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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1251J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Statistical mechanical model of proteins
Hence, we choose Eq.~17! as the trial Hamiltonian, and
write down the mean-field equations Eq.~7!

«̃ lF(
i , j

« i , jD i , j~Ci , j ,l2ClCi , j !2(
i 51

L

xi~Ci ,l2CiCl !G50,

~21!

for l 51,...,L. These equations involve the functions

Ci5^si&0 , ~22a!

Ci , j5^sisj&0 , ~22b!

Ci , j ,l5^sisjsl&0 , ~22c!

where averages are evaluated by the same transfer m
technique as in Ref. 28.

Using the fact that CVM is exact for the Mun˜oz–Eaton
model, it can also be proven that the three-point functio
Ci , j ,l can be written as a function of the two-point one
Ci , j ,l5Ci , jCj ,l /Cj , for i , j , l .36 This greatly reduces the
computational cost of minimizing the variational free ener
and makes the approach particularly suitable for lo
polypeptide chains.

Correlationsci j could still be evaluated as in Eq.~15!,
but now the dependence ofFvar uponmi cannot be worked
out explicitly, and the derivatives must be evaluated resor
to the dependence on the fieldsxj : Namely ]Fvar/]mi

5( j (]xj /]mi)(]Fvar/]xj ). However, this entails to evalu
ate the four-point averageŝsisjsksl&0 , with a consequen
relevant computational cost, for this reason, we will not p
sue this strategy in the following.

C. Third mean-field approach „MFA3…

In the previous MFA version, the entropic term w
treated exactly while the energy contribution was ve
roughly approximated. This new version aims to better inc
porate the energy contributions and we shall see that re
are in excellent agreement with the exact solution obtai
by exact enumeration on theb-hairpin. We consider the se
of configurations of the proteins withM native residues
(M50, . . . ,L). We then take as the trial Hamiltonian

H0~x!5 (
M50

L

d~M2S isi !H0
(M )~x!, ~23!

whered~•! is the Kronecker delta, andH0
(M ) is the Hamil-

tonian restricted to the configurations withM natives

H0
(M )~x!5(

i 51

L

«̃ ixi

M21

L21
si2TS~s!, ~24!

with «̃ i5( 1
2)( j 51

N « i , jD i , j . Each residuei , in a generic con-
figuration with M native residues, feels an interaction«̃ i

which it would feel in the native state, weakened by a fac
(M21)/(L21) ~accounting for the fact that not all the res
dues are native!, times the external fieldxi , to be fixed by
the mean field procedure.

This scheme is useful for taking correlations into a
count in a better way than in the usual MFA, so to gain so
Downloaded 13 Mar 2009 to 150.146.8.107. Redistribution subject to AIP
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insight on the parts of the chain that fold first and to inve
tigate folding pathways. In this framework the partition fun
tion is

Z05 (
M50

L

Z(M )5 (
M50

L

(
$si50,1%

(M )

exp~2bH0
(M )!, ~25!

where the symbol (M ) above the sum indicates that the su
is restricted to configurations withM native residues. The
mean-field equations~7! reads

«̃ lF(
i , j

« i , jD i , j~Ci , j ,l8 2Ci , jCl8!2(
i 51

L

xi «̃ i~Ci ,l9 2Ci8Cl8!G50,

~26!

for eachl , where

C•5 (
M51

L

C•
(M ) , ~27a!

C•85 (
M51

L
~M21!

~L21!
C•

(M ) , ~27b!

C•95 (
M51

L
~M21!2

~L21!2 C•
(M ) , ~27c!

Ci
(M )5

1

Z0
(
$si %

(M )

si exp~2bH0
(M )!, ~27d!

Ci , j
(M )5

1

Z0
(
$si %

(M )

sisj exp~2bH0
(M )!, ~27e!

Ci , j ,l
(M )5

1

Z0
(
$si %

(M )

sisjsl exp~2bH0
(M )!, ~27f!

are the contributions to the correlation associated to confi
rations withM native residues. The transfer-matrix meth
applied in Ref. 28 allows keeping track separately of t
contributions coming from the configurations with a give
total number of native residues, therefore it is possible
evaluate exactly the partition functionsZ 0

(M ) , and all the
averages Eq.~27! involved in the mean-field equations Eq
~26!. The computational cost is relevant, though: in fact, d
to the necessity of evaluating allCi , j

(M ) and someCi , j ,l
(M ) @the

ones actually occurring in Eq.~26!#, O(L6) elementary mul-
tiplications are required. As far as correlationsci j are con-
cerned, the same discussion of the MFA2 case holds.

IV. THE b-HAIRPIN

We compare the MFA results with numerical simulatio
on theb-hairpin, the fragment 41–56 of the naturally occu
ring protein GB1~2GB1 in the Protein Data Bank!.29 This
peptide has been widely studied experimentally,25,37,38

through all-atom simulations39–41 and simplified
models.25,34,42Thus it represents a good test for the valid
of the model and its approximations. Since theb-hairpin
contains onlyL516 aminoacids, we can carry out exact en
meration over the 216565 536 possible configurations t
compute explicitly the partition function
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Z~b!5(
$si %

exp~2bH !,

of the model. Once the functionZ is known, all the thermal
properties are available and it is possible to completely ch
acterize the thermal folding of the hairpin peptide. Howev
first, we have to adjust the model free parameters« andq to
reproduce experimental data on the hairpin equilibrium fo
ing. Experimental results on tryptophan fluorescence,34 show
that, in the folded state, the 99% of molecules contain a w
formed hydrophobic cluster made of Trp43, Tyr45, Phe
and Val54. In the model, the formation of the hydrophob
cluster is described by the behavior of the four-points co
lation functionQhyd5^s3s5s12s14& ~notice that, here and in
the following, residues are renumbered from 1 to 16, inst
of 41–56!. The choice of the model parametersq52.32 and
«520.0632 (kcal/mol) provides the best fit ofQhyd to the
behavior of the experimental fraction of folded molecu
~cf. inset of Fig. 1 with Fig. 3 of Ref. 34!. We can now asses
the goodness of the model and its mean-field approxi
tions, by comparing their predictions with the experimen
results and simulations.

Averages and correlations within the mean-field schem
will be evaluated as follows: For MFA1, the self-consiste
mean-field equations~13! are solved by iteration, substitu
ing an arbitrary initial value form at the right-hand side o
Eq. ~13!, evaluatingmi from the left-hand side, and subst
tuting again the latter value in the right-hand side, until co
vergence is achieved.

In the present case, this procedure converges quickl
two different solutions~depending on the starting values
the fields!, corresponding to different phases: the folded o
(mi;1) at low temperature and the unfolded (mi;0) at
high temperature. Starting from the unfolded phase and l
ering the temperature the solution of Eq.~13! remains
trapped into a set of misfolded metastable states. Onl
temperatures well below the folding temperatureTF the so-
lution collapses into the one representing the folded st
The opposite happens when the temperature is incre

FIG. 1. Fraction of native residuesQ @see ~30!# during thermal folding,
according to the GF model. Full dots are the exact result obtained by
haustive enumeration. Dashes and full lines indicate MFA1 and MFA3
proximations, respectively. Inset: Fit of the hydrophobic cluster (W43
2Y452F522V54) populationQhyd ~solid! to the experimental data from
~Ref. 25! ~triangles!.
Downloaded 13 Mar 2009 to 150.146.8.107. Redistribution subject to AIP
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starting from the folded phase. This is a typical scenario
first-order like transitions, which is reproduced by the me
field approach. The situation is well illustrated by the beha
ior of the mean field free-energy, which exhibits tw
branchesF1(T) andF2(T) as shown by the dashed lines
the inset of Fig. 2. The intersection of the two branches
fines the mean-field folding temperature. At a given tempe
ture, the free-energy of the protein is obtained by select
the minimum of the two branches

F~T!5min$F1~T!,F2~T!%. ~28!

In this approximation other observables present a ju
at transition: This reflects the fact that in the thermodynam
limit ~here corresponding to infinitely long proteins!, only
the solution with the lowest free-energy would be physic
To take into account finite-size effect, we decide to introdu
an interpolating formula to deal with a continuous quanti

^O&5
e2bF1^O&11e2bF2^O&2

e2bF11e2bF2
, ~29!

where^O&1 and ^O&2 are the averages of the observable
the above mentioned branches. In this way we compute
average magnetization~i.e., the fraction of correctly folded
residues! of the protein

Q5
1

L (
i 51

L

^si&, ~30!

as well as its energŷE&. In the latter casêE&1 , ^E&2 are
evaluated aŝE&a5](bFa)/]b.

Differentiating the energy with respect to the tempe
ture, we get the specific heat, reported in Fig. 2. Notice t
this is the correct recipe to take into account also the con
butions to the specific heat coming from the change of
native fraction of molecules: The alternative one, obtain
with the direct application of Eq.~29! to the specific heats
Cv

15]^E&1 /]T and Cv
25]^E&2 /]T, would neglect the

change in the number of folded molecules, and account o

x-
-

FIG. 2. Comparison between MFA and the exact enumeration. Behavio
specific heat (kcal mol21 K21) and free-energy (kcal mol21) with tempera-
ture, as obtained by the exact enumeration of the GF model applied to
hairpin. Dots indicate the exact results, while dashed and solid lines co
spond to MFA1 and MFA3, respectively. In the inset, the mean-field f
energies and the exact free energy are plotted against temperature ren
conventions as before. Notice the crossing of two branches of MFA1 at
transition temperature.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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for the variations of the energy within the pure native
unfolded state. For the same reason, Eq.~29! is not useful to
match the correlation functionsci j evaluated on the two
branches. It would yield only a linear superposition of t
ci j ’s relative to native and unfolded states, while the corr
functions should account for the contributions coming fro
all the configuration space.

Coming to MFA2, we observe that it keeps exactly in
account the entropic term Eq.~2!. Yet, solving the mean-field
equations yields again two different solutions at each te
perature. Thus, MFA2 presents the same kind of problem
characterizing the folding transition states as MFA1. This
why in the following we will present results just for MFA
and MFA3, that behave in a substantially different way.

With MFA3, in fact, a unique set of fieldsx(T) is ob-
served, independent of the starting values, for any temp
ture in the interesting range around the transition, and
empirical connection rule Eq.~29! is required. Moreover, a
odds with MFA1 and MFA2, the difference betweenFvar and
F0 in Eq. ~6! happens to be negligible at all the releva
temperatures:F0 is a very good approximation toFvar. This
suggests that the correct correlation functions, which wo
be very hard to evaluate, can be replaced by the ones inv
ing averages with the trial HamiltonianH0 : ci j .^sisj&0

2^si&0^sj&0 . Thus, within MFA3 it is possible to give a
substantially correct characterization both of the native
unfolded states, and of the folding nucleus.

In Fig. 1 we plot Q of Eq. ~30! as a function of the
temperature, for the original model, for MFA1@with the help
of Eq. ~29!# and MFA3. At low temperatures, where the pr
tein assumes its native state,Q51, while Q;0 in coil con-
figurations~i.e., at high temperatures!. Mean-field approxi-
mations appear to be slightly more ‘‘cooperative’’ than t
original model, according to their steeper sigmoidal sha
The temperature at whichQ51/2 is an estimate of the fold
ing temperature: We haveTF;306– 306.5 K for the original
model, andTF;305 K for both MFA1 and MFA3.

In Fig. 2 we plot the specific heat

Cv5
^E2&2^E&2

RT2 5
]U

]T
, ~31!

and the free energy. The peak ofCv , which provides anothe
definition for the folding temperature, occurs aroundTF

;309.5 K for the exact model and its mean-field approxim
tions. Notice that MFA1 and MFA3 substantially recover t
position of the exact peak, even if the transition appea
little sharper in the mean-field cases.

The above estimates of the folding temperatures
somewhat higher than the experimental ones,TF;298 K25

and TF;295.3 K.37 Interestingly,TF appears to be highe
than the experimental value also for ‘‘united atom
simulation41 (T5308 K in the Go-model case,T5333 K
with the full potential introduced in that paper!, and for all-
atoms simulations.39

Free-energy profiles, for various temperatures, are p
ted in Fig. 3 versus the number of native residuesM , that we
use as the folding reaction coordinate. Profiles suggest
the b-hairpin folding is well described by a two state pr
cess, i.e.,F(M ) exhibits two minima separated by a barri
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that has to be overcome in order to reach the nativ
unfolded state. Notice, though, that this does not rule out
possibility that folding might not be a two-state process
this case: this could happen if the number of native resid
M was not a good reaction coordinate.43 Other alternative
order parameters should be considered, in addition toM , to
completely ascertain the nature of the transition.

The comparison between exact and mean-field res
reveals that the barrier appears to be overestimated in the
scheme, where it is also shifted towards higher values of
reaction coordinate: Again, the MFA appears to be more
operative than the original model. Notice however that
free-energy and position of the native and unfolded minim
and hence the stability gap, are correctly recovered, e
cially at temperatures close to transition~i.e., the second and
third plots from top down!.

Another interesting characterization of the folding pa
way comes from the temperature behavior of the pairw
correlation functions between residues

ci j ~T!5^sisj&2^si&^sj&, ~32!

that provides an insight on the probability of contact form
tion during the thermal folding, as shown in Refs. 44 and

In fact, each functionci j (T) develops a peak at a cha
acteristic temperature, which can be regarded as the temp
ture of formation/disruption of the contacti 2 j . In Fig. 4, we
plot the correlation functions between Trp45 and residue
which it is in native interaction. The height of each pe
indicates the relevance of the contact from a thermodyna
cal point of view.44–47 Thus, each contact turns out to b
characterized thermodynamically by the location~tempera-
ture! and the height of the corresponding peak. This provid
a criterion for ranking contacts in order of temperature a
relevance~see Refs. 44 and 45!. For example, at the folding
temperatureTF , the contacts that mainly contribute to th
folding transition must be searched among those with
characteristic temperature located aroundTF and with high-
est peak ofci j . Correlation analysis for the hairpin is sum
marized in Table I, where we report the temperature and
height of correlation function peaks, between residues wh
share a native contact. Contacts are sorted in temperature
whenever a tie occurs the sorting runs over the heights of

FIG. 3. Free energy landscape for the hairpin, i.e., plot the free-en
(kcal mol21) of the system vs the number of native residuesM . Solid lines:
exact results for the GF model; dotted lines: MFA3. Temperatures are
300, 315, 330, 345, 360 K, from top to bottom.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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peaks. In this way, we can have a picture of how contacts
established during the thermal folding. Assuming that
order of contact stabilization upon decreasing the temp
ture reflects the order of formation during folding, this is al
a qualitative indication of the folding pathway.

We see, from the first three columns of Table I, that G
model predicts that theb-hairpin folding begins with the
formation of contacts 6–11 and 6–9, 9–11, and 6–8, loca
in the region between the turn (829) and the hydrophobic
cluster. Then, upon lowering the temperature, the fold
proceeds with the formation of the other contacts that co
plete b-hairpin structure. This is at odds with the results
more detailed models and simulations39–41 predicting that
folding starts with the formation of contacts between the s
chains of the hydrophobic cluster, and proceeds with the
bilization of the hydrogen bonds in the loop region~there is
no agreement on the order of hydrogen-bonds format
though!. GF model predictions are different also from tho
of the Muñoz–Eaton model,28,34 where the hairpin starts
folding from the loop region and proceeds outwards in
zipper fashion. Experimental results relying on po
mutations38 witness the importance of the hydrophobic re
dues 3, 5, 12 and, to a minor extent, 14, in stabilizing
hairpin structure. Remarkably, contacts between residue
9, 11 appear to be partially present also in denatur
conditions.38

It is interesting to notice, however, that, according
Table I, contacts 3–13, 4–14, 3–12, 12–14, 4–13 of
hydrophobic cluster are mainly established around the fo
ing temperature, which suggests that also in GF model
hydrophobic cluster plays a central role. This is a nice f
ture of the model because it is consistent with the experim
tal evidence~fluorence signal! for the formation of the tryp-
tophan hydrophobic environment at the folding.

The estimation of correlation functions provided b
MFA3 is only in qualitative agreement with exact results~see
Fig. 4!: Contacts are formed in a narrower range of tempe
tures, and a direct comparison would be meaningless. H
ever we can ask what kind of information can be extrac
from the mean-field results, wondering, for instance, whet
the ranking of contact formation provided by MFA3 is ‘‘sta

FIG. 4. Temperature behavior of the correlation functionci j (T) of native
contacts involving the Tryptophan~Trp45!. Symbols correspond to the exa
solution, while solid lines indicate the MFA3 results for the contacts 1
3–5, 3–12, 3–13, 3–14, from bottom to top.
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tistically equivalent’’ to that given by exact solution. Thu
we apply the Spearman rank-order correlation test.48 This
test amounts to computing Spearman correlation

Rs512
6( i 51

n ~xi2yi !
2

n~n221!
, ~33!

wherexi , andyi are the integer indicating the positions
the i th contact in the two ranking respectively. The para
eter,Rs is 1 when the order in the two ranks is the samexi

5yi , while Rs521, when the order is reversexi1yi5n.
For data in Table I, we obtain the valueRs50.902, that has
a probabilityP,1026 to take place if the null hypothesis o
uncorrelated ranks holds. This indicates that the order
tween the contacts obtained with exact and approxim
methods is extremely significative: The mean-field appro
basically recovers the correct order of contact formation a
relevance as obtained with the true original model.

One of the most important experimental techniques
characterizing the folding nucleus of a protein~more pre-
cisely of a protein with two-state folding! consists in the
evaluation ofF2values.F2values measure the effect o

,

TABLE I. Ranking of native contacts according to characteristic tempe
ture and height of the correlation peak~Ref. 45!. Contacts 1–16 and 2–16
have been neglected: They yield bad results because they are not stable
in the experimental native structure~Ref. 34!. The first three columns refe
to the exact solutions, the others to MFA3 results.

Exact Mean field

Contact Tchar Corr. peak Contact Tchar Corr. peak

6–11 316.5 0.214 57 6–11 312.0 0.215 82
6–9 316.5 0.213 46 9–11 312.0 0.215 53
9–11 316.5 0.212 43 6–9 312.0 0.214 41
6–8 316.5 0.182 62 6–12 311.5 0.215 35
5–11 315.5 0.204 57 4–6 311.5 0.214 49
6–12 315.5 0.202 14 5–11 311.5 0.214 49
7–9 315.5 0.184 62 11–13 311.5 0.214 47
6–10 315.5 0.164 88 5–12 311.5 0.214 14
5–12 315.0 0.216 70 4–12 311.5 0.210 31
5–7 315.0 0.184 61 5–13 311.5 0.210 07

10–12 315.0 0.156 97 5–7 311.5 0.193 42
7–10 314.5 0.150 48 7–9 311.5 0.191 98
8–10 314.5 0.143 39 6–8 311.5 0.183 61

11–13 314.0 0.177 13 10–12 311.5 0.171 17
4–6 314.0 0.175 75 6–10 311.5 0.169 36
4–12 313.5 0.192 44 4–13 311.0 0.206 85
5–13 313.5 0.186 81 7–10 311.0 0.150 91
3–5 312.0 0.148 05 8–10 311.0 0.143 85
4–13 310.5 0.209 32 3–5 310.5 0.197 85
3–12 310.5 0.150 90 3–12 310.5 0.195 26

12–14 310.5 0.144 16 3–13 310.5 0.192 84
3–13 309.5 0.173 64 12–14 310.5 0.191 11
4–14 309.0 0.164 87 4–14 310.0 0.185 29
2–4 307.0 0.080 24 3–14 309.5 0.174 64
2–13 306.5 0.080 37 1–15 308.5 0.080 26

13–15 306.0 0.052 41 2–4 307.5 0.083 49
3–14 304.5 0.202 84 2–13 307.0 0.080 81
2–14 300.0 0.110 45 2–14 306.0 0.074 82
1–3 298.5 0.036 78 13–15 306.0 0.041 43
1–14 296.5 0.035 70 2–15 305.0 0.011 89

14–16 290.5 0.097 73 1–3 304.5 0.024 93
2–15 273.0 0.127 46 1–14 304.5 0.019 34
1–15 273.0 0.050 05 14–16 291.0 0.002 93
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



d

ee

-

ld
ar

en

,
as

n-
d
de

al
a
ta
u

an
th

s
th

in
gh

the
rther
on-
ults
s of

at
vice
uld
ith

ent
del,
ac-
its

ter-
and
a-
ed
the
is
h a
ked
ther

and
dard
ed
s
e-

the
still
and
ted.

o

3,
u

pr
er

.

reby

1255J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Statistical mechanical model of proteins
‘‘perturbation’’ introduced in a protein by site-directe
mutagenesis.49 A mutation performed on thei th residue may
affect the thermodynamics and kinetics, by altering the fr
energy difference between the native and unfolded state~i.e.,
the stability gap! or the height of the folding–unfolding bar
rier. Its effect is quantified through theF2value, defined as

F i~T!5
D~DF‡U!

D~DFNU!
, ~34!

where DF‡U5F‡2FU , DFNU5FN2FU , and D(DF‡U)
and D(DFNU) are the variations, with respect to the wi
type protein, introduced by the mutation in the folding b
rier and stability gap. Experimentally,D(DF‡U) is derived
from the changes in the kinetic rates induced by differ
denaturant concentrations, whileD(DFNU) is extracted from
the changes in the equilibrium population.F2values are dif-
ferent for different mutations of a residue; in any case
F2value close to one implies that the mutated residue h
native-like environment in the transition state and hence
involved in the folding nucleus. A value close to zero, i
stead, indicates that the transition state remains unaffecte
the mutation, and hence the mutated residue is still unfol
at transition.

In our theoretical description, a mutation at sitei is
simulated by weakening the strength of the couplings«D i j of
1% between residuei and the others. We choose a sm
perturbation because we cannot predict what kind of re
rangements in the local structure, and hence in the con
map, a true residue-to-residue mutation would involve. O
choice warrants that the effect of mutation remains local
does not disrupt completely the state. In Fig. 5, we show
effect of a ‘‘mutation’’ of the sixth residue~Asp46! on the
free-energy profiles.

To evaluate theF2values, we compute the variation
in free energy profiles induced by each mutation, for
exact solution and MFA3.FU and FN are evaluated as
FU,N52RT ln ZU,N , where ZU , ZN are, respectively, the
partition functions restricted to unfolded and native bas
in the free-energy profile, i.e., the regions to the left and ri

FIG. 5. Variation on the free-energy profile induced by the perturbation
all the interactions involving the sixth residue~Asp46! of the Hairpin. The
variation~in kcal mol21) is computed for both the exact solution and MFA
at the respective temperatures of equal populations of the native and
folded basins. Solid and dashed lines indicate wild-type and mutated
files, respectively, for the exact solution; dotted–dashed and points ref
wild-type and mutated profile, respectively, in the MFA3.
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of the top of the barrier in Fig. 3.F‡ is the free-energy of the
top of the barrier. Through expression Eq.~34! we obtain the
F2values for each residue. In Fig. 6 we report theF2value
distributions. There is a good overall correlation between
profiles, that increase and decrease together. This is a fu
confirmation that the relevant features of the model are c
served when applying the MF approach. Mean-field res
yield smoother profiles, as it could be expected. The end
the hairpin are characterized by lowF2values, that become
negative for MFA3: This would correspond to mutations th
increase the stability gap but decrease the barrier, or
versa. According to these results, the folding nucleus wo
be made up by residues 6, 8, 9, 11, which is in contrast w
the already mentioned simulations.

V. CONCLUSIONS

In this work we developed and discussed three differ
mean-field schemes for the Galzitskaya–Finkelstein mo
that represent valid ways to deal with the model for char
terizing the thermodynamical properties of a protein and
folding pathway as well. These approaches offer viable al
natives both to the procedure proposed by Galzitskaya
Finkelstein,27 and to MC simulations, that become comput
tionally demanding for long polymers and usually affect
from the sampling problems. We applied the model to
b-hairpin fragment 41–56 of the GB 1 protein, since, for th
simple system, mean-field results can be compared wit
brute force solution of the model, and both can be chec
against experimental data and simulation published by o
groups.

Our results suggest that, as far as specific heat
simple thermodynamic quantities are concerned, the stan
mean-field MFA1 is enough to yield correct results, provid
that one uses the recipe Eq.~29! to connect the two branche
of the solution. For more sophisticated quantities like fre
energy profiles, correlations andF2values, MFA3 is to be
preferred, since it correctly recovers the main features of
exact solution. The hope is that mean-field results are
representative of the exact ones in the case of longer
more complex proteins, where the latter cannot be evalua

n

n-
o-
to

FIG. 6. Effects of ‘‘mutations’’ as measured byF2values on each residue
Full circles: F2values from the exact solution; open circles:F2values
within MFA3 approach. The temperatures are in both cases those whe
FU5FN . Results depend only slightly on temperature, anyway.
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GF model itself yields results that are somewhat in c
trast with the MC and MD simulations on more detail
models for the hairpin. This discrepancy is probably due
the extreme simplicity of the hamiltonian Eq.~1!, where no
distinction is made among the different kinds of interactio
such as hydrogen bonds, side chain hydrophobicity, and
on. Indeed, we expected that a model accounting just for
topology of the native state will not score very well whe
applied to theb-hairpin, where detailed sequence inform
tion is relevant.38 Predictions of the model could possib
improve if these elements were taken into account.
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