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Mean-field approach for a statistical mechanical model of proteins
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We study the thermodynamical properties of a topology-based model proposed by Galzitskaya and
Finkelstein for the description of protein folding. We devise and test three different mean-field
approaches for the model, that simplify the treatment without spoiling the description. The validity
of the model and its mean-field approximations is checked by applying them t@-taérpin
fragment of the immunoglobulin-binding protei@GB1) and making a comparison with available
experimental data and simulation results. Our results indicate that this model is a rather simple and
reasonably good tool for interpreting folding experimental data, provided the parameters of the
model are carefully chosen. The mean-field approaches substantially recover all the relevant exact
results and represent reliable alternatives to the Monte Carlo simulatiorZ00® American
Institute of Physics.[DOI: 10.1063/1.1580108

I. INTRODUCTION based models proposed by Galzitskaya and Finkelstein
_ (GP),%" which was developed to identify the folding nucleus

The free-energy landscape of protein molecules reprez, g the transition state configurations of proteins. The model
sents the key-mforma_tmn_ for understandmg processes of b'clémploys a free-energy function with a reasonable formula-
molecular self-organization such as folditid. The free- (o0 of the conformational entropy, which is certainly the

energy landscape, indeed, determines all observable g gifficult contribution to describe. The energetic term,
properties of the folding process, ranging from protein staj,siead; takes into account only native state attractive inter-

b|I|.ty.t0 folding rates? Unfortpnately, for real protems, SO- actions. In the original papéf, the model was combined
phisticated all-atom computational methods fail to charactery iy, 4 dynamic programming algorithm to search for transi-

ize the free-energy surface, since they are currently limited tqoy states of various proteins. To reduce the computational

explore only few stages of the folding process. As an alterogt of the search, two kinds of approximations were intro-

native, one can argue that, taking into account all the comg,,caq: The protein was regarded as made up of “chain
plex details of chemical interactions is not necessary to Unjns” of 2—4 residues. that fold—unfold together; besides

derstand how proteins fold into their native state. Rathergny configurations with up to three stretches of contiguous
elementary models incorporating the fundamental physiC§aiive residues were considered in the seaftthiple-

of folding, while still leaving the calculation and simula- sequence approximation”As shown in Ref. 28, the effect
tions simple, can reproduce the general features of the fregs; ,,ch assumptions is a drastic entropy reduction of the
energy landscape and explain a number of experimental rgjnfo|ded state and possibly of the transition state. This pro-

sults. This attitude, typical of a statistical mechanics apces free energy profiles very different from the true ones,
proach, agrees with the widely accepted view that “ay, s spoiling the evaluation af—values.

surprising simplicity underlies folding’(Baker®). In fact Here, we apply the model in a more general statistical

several experimentdi*“and theoretical studie¥ *®indicate 1\ ochanical philosophy: Namely, we develop three different
the _topology of protein native state as a determinant factor 0|fnean—field approaches of increasing complexity, and com-
folding. As examples, one can mention the fact that eveny,re their prediction with the exact results, obtained by ex-
heavy changes in the sequence that preserve the native stglgstive enumeration of all the configurations, in the case of

have a little effect on the folding raté”® Moreover, fghgs a 16-residues-long peptid€-terminal 41-56 fragment of the
latter are found to correlate to the average contact €, streptococcal protein G-BE which is known to fold, in

which is a topological property of native state. Finally, pro-jsqation, to ag-hairpin structuré® Our main goal here is to

teins with similar native state but low sequence similarity st the model against experimental findings and to test the
often have similar transition state ensemBfe<. mean-field predictions against the exact results. In the future

ar . &26 \p tni

Within this context, elementary modéls®® which cor- e will use this knowledge to apply the appropriate mean-
rectly embody the native state topology and interactions, argg|q approach to the case of real proteins, for which exhaus-
believed to be useful in describing the energy landscape qf,e enumeration is unfeasible.

real proteins. In this paper, we study one of such topology-  the paper is organized as follows: In the next section,

we present and describe the main features of the GF model.
dElectronic mail: cecconif@romal.infn.it In Sec. Il, we introduce and discuss three mean-field ap-
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proximations: The usual scheme, and two other approaches More precisely the first term in Eq2) is a sort of “in-
stemming from the knowledge of the exact solution for theternal” entropy of the residues, that can be attributed to the
Munoz—Eaton modée® In Sec. Ill, we apply the model and ordering of the main and side-chains’ degrees of freedom
its mean-field approximations to study the folding transitionupon moving from the coil to the native state. IndeqdR

of the B-hairpin and discuss our results. represents the entropic difference between the coil and the

native state of a single residue, as can be noticed by consid-
Il. DESCRIPTION OF GALZITSKAYA—FEINKELSTEIN ering that in the fully unfolded state the first and last term
MODEL vanish, and the entropy is given oyt R.

_ o The quantityRS,, in Eq. (2), instead, is the entropy
The GF model assumes a simple description of theertaining to the disordered closed loops protruding from the
polypeptide chain, where residues can stay only in an orglobular native statd* it reads

dered(native) or disordered(non-native state. Then, each -1

micro-state of a protein witlh. residues is encoded in a se- _

quence of L binary variables s={s;,s,,....5.}, (s S‘°°”(S)_i§<:j J(r”)sisikzlll (1= ©
={0,1}). Whens;=1 (s;=0) theith residue is in its native
(non-native conformation. When all variables take the value
1 the protein is correctly folded, whereas the random coil 5 3 rizj—a2

corresponds to all 0's. Since each residue can be in one of the J(rij)=— E'” li—jl— 2 Aai | (4)

two states, ordered or disordered, the free energy landscape

consists of 2 configurations only. This drastic reduction of In this context a disordered loop is described by a strand of
the number of available configurations represents, of coursé@ll “0"s between two “1”s: For instance the configuration

a restrictive feature of the model, however, follows the samé100000011100011 contains two loops involving 6 and 3
line of the well known Zimm-Bragg mod¥l widely em- residues respectively. The product in expresg®)rwarrants
ployed to describe the helix to coil transition in heteropoly-that only uninterrupted sequences of “0” can contribute to

According to Ref. 27, we také

mers. the loop entropy. The configuration of a disordered loop go-
The effective Hamiltoniar(indeed, a free-energy func- ing from residuesi(t+1) to (j—1), with i andj in their
tion) is native positions, is assimilated to a gaussian chain of beads
(C, atoms with end-to-end distancs; , the latter being the
H(s)=sz Aysis—TS(9), (1) distance between LCatoms of residues andj in the native
i< state. The parametees=3.8 A andA=20 A are the aver-

age distance of consecuti@,’s along the chain and persis-
tence length respectively. Other forms &, could also be

- used(see, e.g., Ref. 32yet, here we are interested in evalu-
S(s)=R qizl (1=5)+ Soop(9) |- (2 ating the original GF model and devising good mean-field
approximations to it, and we will not discuss this subject any

Ris the gas constant anfl the absolute temperature. The further. The interested reader may refer to the original
first term in Eq.(1) is the energy associated to native contactarticle$”3* for a derivation of Eq(4).

formation. Non-native interactions are neglected: This as-

sumption, that can be just testadposteriorj is expected to OACHES TO GE MO
hold if, during the folding process, the progress along thd!l- MEAN-FIELD APPROACHES TO THE GF MODEL

reaction coordinate is well depicted on the basis of the native  Mean-field approaciMFA) is certainly the first attempt
contactdgthat is, the reaction coordin@g must be related to  to investigate the thermodynamical properties of complex
just the native contacksMoreover, such progress must be systems, because it provides a qualitative picture of the
slow with respect to all other motions, so that all non—nativephase diagram that in many cases is only partially modified
interaction can be “averaged-out” when considering thepy more accurate refinement of the theory. In its variational
folding process. A;; denotes the elemeifj of the contact  formulation, MFA, for a system with Hamiltoniahl and
matrix, whose entries are the number of heavy-atom contactsorresponding free-enerdy, starts from the Bogoliubov—
between residues and j in the native state. Here we con- Feynman inequality
sider two amino-acids in contact, when there are at least two
heavy atomgone from aminoacids and one fromj) sepa- F<Fo+(H=Ho)o, ®)
rated by a distance less than 5 A. The matriembodies the where H, is a solvable trial HamiltoniarF, is the corre-
geometrical properties of the protein. Notice that, in the spiritsponding free-energy, both depending on free parameaters
of considering the geometry more relevant than the sequence{x,---x,} (variational parametersSuch parameters have
details, everyheavy atom—atom contact is treated on equalto be chosen to minimize the second membeBdto get the
footing: The chemical nature of the atoms is ignored, to-minimal upper bound of and accordingly its better ap-
gether with a correct account for the different kind of inter- proximation. This method defines a variational free-energy
actions.

The second term irfl) is the conformational entropy Fuar=Fo*+(H=Ho)o, ®)
associated to the presence of unfolded regions along thehose minimization leads to the self consistent equations
chain, and vanishes in the native state. that in their general form read

whereS(s) is given by
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dHq

<(9—)(|>0<|'|—|'|o>o—<(|'|—Ho)(9—)(I 0—0. (7)

P. Bruscolini and F. Cecconi

can compute the variational free-eneigy,(m*) that repre-
sents the better estimation of the system free-enErgy
In a mean-field approach, th@onnectedl correlation

with [=1,... L. We implement different versions of the MFA function between residuésandj,

for the GF model that differ each from the other by the

choice of the trial Hamiltonian.

A. Standard mean-field approach  (MFA1)

To implement the standard MFA for the GF model, we

regard the free energy functiaid) as an effective Hamil-
tonian.

Cij(T)=(sis)) —(Si)(S)) (14)
can be recovered through a differentiationFqf,(m,T)
JF
-1 _ var
Cij (T)_'B(—ﬁmiﬁmj)m* , (15)

where the subscript indicates that the derivative is evaluated

The trial Hamiltonian we choose, corresponds to a|oply-On the solutionsn* . Explicitating each term oF ,, we ob-

ing an inhomogeneous external field with strengtks

={X4, ... X } along the chain
L
Hozizl XiSi, (8)

tain the expression

(925100,3( m) )

* SBAH B ( c?mi&mj

o0

(16)

with x; to be determined by minimizing the variational The correlation function matrix is given by the inversion of

free-energy’

L
thfﬂ<x,T>=i§1 fo(x, T)+(H—Hoo, (9)

whereX;fo(x;,T) is the free energy associatedHg,

1
fo(X ,T)=—Eln{1+exp(—,8xi)}. (10
Thermal averages, performed through the Hamiltortign
factorize (s;s; . . .sx)o=(Si)o(Sj)0 - - -(Sk)o- The approxi-
mate average site “magnetizatiom, =(s;)q depends only
on the fieldx;, and is given by

IF, 1

(12)
Instead of working with external fields’s, it is more intui-
tive to use the corresponding “magnetizatioms;”s, writing
Fyar @s a function of then,’s. Due to the choice ofl,, Eq.
(8), and to the expressiofil), evaluating the thermal aver-
age(H)o, amounts to replacing, in the Hamiltonian Ea),
each variables; by its thermal average; (11). In the end we
get
L

Fvaxm,T>=e; Ajjmym; = TS(m)+RT2, g(m),

(12

where g(u)=uIn(u)+(1—u)in(1—u) and S(m) is obtained
from Eq. (2) by substitutings;—m;. The last term corre-
sponds toFg—(Hg)g in EQ. (6): It is the entropy associated
to the system with Hamiltoniail, and is the typical term
that stems from this kind of MFA® Carrying out the mini-
mization of function(12) with respect tom leads to self-
consistent equations:

) 3Si00p(M)
g (mi)=s; Aijmj—RT(q—a—;i). (13

above matrix.

B. Second mean-field approach  (MFA2)

The quality of the MFA improves when we make a less
naive choice foH,. One of the possiblél, is suggested by
the Muroz—Eaton modéP>3**that was proven to be fully
solvable in Ref. 28. In fact, even if the two models are not
equivalent, there is an interesting formal relationship be-
tween that model and the present one. In thé drEaton
model, the(effective) energy of a configuration results from
the contributions coming from the stretches of contiguous
native residues it presents, plus an entropic contribution from
each of the non-native residué&s>*

Here the effective energy E{L) boils down to the con-
tributions of stretches of contiguous non-native residties
loops, plus the sum of pairwise interactions of native resi-
dues. This latter term makes the model harder to solve than
Munoz—Eaton’s one. If we neglect this interaction, and re-
place it with a residue-dependent contribution, the model can
be mapped on the Mwz—Eaton model. Indeed, a trial
Hamiltonian of the kind

L
Ho(x) =2, X~ TS(9), (17)
with S({s;}) given by Egs.(2) and(3), can be recast ad,
=C+Hye upon the substitutions;—(1—s;), where C
=2x; is a constant, and
j
HMEZE (uij L[l Sk

(18

i<j

+ 2| MiSi s
with

Uij = —RTJi—gjr1=Jdije1—di—gj + (1= 6 j-1)Ji 51,
(19

mi=—RT(Q+Ji-1j+1) =X (20
[hereJ; j=J(ri;) of Eq. (4); Jg;=J;, +1=0]. Now the trial

Equation (13) can be solved numerically by iteration and Hamiltonians reads formally as the Mom-Eaton Hamil-
provide the optimal values of the magnetizations that weonian: see Eql) of Ref. 28, where the symbah; was used

denote bym*. Once the set of solutioms* is available, we

instead ofs; .
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Hence, we choose E@l7) as the trial Hamiltonian, and insight on the parts of the chain that fold first and to inves-

write down the mean-field equations E@) tigate folding pathways. In this framework the partition func-
L tion is
] e A (Ci . \—CC )— xi(C; \—C.C,) |=0, L L (M)
| I2<J i,j |,]( i, | I,j) ;l |( il i I)} 2,’0: 2 Z(M): 2 E exF(—BHE)M))' (25)
(21) M=0 M=0 {5=0,3
for I=1,... L. These equations involve the functions where the symbolN1) above the sum indicates that the sum
is restricted to configurations witNM native residues. The
Ci=(si)o, (228 mean-field equation§) reads
Cii=(siSjo, (22b) , , L o
Ciji=(sSiSi)o, 2o B PG U 2 (G } 22’
where averages are evaluated by the same transfer matrg'x a
technique as in Ref. 28. or eachl, where
Using the fact that CVM is exact for the Man—Eaton L
model, it can also be proven that the three-point functions C.= E ct, (279
Ci;, can be written as a function of the two-point ones: M=1
Ci;1=Ci;C;,/C;, for i<j<1.% This greatly reduces the Lo(M—-1)
computational cost of minimizing the variational free energy  C.= 2 1 cM, (27b
and makes the approach particularly suitable for long M=1 )
polypeptide chains. L (M—1)2
Correlationsc;; could still be evaluated as in E¢L5), Cl=> ———5CM, (279
but now the dependence 8&f,,, uponm; cannot be worked =1 (L—=1)
out explicitly, and the derivatives must be evaluated resorting M)
to the dependence on the fields: Namely 9F /oM, CM=_> s exp—BHM), (270
=3, (0x;/0m;) (F v/ 3x;). However, this entails to evalu- Zo s
ate the four-point averages;s;scs))o, With a consequent )
relevant computational cost, for this reason, we will not pur- ci('\j/'):_E SiSj exr(—BHE,M)), (27e
sue this strategy in the following. T Zols)
(M)
CEY%:_E SiS;S| exp(— BHEM), (271
Zo {si

C. Third mean-field approach  (MFA3) o ) _ )
) ) ) are the contributions to the correlation associated to configu-
In the previous MFA version, the entropic term was ations withM native residues. The transfer-matrix method
treated exactly while the energy contribution was Veryapplied in Ref. 28 allows keeping track separately of the

roughly approximated. This new version aims to better inCor-niributions coming from the configurations with a given

porate the energy contributions and we shall see that resuli§a| number of native residues, therefore it is possible to
are in excellent agreement with the exact solution obtained, , ate exactly the partition functiorEE)M) and all the

by exact enumeration on th@hairpin. We consider the set yerages Eq27) involved in the mean-field equations Eq.
of configurations of the proteins withM native residues (,q) The computational cost is relevant, though: in fact, due
(M=0,...L). We then take as the trial Hamiltonian to the necessity of evaluating aui(M) and SomeCi('\j"), [the
L ones actually occurring in E¢26)], b(LG) elementéfy mul-
Ho(x)= >, 8(M —35)HM (%), (23)  tiplications are required. As far as correlatior)s are con-
M=0 cerned, the same discussion of the MFA2 case holds.

where &) is the Kronecker delta, and{™ is the Hamil-
tonian restricted to the configurations with natives

L IV. THE B-HAIRPIN
H (M) —E = E T 24
0 (X)_i:1 EXTTT S S(s), 24 We compare the MFA results with numerical simulations
on thes-hairpin, the fragment 41-56 of the naturally occur-
with 3= (3)S]L,&; jA; ;. Each residué, in a generic con-  ring protein GB1(2GB1 in the Protein Data Bank’ This
figuration with M native residues, feels an interactiéh  peptide has been widely studied experimentaify/32
which it would feel in the native state, weakened by a factothrough ~ all-atom  simulatioi$™' and  simplified
(M—1)/(L—1) (accounting for the fact that not all the resi- models?®>3*#?Thus it represents a good test for the validity
dues are native times the external fieldt;, to be fixed by of the model and its approximations. Since tBehairpin
the mean field procedure. contains onlyL =16 aminoacids, we can carry out exact enu-
This scheme is useful for taking correlations into ac-meration over the $=65536 possible configurations to
count in a better way than in the usual MFA, so to gain someompute explicitly the partition function
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FIG. 1. Fraction of native residue® [see(30)] during thermal folding, FIG. 2. Comparison between MFA and the exact enumeration. Behavior of

according to the GF model. Full dots are the exact result obtained by exspecific heat (kcal mol K~1) and free-energy (kcal mot) with tempera-

haustive enumeration. Dashes and full lines indicate MFAL1 and MFA3 ap+ture, as obtained by the exact enumeration of the GF model applied to the

proximations, respectively. Inset: Fit of the hydrophobic clustér48 hairpin. Dots indicate the exact results, while dashed and solid lines corre-

—Y45—F52—V54) populationQy,q (solid) to the experimental data from spond to MFAL1 and MFA3, respectively. In the inset, the mean-field free

(Ref. 25 (triangles. energies and the exact free energy are plotted against temperature rendering
conventions as before. Notice the crossing of two branches of MFA1 at the
transition temperature.

Z<ﬁ>:{§} exp(— BH),

starting from the folded phase. This is a typical scenario of
of the model. Once the functiag is known, all the thermal first-order like transitions, which is reproduced by the mean

properties are available and it is possible to completely char.f—Ield approach. The situation is well illustrated by the behav-

. : L : ior of the mean field free-energy, which exhibits two
acterize the thermal folding of the hairpin peptide. However, . .
first, we have to adjust thegmodel freeppargmpetxeasldq to branches~,(T) andF(T) as shown by the dashed lines in

reproduce experimental data on the hairpin equilibrium foId—the inset of Fig. 2. The intersection of the two branches de-

ing. Experimental results on tryptophan fluorescetfaow fines tEe :Cnean-ﬂeld fok:mhg tempe.rat.ure.bAtla g&vgn ter;wpe.ra-
that, in the folded state, the 99% of molecules contain a Wel{ﬁ;e,rnﬁn?m[ﬁs)_gfn&rgﬁo ernpgﬁim 's obtained by selecting
formed hydrophobic cluster made of Trp43, Tyr45, Pheb52,

and Val54. In the model, the formation of the hydrophobic ~ F(T)=min{F(T),F»(T)}. (28
cluster is described by the behavior of the four-points corre-
lation function Qpyy=(S3SsS1,814) (Notice that, here and in
the following, residues are renumbered from 1 to 16, instea
of 41-58. The choice of the model parameters 2.32 and
g=—0.0632 (kcal/mol) provides the best fit Qf, 4 to the
?Cih;\gg,[ o?‘thig.e f;f/ﬁﬁr":r?gérg%lf flgae?.thVSL ggen%v;ng;zuslsesan interpolating formula to deal with a continuous quantity
the goodness of the model and its mean-field approxima- e F1(0),+e PF2(0),
tions, by comparing their predictions with the experimental (0)= e PFiL g BF2 '
results and simulations.

Averages and correlations within the mean-field scheme‘%
will be evaluated as follows: For MFA1, the self-consistent!
mean-field equationé&l3) are solved by iteration, substitut-
ing an arbitrary initial value fom at the right-hand side of
Eqg. (13), evaluatingm; from the left-hand side, and substi- 1L
tuting again the latter value in the right-hand side, until con- Q= EE (si), (30)
vergence is achieved. =t

In the present case, this procedure converges quickly tas well as its energyE). In the latter cas€E),, (E), are
two different solutiongdepending on the starting values of evaluated a$E),=d(8F,)/dB.
the fieldg, corresponding to different phases: the folded one  Differentiating the energy with respect to the tempera-
(m;~1) at low temperature and the unfoldeth,t-0) at ture, we get the specific heat, reported in Fig. 2. Notice that
high temperature. Starting from the unfolded phase and lowthis is the correct recipe to take into account also the contri-
ering the temperature the solution of E@L3) remains butions to the specific heat coming from the change of the
trapped into a set of misfolded metastable states. Only atative fraction of molecules: The alternative one, obtained
temperatures well below the folding temperatiifethe so-  with the direct application of Eq29) to the specific heats
lution collapses into the one representing the folded stateC=d(E);/dT and C?=4(E),/dT, would neglect the
The opposite happens when the temperature is increasethange in the number of folded molecules, and account only

In this approximation other observables present a jump
t transition: This reflects the fact that in the thermodynamic
imit (here corresponding to infinitely long protein®nly
the solution with the lowest free-energy would be physical.
To take into account finite-size effect, we decide to introduce

(29

here{O), and(O), are the averages of the observable in
e above mentioned branches. In this way we compute the
average magnetizatiofi.e., the fraction of correctly folded
residueg of the protein
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for the variations of the energy within the pure native or g T T T T T T T T
unfolded state. For the same reason, §) is not useful to 3

match the correlation functions;; evaluated on the two
branches. It would yield only a linear superposition of the
cj;’s relative to native and unfolded states, while the correct
functions should account for the contributions coming from
all the configuration space.

Coming to MFA2, we observe that it keeps exactly into
account the entropic term E(R). Yet, solving the mean-field
equations yields again two different solutions at each tem- F ]
perature. Thus, MFA2 presents the same kind of problems in 0 2 4 6 s 10 12 1 1
characterizing the folding transition states as MFAL. This is Native Residues (M)
why in the following we W'” present rgsults_Just for MFAL FIG. 3. Free energy landscape for the hairpin, i.e., plot the free-energy
and MFA3, that behave in a substantially different way. (kcal mol 1) of the system vs the number of native residiesSolid lines:

With MFA3, in fact, a unique set of fieldx(T) is ob- exact results for the GF model; dotted lines: MFA3. Temperatures are 285,
served, independent of the starting values, for any tempera90: 315, 330, 345, 360 K, from top to bottom.
ture in the interesting range around the transition, and no
empirical connection rule Eq29) is required. Moreover, at
odds with MFA1 and MFA2, the difference betwekEp, and
Fo in Eq. (6) happens to be negligible at all the relevant
temperatures is a very good approximation 1®,,,. This

that has to be overcome in order to reach the native—
unfolded state. Notice, though, that this does not rule out the
possibility that folding might not be a two-state process in

; . . his case: this could happen if the number of native residues

suggests that the correct correlation functions, which woul : : .
) was not a good reaction coordindfeOther alternative

be very hard to evaluate, can be replaced by the ones involv-

. . . o . order parameters should be considered, in additiok fd¢o
ing averages with the trial Hamiltoniahlo: Cjj=(siSi)o ¢, oietely ascertain the nature of the transition
—(Si)o(Sj)o- Thus, within MFA3 it is possible to give a pletely '

J - . The comparison between exact and mean-field results
substantially correct characterization both of the native and : : .
. reveals that the barrier appears to be overestimated in the MF
unfolded states, and of the folding nucleus.

. . scheme, where it is also shifted towards higher values of the
In Fig. 1 we plotQ of Eqg. (30) as a function of the . ) ) .
< : reaction coordinate: Again, the MFA appears to be more co-
temperature, for the original model, for MFAWith the help . o .
operative than the original model. Notice however that the
of Eq. (29)] and MFA3. At low temperatures, where the pro- I . .
. X ) - . ; . free-energy and position of the native and unfolded minima,
tein assumes its native stat@=1, while Q~0 in coil con- .
) . . . ' . and hence the stability gap, are correctly recovered, espe-
figurations(i.e., at high temperaturesMean-field approxi- . s
. . B . cially at temperatures close to transitiore., the second and
mations appear to be slightly more “cooperative” than the_ :
original model, according to their steeper sigmoidal sha eth'rd plots from top down
9 ' 9 P 9 PE- Another interesting characterization of the folding path-

The temperature at whiocQ=1/2 is an estimate of the fold- : -
. i - way comes from the temperature behavior of the pairwise
ing temperature: We have-~306—306.5 K for the original . . :

correlation functions between residues

model, andT~305 K for both MFA1 and MFAS3.

In Fig. 2 we plot the specific heat Cij(T)=(sis;) —(si)(s)) (32
(E)—(E)2 49U that provides an insight on the probability of contact forma-
VTR ST (3D tion during the thermal folding, as shown in Refs. 44 and 45.

In fact, each functiort;;(T) develops a peak at a char-
and the free energy. The peak®f, which provides another acteristic temperature, which can be regarded as the tempera-
definition for the folding temperature, occurs arould  ture of formation/disruption of the contaict j. In Fig. 4, we
~309.5 K for the exact model and its mean-field approxima-plot the correlation functions between Trp45 and residues to
tions. Notice that MFA1 and MFA3 substantially recover thewhich it is in native interaction. The height of each peak
position of the exact peak, even if the transition appear andicates the relevance of the contact from a thermodynami-
little sharper in the mean-field cases. cal point of view**~%' Thus, each contact turns out to be

The above estimates of the folding temperatures areharacterized thermodynamically by the locatidé@empera-
somewhat higher than the experimental oriBs;-298 K*®  ture) and the height of the corresponding peak. This provides
and Te~295.3 K37 Interestingly, T appears to be higher a criterion for ranking contacts in order of temperature and
than the experimental value also for “united atom” relevancesee Refs. 44 and 45For example, at the folding
simulatiof’* (T=308 K in the Go-model cas€[=333 K  temperaturel, the contacts that mainly contribute to the
with the full potential introduced in that papeand for all-  folding transition must be searched among those with the
atoms simulation&’ characteristic temperature located arodidand with high-

Free-energy profiles, for various temperatures, are plotest peak ofc;; . Correlation analysis for the hairpin is sum-
ted in Fig. 3 versus the number of native residiesthat we  marized in Table I, where we report the temperature and the
use as the folding reaction coordinate. Profiles suggest thdieight of correlation function peaks, between residues which
the B-hairpin folding is well described by a two state pro- share a native contact. Contacts are sorted in temperature and
cess, i.e.F(M) exhibits two minima separated by a barrier whenever a tie occurs the sorting runs over the heights of the
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T T T T T ] TABLE |. Ranking of native contacts according to characteristic tempera-
L j ture and height of the correlation peéRef. 45. Contacts 1-16 and 2—-16
0.2 — have been neglected: They yield bad results because they are not stable even
r in the experimental native structu(®ef. 34. The first three columns refer
c.(T) [ to the exact solutions, the others to MFA3 results.
ij §
0.1 _ Exact Mean field
I Contact Tehar Corr. peak  Contact Tehar Corr. peak
] 6-11 316.5 0.21457 6-11 312.0 0.21582
0.0 J 6-9 316.5 0.213 46 9-11 312.0 0.21553
» : 9-11 316.5 0.21243 6-9 312.0 0.214 41
Lowoo [ [ [ Ly 6-8 316.5 0.182 62 6-12 3115 0.21535
280 300 TS(QI%) 340 360 5-11 315.5 0.204 57 4-6 3115 0.214 49
6-12 3155 0.20214  5-11 3115 0.214 49
FIG. 4. Temperature behavior of the correlation functii{T) of native 7-9 3155 0.184 62 11-13 3115 0.214 47
contacts involving the Tryptophaiirp45). Symbols correspond to the exact  6—10 315.5 0.16488  5-12 3115 0.21414
solution, while solid lines indicate the MFA3 results for the contacts 1-3, 5—12 315.0 0.216 70 4-12 3115 0.21031
3-5, 3-12, 3-13, 3-14, from bottom to top. 5-7 315.0 0.184 61 5-13 3115 0.210 07
10-12 315.0 0.156 97 5-7 3115 0.19342
7-10 314.5 0.150 48 7-9 3115 0.191 98
8-10 3145 0.143 39 6-8 3115 0.18361
peaks. In this way, we can have a picture of how contacts arél-13 314.0 017713  10-12 3115 0.17117
established during the thermal folding. Assuming that the j—f 312(5) g-gg Zi i—ig gﬁg gégg gg
order of contact stabilization upon dgcreasmg the'te.mpera—S_13 3135 0.186 81 710 3110 0.150 91
ture reﬂegts the prdgr of formatloq during folding, this is also 3_g 3120 014805  8-10 3110 014385
a qualitative indication of the folding pathway. 4-13 310.5 0.209 32 3-5 310.5 0.197 85

We see, from the first three columns of Table I, that GF 3-12 310.5 0.150 90 3-12 310.5 0.195 26
model predicts that theg-hairpin folding begins with the 12-14 3105 014416  3-13 3105 0.19284
formation of contacts 6—-11 and 6-9, 9—-11, and 6-8, located® 13 3095 017364 12-14 3105 0.19111
) . . -1 309.0 0.164 87 4-14 310.0 0.185 29
in the region between the turn {®) and the hydrophobp o_4 3070 008024  3-14 3095 017464
cluster. Then, upon lowering the temperature, the folding 2-13 306.5 0.080 37 1-15 308.5 0.080 26
proceeds with the formation of the other contacts that com13-15 306.0 0.052 41 2-4 307.5 0.083 49
plete B-hairpin structure. This is at odds with the results of 3-14 ggg-g g-i% 2‘5‘ g—ﬁ ggg-g 8-832 g;
more detailed models and simulatiétig" predicting that : : - : :

. . . o, 1 298.5 0.03678 13-15 306.0 0.04143
fold!ng starts with the for_matlon of contacts betwee_n the side ;_14 206 5 0.03570  2-15 305.0 0.011 89
chains of the hydrophobic cluster, and proceeds with the sta4—16 290.5 0.097 73 1-3 3045 0.024 93
bilization of the hydrogen bonds in the loop regi@here is 2-15 273.0 012746  1-14 304.5 0.019 34
no agreement on the order of hydrogen-bonds formation,1-15 2730 005005  14-16 2910  0.00293

though. GF model predictions are different also from those
of the Muroz—Eaton model®3* where the hairpin starts
folding from the loop region and proceeds outwards in a

zipper fashion. Experimental results relying on pointtistically equivalent” to that given by exact solution. Thus,
mutation® witness the importance of the hydrophobic resi-We apply the Spearman rank-order correlation #gthis
dues 3, 5, 12 and, to a minor extent, 14, in stabilizing thel€St amounts to computing Spearman correlation

hairpin structure. Remarkably, contacts between residues 6, 6= L (Xi—Vi)?

9, 11 appear to be partially present also in denaturing R=1———-—5—F—,

conditions® n(n"-1)

It is interesting to notice, however, that, according towherex;, andy; are the integer indicating the positions of
Table |, contacts 3—-13, 4-14, 3-12, 12-14, 4-13 of theheith contact in the two ranking respectively. The param-
hydrophobic cluster are mainly established around the foldeter,R is 1 when the order in the two ranks is the saxe
ing temperature, which suggests that also in GF model the=y;, while Rg=—1, when the order is reversg+y;=n.
hydrophobic cluster plays a central role. This is a nice feafor data in Table I, we obtain the vallkg=0.902, that has
ture of the model because it is consistent with the experimera probabilityP <10 ° to take place if the null hypothesis of
tal evidencefluorence signalfor the formation of the tryp- uncorrelated ranks holds. This indicates that the order be-
tophan hydrophobic environment at the folding. tween the contacts obtained with exact and approximate

The estimation of correlation functions provided by methods is extremely significative: The mean-field approach
MFAZ3 is only in qualitative agreement with exact resufiee  basically recovers the correct order of contact formation and
Fig. 4): Contacts are formed in a narrower range of temperarelevance as obtained with the true original model.
tures, and a direct comparison would be meaningless. How- One of the most important experimental techniques for
ever we can ask what kind of information can be extractecharacterizing the folding nucleus of a proteéimore pre-
from the mean-field results, wondering, for instance, whethecisely of a protein with two-state foldingconsists in the
the ranking of contact formation provided by MFA3 is “sta- evaluation of®—values.®—values measure the effect of

(33
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FIG. 5. Variation on the free-energy profile induced by the perturbation ongiG, 6. Effects of “mutations” as measured dy—values on each residue.
all the interactions involving the sixth residd@sp4d of the Hairpin. The | circles: d—values from the exact solution; open circleb:values
variation(in kcal mol™*) is computed for both the exact solution and MFA3, yithin MFA3 approach. The temperatures are in both cases those whereby

at the respective temperatures of equal populations of the native and U =F, . Results depend only slightly on temperature, anyway.
folded basins. Solid and dashed lines indicate wild-type and mutated pro-

files, respectively, for the exact solution; dotted—dashed and points refer to
wild-type and mutated profile, respectively, in the MFA3. o } )
of the top of the barrier in Fig. 3 is the free-energy of the

top of the barrier. Through expression E§4) we obtain the

“perturbation” introduced in a protein by site-directed ®—values for each residue. In Fig. 6 we report the value
mutagenesi%?A mutation performed on thigh residue may distributions. There is a good overall correlation between the
affect the thermodynamics and kinetics, by altering the freeprofiles, that increase and decrease together. This is a further
energy difference between the native and unfolded $i@e  confirmation that the relevant features of the model are con-
the stability gap or the height of the folding—unfolding bar- served when applying the MF approach. Mean-field results
rier. Its effect is quantified through the—value, defined as yield smoother profiles, as it could be expected. The ends of
A(AF4y) the hairpin are characterized by lol—values, that become
— (34  negative for MFAS: This would correspond to mutations that
A(AFNY) increase the stability gap but decrease the barrier, or vice
where AFy,=F;—Fy, AFyw=Fy—Fy, and A(AF4,)  versa. According to these results, the folding nucleus would
and A(AFyy) are the variations, with respect to the wild be made up by residues 6, 8, 9, 11, which is in contrast with
type protein, introduced by the mutation in the folding bar-the already mentioned simulations.
rier and stability gap. Experimentallp(AFy) is derived
from the changes in the kinetic rates induced by differen
denaturant concentrations, whid AF ) is extracted from tv CONCLUSIONS
the changes in the equilibrium populatieh--values are dif- In this work we developed and discussed three different
ferent for different mutations of a residue; in any case, amean-field schemes for the Galzitskaya—Finkelstein model,
d—value close to one implies that the mutated residue has that represent valid ways to deal with the model for charac-
native-like environment in the transition state and hence igerizing the thermodynamical properties of a protein and its
involved in the folding nucleus. A value close to zero, in-folding pathway as well. These approaches offer viable alter-
stead, indicates that the transition state remains unaffected Imatives both to the procedure proposed by Galzitskaya and
the mutation, and hence the mutated residue is still unfolde@inkelstein?” and to MC simulations, that become computa-
at transition. tionally demanding for long polymers and usually affected

In our theoretical description, a mutation at sitess  from the sampling problems. We applied the model to the
simulated by weakening the strength of the couplings of  S-hairpin fragment 41-56 of the GB 1 protein, since, for this
1% between residué and the others. We choose a small simple system, mean-field results can be compared with a
perturbation because we cannot predict what kind of rearbrute force solution of the model, and both can be checked
rangements in the local structure, and hence in the contaetgainst experimental data and simulation published by other
map, a true residue-to-residue mutation would involve. Ougroups.
choice warrants that the effect of mutation remains local and  Our results suggest that, as far as specific heat and
does not disrupt completely the state. In Fig. 5, we show thasimple thermodynamic quantities are concerned, the standard
effect of a “mutation” of the sixth residuéAsp46 on the  mean-field MFAL is enough to yield correct results, provided
free-energy profiles. that one uses the recipe E&9) to connect the two branches

To evaluate theb—values, we compute the variations of the solution. For more sophisticated quantities like free-
in free energy profiles induced by each mutation, for theenergy profiles, correlations anbl—values, MFA3 is to be
exact solution and MFA3F, and Fy are evaluated as preferred, since it correctly recovers the main features of the
Fun=—RTInZ,\, where Z,, Z\ are, respectively, the exact solution. The hope is that mean-field results are still
partition functions restricted to unfolded and native basingepresentative of the exact ones in the case of longer and
in the free-energy profile, i.e., the regions to the left and righimore complex proteins, where the latter cannot be evaluated.

()=
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