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We analyze the translocation of a charged particle across an a-Hemolysin (e¢HL) pore in the
framework of a driven diffusion over an extended energy barrier generated by the electrical charges
of the HL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the
Poisson’s equation. We characterize the particle transport under the action of a constant forcing by
studying the statistics of the translocation time. We derive an analytical expression of translocation
time average that compares well with the results from Brownian dynamic simulations of driven
particles over the electrostatic potential. Moreover, we show that the translocation time distributions
can be perfectly described by a simple theory which replaces the true barrier by an equivalent
structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied
voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the
comparison between the simulated time distributions and their theoretical prediction results to be
greatly simplified when using the notion of the empirical Laplace transform technique. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4933012]

. INTRODUCTION

Theoretical and computational approaches to driven or
spontaneous migration of molecules through a biological pore
are often based on idealized models whereby pores are repre-
sented as passive channels imposing a spatial confinement!'~
that basically results into the presence of an entropic barrier.®’
While this raw geometrical picture may be appropriate to
investigate a general principle of the transport of neutral spe-
cies across solid state nano-channels, it turns out to be drastic
for biological pores whose chemical composition is known
to affect the translocation mechanism of charged molecules.
Both experiments and simulations have, indeed, revealed that
pore charges strongly influence the translocation under the
effect of driving forces.®!3 Therefore, the electrostatic inter-
action between a pore and the charged molecules cannot be
neglected in reasonably realistic phenomenological models of
translocation.

From a theoretical perspective, the passage of molecules
through a nanopore can be viewed as overcoming a free-energy
barrier determined by the physical properties of the pore and
molecule system. This problem is commonly tackled as a
driven-diffusion process in the presence of a given free-energy
landscape,l“‘18 which, under suitable approximations, leads
to solving a one-dimensional driven diffusion Smoluchowski
equation,'® with appropriate initial and boundary conditions.
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The main purpose of this paper is to analyze the driven
diffusion of a charged particle in the presence of realistic
electrostatic potential. As a relevant example, we selected the
a-Hemolysin (¢HL) pore, a biological pore widely employed
in nanopore technology?’~2® that spontaneously self assem-
bles into a heptameric channel that inserts itself into a lipid
bilayer. First, we compute numerically the 3D electrostatic
potential generated by the @HL, then we interpolate the effec-
tive one-dimensional profile along the pore channel. In the
Smoluchowski driven-diffusion picture, such a 1D-potential
corresponds to an energy barrier that a charged particle has
to overcome in order to cross the pore, with the simplified
assumption that the translocating particle does not perturb the
charge distribution and does not affect the electrostatics of the
aHL. In that context, the translocation of a charged monomer
is assimilated to a first passage process of a Brownian charged
particle entering the pore in one side and reaching the opposite
one. The statistical properties of the translocation are then
obtained either by direct numerical integration of the Langevin
equation or via the computational or analytical solution of the
Smoluchowski equation. '’

In this study, we derive an analytical expression for the
average passage-time as a function of the external load for
generic 1D barrier. In addition, for the specific case of a
square barrier, we find a closed expression for the Laplace
transform of the passage time distribution. Interestingly, the
distributions numerically obtained, with the 1D potential, are
well matched by the theoretical one with an equivalent square
barrier. As a final remark, our results suggest that the fitting
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FIG. 1. The mushroom-shaped protein @HL consists of a vestibule with a
diameter ~46 A at its widest section and 50 A in length. The vistibule is
linked to a B-barrel transmembrane whose diameter is ~25 A and 50 A in
length. The interface between the vestibule and the -barrel domains shows
a bottleneck; in this region, the pore is ~14 A wide at its narrowest point.

procedure of theoretical first passage-time distributions to
numerical or experimental data can be conveniently carried out
via the empirical Laplace technique.?

The present paper is organized as follows. Section II de-
scribes the electrostatic model adopted in an ideal free salt
environment. In Section III, we briefly introduce the Smolu-
chowski description for driven diffusion, we derive the analyt-
ical solution for the average passage time for a generic free-
energy profile, and we obtain the Laplace transform of the
translocation time distribution for the square barrier. Numer-
ical results for the first passage time distributions are reported
and discussed in Section I'V.

Il. ELECTROSTATIC POTENTIAL BARRIER

This section presents the computation of the electrostatic
potential inside and outside the (¢HL) pore in a free salt
medium. The HL length is approximatively L = 100 A, and it
is subdivided in several regions, Figure 1. The S-barrel region
(itis embedded in the lipid membrane) has a diameter of ~20 A
(based on backbone), the vestibule is 46 Ain diameter, and the
narrowest section, located between the vestibule and the S-
barrel, is approximatively 14 A wide. The pore is embedded
in a lipid membrane approximatively of 40 A thickness. In
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this study, «HL is aligned along the x-axis. The Laplace and
Poisson equations are numerically solved in order to calculate
the electrostatic potential V(r),
ViV =0 in Qu,0,Qm € R?
Ng
V3V = —Z i(5(1‘— r;) inQ,c R?
iz1 €p0

ey

Here, Qp,0 is the solvent region occupied by the water,
is the lipid membrane region, and €, is the region occupied
by aHL, while &) and ¢, are the vacuum and pore dielectric
constants, respectively. The N, point charges g; in Eq. (1) are
obtained from the Protein Data Bank (PDB) structure of «HL
(pdb code: 7AHL),?® and the protonation state for residues
is determined at pH 7.0 employing the PDB2PQR pipeline*
and the AMBER99 force field.?! Briefly, in order to simu-
late the entire system, we carried out a dummy calculation
with APBS-FETK software libraries®? to create 3D dielectric
environment and the geometry of a previously equilibrated
lipid membrane. The dielectric constant of each region of
the structure is homogeneous, and the values are chosen as
follows: in Qp,o, the standard relative dielectric is ey,0 =
78.54. For the pore, &, = 4 and &,,, = 2 for the lipid membrane
region. The system of equations is solved using the APBS-
FETK.*734 The simulation is run assuming a bounding box
equal to 321 A x 321 A x 321 A with a fine grid of 1 grid
nodes/A. The Eq. (1) is numerically solved enforcing Dirichlet
boundary condition and continuity of the potential and normal
electric displacement across the interfaces among solvent, lipid
membrane, and aHL regions. To obtain a 1D profile of the
electrostatic potential as a function of the x-coordinate from
the 3D electrostatic potential, we use the following procedure.
First, we chose nine directions of sight, labelled by w; in
Figure 2, at a distance of 1 A from the x-axis of the pore, then
we interpolate the electrostatic potential for each one of them.
Since the potential appears to be only slightly dependent on the
position wy;, inside the pore, we take the average as electrostatic
barrier experienced by a charged particle translocating through
the pore (inset of Figure 2). Finally, the average electrostatic
potential U(x)is fitted with a multi-Gaussian function. Figure 2
shows the behavior of the electrostatic potentials along the x-
axis of the aHL pore. The peak in the electrostatic potential

100

FIG. 2. Dimensionless unit kgTe~! of
the electrostatic potential along the x-
axis of the HL. The behavior of the
electrostatic potential is plotted taking
into account nine different lines of sight,
each one at a 1 A distance from the
x-axis. The highest value in the electro-

‘ °g8 ‘

static potential is located approximately
40 A from the origin of the reference
frame (i.e., the cap of the aHL). It
corresponds to the location of a group
of Lys'7 residues. The average of the
electrostatic potential is shown in the
inset. The grey shaded area corresponds
to the pore region.

50 . 160 o 1§o
x-axis [A]

1
200 250



154109-3 Ansalone et al.

is mostly localized between the seven Lys'*’, and these resi-
dues form a ring around the narrowest part of the g-barrel
region. In contrast, the electrostatic effects arising from Asp'?’
and Asp'?® (negatively charged) are partially compensated by
Lys"3! (positively charged), and these residues flatten the peak
of the electrostatic potential at the end of the -barrel region
(x ~ 100 A). These results are in agreement with the previous
studies.®

lll. SMOLUCHOWSKI DRIVEN DIFFUSION

Here, we describe the one-dimensional Smoluchowski
equation for a positively charged particle g driven by a constant
electrical field E, along the x-axis, F' = gE, in the presence of
a generic energy barrier. The probability P(x,t) for a particle to
be in the position x at time ¢ satisfies the conservation equation

opP oJ
ot ox’ @
where J(x,1) is the flux of probability density. In the present
case, Eq. (2) takes the form
oP oU(x)
J(x,t) = Dﬁx uP I
where p and D = ukgT are the particle mobility and diffusion
coeflicient, respectively, with 7 the temperature and kp the
Boltzmann constant. The function U(x) denotes the barrier
profile due to the pore as defined in the previous section and F
is the applied bias electric force acting over the whole domain
[—o0, L]. The pore occupies the region x € (0, L). Particles are
emitted at the pore entrance, x = 0, at time # = 0, and are
later adsorbed at x = L, which implies the boundary condi-
tion P(L,t) =0, see Fig. 3. In the following, unless differ-
ently specified, we use the natural dimensionless variables:
f=L"'"x,7= DL, F = LF/kgT. In these coordinates, the
pore region [0, L] is rescaled to the interval [0, 1]. For sake of
notation simplicity, we omit the tilde, so that the dimensionless
Smoluchowski equation reads

oP 8 [ap aU(x)

+ uPF, 3

— = —+

ot ox | Ox ox
Integrating the solution P(x,t) of Eq. (4), we obtain the prob-
ability S(¢) that at time ¢ the particle has not yet translocated

- FP] . “)

1
S@) = / P(x,t)dx. 5)
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FIG. 3. Sketch of the 1-D driven-diffusion model. Particles are emitted at the
pore entrance x =0 and are adsorbed at the pore exit (x = 1). Translocation
requires the overcoming of the free-energy barrier with the help of an external
force F acting along the x direction.
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This is also called the survival probability, as in our model,
it is the probability that the particle has not been absorbed at
x = 1. Accordingly, the probability to be absorbed, i.e., to exit
the pore after the time ¢, is Pyy(f) = 1 — S(z). Therefore, the
distribution of first passage times i(¢) is simply obtained as

dPoul(t) — _dS(t)
dt dt -

Using Smoluchowski equation (4), we can express ¥/(f) in
terms of the probability current at the absorbing boundary

Y(t) = (©)

W)= J(1,1) = _g_f —p(L) agix)

thus the probability current, through the solution of Eq. (4),
determines /(7). The knowledge of (z) allows us to derive
all moments of the distribution and, in particular, the average
translocation time,

0 1 o
T = / drty(t) = / dx / dtP(x,t), (8)
0 —00 0

where the second equality follows from Egs. (6), (5), and
from an integration by parts. Appendix A shows that, for a
generic barrier of shape U(x), the Smoluchowski equation
in the domain [—oo, 1] with initial condition P(x,0) = 6(x)
provides the expression

+ FP(1,1), @)
1

Lo MAF)

+ Mo(F), C))

where the functions M, (F) and My(F) are given by

1
M (F) :/ dx %%,
0
10)
1 1
My(F) = / dx e_G(x)/ dy W),
0 x

with G(x) = U(x) — Fx. Interestingly, in the limit F — 0, the
second term of Eq. (9) becomes negligible and

_ M.(0)

o
As we will see in the following, this allows an equivalent square
barrier to be defined with height

an

¢ = log M.(0). (12)

While the explicit value of 7 can be obtained numerically,
at least, computing the relevant integrals, the explicit expres-
sion of ¥(¢) for an arbitrary barrier cannot be given. Indeed,
Eq. (7) requires the full solution of (4) which, in general, cannot
be worked out analytically. Consequently, one must either
resort to direct numerical simulations or introduce simplifying
approximations.

A simple but meaningful approximation amounts to re-
placing the actual potential barrier with a square profile which
allows us to derive a closed analytical form for the Laplace
transform (s) of y(¢), and which appears to be “equivalent”
to the real barrier for calculations of our concern. Indeed, as
detailed in Appendix A, the Laplace transform of the Smolu-
chowski equation yields the result
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2eF12A(F,s)

Yo(s) =

where 2A(F,s) = VF2 + 4s, and ¢ is the barrier height, i.e.,
U(x) = ¢forx € [0,1]and U(x) = 0, x € [-00,0]. As we shall
see in Section IV, the expression of §(s) is very useful in the
analysis of the empirical Laplace transform?’ of the transloca-
tion times obtained from direct simulations, even without the
explicit inversion. Eq. (13) reduces to the well known Inverse
Gaussian (IG) distribution obtained in the vanishing barrier
limit, ¢ = 0,

Jr6(s) =exp{%(F—\/F2+4s)}, (14)

which can be easily inverted to give

1 (1= Ft)?
= exp{— —= } (15)

customarily considered a useful guide to interpret data of
voltage-driven translocation experiments in high-voltage re-
gimes.?® At the end of Appendix B, we show that, though the
inversion of Eq. (13) leads to a quite involved expression, the
large-time behaviour of the arrival time probability distribution
function (PdF) can be easily worked out via a saddle-point
method (see Eq. (B12)) and reads

UiG(t) =

F?e?
- —F 1.

(1+ e?)? }
Interestingly, the exponential decay rate is controlled by the
height of the equivalent barrier and, when ¢ — 0, it is consis-
tent with the inverse Gaussian behaviour exp(—F?t/4).

Using the relation between the derivatives of the Laplace
transform calculated at s = 0 with the momenta of the func-
tion, (—1)"y"™(0) = fooo dt t"y(t), where (n) indicates the n-th
derivative, we can obtain all the momenta of , in particular,
the average residence time reads

F(e?—1)(1-eF)
T= 2 . a7
Notice that Eq. (17) can be also directly derived by Eq. (9).
Interestingly, in the limit of F — 0, (17) reduces to

walt) ~ exp | (16)

e?
7
i.e., again a 1/F behavior as in the F — oo limit. By compar-
ison of Egs. (18) and (11), it results that, in the limit ' — 0,
any barrier can be described by an equivalent square barrier,
the correspondence being set via the following relation:

(18)

T =

1
exp(¢) = M,(0) = / dx eV, (19)

0

IV. NUMERICAL RESULTS

The electrostatic barrier derived in Section II is used to
study numerically the translocation of a positive unit charge
across the HL under the action of a constant electric field E.

[2e2A(F,s) + F(1 — e?)] sinh[A(F, 5)] + 2A(F, s) cosh[A(F, )]’

13)

We generate a continuous version of 1D average electrostatic
potential by a multi-Gaussian fit,

0(x) = iUkexp [— (x_x")z]. (20)
k=0

Ck

The set of coefficients is reported in Table I. The dynamics of
the charged particle is described by the overdamped Langevin
equation

popo 200, V2n(o), @
0x

with n(¢) a Gaussian noise, with (n(¢)) = 0 and {(n(*)n(t’))
= §(t — t’). After ensemble averaging, this Langevin approach
is equivalent to Smoluchowski formulation (4).'° In Langevin
formulation (21), we assume the friction exerted by the solvent
large enough to overwhelm the inertial terms (overdamped
regime). We integrated equation (21) numerically via a second
order stochastic Runge-Kutta algorithm,?” for an ensemble of
M = 10° independent particles emitted at the pore entrance
(x = 0) att = 0 and adsorbed at x = 1. We notice that particles
are allowed to explore the whole domain [—co,1]. As it is
customary, the translocation time in our simulations is the time
of first arrival at the absorbing boundary #1, = min{¢ € [0,7T,] :
x(r) =1}

Figure 4 illustrates the average translocation time 7 over
the M trajectories as a function of the external load F (cf.
Section IIT). The points are the results of the Brownian dynamic
simulations and for comparison, the analytical curve Eq. (9) is
also plotted, demonstrating the agreement with the numerical
data. Different regimes are apparent in the behavior of 7(F).
For high forcing, the typical inverse Gaussian behavior, T
= F~! is recovered (lower horizontal dashed line). The sta-
bility threshold F, for the onset of this ballistic-like regime
can be roughly estimated as F, = max, U’(x) = 64.5, that is,
the minimal F-value after which the barrier of the tilted pro-
file G(x) = U(x) — Fx disappears.***° Below F., T abruptly
increases as the barrier crossing turns to be mainly thermally
activated. The vertical line in Fig. 4 represents the threshold F,
separating a thermally activated from a ballistic-like regime.

TABLE I. Multi-Gaussian fit coefficients, Eq. (20), with a 95% confidence
intervals. Uy, are in kgT e~ while xj and ¢y, are in A.

k Uy Xk Ck

0 -0.547 -50.000 20.260
1 —4.000 1.000 29.230
2 2.510 18.940 11.110
3 0.729 49.243 0.003
4 1.047 50.432 4.396
5 8.340 52.766 35.590
6 1.112 68.610 125.000
7 0.598 92.130 7.732
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FIG. 4. Behavior of the average translocation time 7 versus F. The solid line
is the analytic result Eq. (9) while the points refer to numerical simulations.
For high forcing (F > F.), the curve collapses on the ballistic (inverse Gaus-
sian) prediction 7 = 1/F. The higher dashed line indicates the F =0 limit,
Eq. (18). The vertical line marks the stability threshold F. =max,U’(x) at
which the profile G(x)=U (x)— F.x loses its stable minimum given by the
solution U’(x)=F.

Moreover, it is apparent that for low forcing the exit-time goes
as Eq. (18).

Further analysis on translocation statistics can be carried
out by collecting histograms of the first exit time fromthe x = 1
boundary. Since no analytical expressions are available for the
¥ (1) in the presence of the generic potential, we need to resort
to the equivalent square-barrier approximation that, however,
provides explicit formulas only in Laplace transform space.
Therefore, a direct comparison of the normalized histograms
with approximated results (13) requires the Laplace-inversion
W(t) = L7'[¥(s)],, which should be numerically performed
via standard algorithm. To avoid the iteration of a boring
fitting procedure made of a step of numerical inversion fol-
lowed by a step of parameter tuning in Eq. (13), it is conve-
nient to employ the so called empirical Laplace transform?’
which for a set of M measured exit times {tk},’:’i | is defined
as

M

bel) =75 3 e 22)
k=1

In this way, instead of comparing the distributions, we compare
their Laplace transform; in other words, the comparison be-
tween data and theory is not done in the time-argument, as
natural, but in the s-argument. In Fig. 5, the symbols represent
the y.(s) associated to four sets of exit times at different values
of F. The solid lines correspond to Eq. (13) with the barrier
height ¢ estimated by inverting Eq. (17),

F(Ft-1) } 23)

-F

¢>=ln{l+

where 7 is the numerical value obtained from formula (9).
The agreement between ¢.(s) and Eq. (13) is striking and
indicates that the shape of the time distribution can be well
captured by adjusting a step-like barrier, regardless of the
details of the true potential. The dashed lines from the left to
the right refer to the inverse Gaussian computed at fields F
= 15,45,75,150, respectively. We see that at low and mod-
erate fields F = 15,45, the inverse Gaussian yields a bad

l-e
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FIG. 5. Empirical Laplace transform for electrostatic barrier data, at F' =15
(circle), F =45 (squares), F' =75 (triangle), F' =150 (diamonds). The solid
lines are the Laplace transforms of 4j(s) for the square barrier. For each F,
the equivalent barrier height ¢ is estimated by formula (23): ¢(15)~8.13,
¢(45)~4.21, ¢(75) ~3.14, and ¢(150) ~2.365. The dashed curves labelled
by a-d indicate the Laplace transform of the inverse Gaussian computed at
fields F =15,45,75, 150, respectively. Clearly, the inverse Gaussian becomes
a reasonable approximations only for high enough force.

representation of the exit time process. This comparison be-
tween data and theory via the Laplace transform suggests
that even the simplest correction to the inverse Gaussian
model is just able to drastically improve the description of the
translocation time distribution in the regimes of small fields
where the inverse Gaussian is known to be not applicable. To
confirm the above scenario, we numerically inverted Eq. (13)
via the fixed Talbot algorithm*' implemented in Mathematica
Wolfram 8.0 by Abate and Valk6*? (package FixedTalbot-
NumericalLaplacelnversion.m) using the equivalent ¢ from
Eq. (23).

The distributions of ¢ for three different forcings are re-
ported in Fig. 6 where the normalized histograms are repre-
sented by the shaded areas, whereas the solid curve indicates
the theoretical distribution from the equivalent square barrier
model. The first panel refers to the very low forcing regime
(F < F,) where the distribution is basically dominated by the
exponential tail. At low forcing, F' < F,, the distribution of
panel (b) is strongly skewed and develops a long tail for large
t that yet differs from the inverse Gaussian as the waiting
time before the barrier jumps cannot be neglected. Finally,
panel (c) illustrates a case with F > F,, and y/(¢) does not
differ qualitatively from the corresponding inverse Gaussian
with the same value of F; at strong fields indeed, the barrier
height is drastically reduced and the jump process becomes
irrelevant. The insets of Fig. 6 report the lin-log plot of the main
panel data, showing the good agreement between histograms
and theoretical PdF also in the long-time tails. Moreover, the
dashed straight lines represent the exponential decay of the
tails as predicted by formula (16) and derived in Appendix B.
The perfect alignment of the dashed line with the numerical
inversion of Eq. (13) (solid line) in all the force regimes indi-
cates that the behaviour predicted by Eq. (16) is an exact result.
The agreement between theoretical predictions and simulation
data is remarkable suggesting the general applicability of the
square barrier model to obtain a first reasonable correction to
the inverse Gaussian distribution.



154109-6 Ansalone et al.

J. Chem. Phys. 143, 154109 (2015)

T ——— 120 5 —— 500 = -
c 1008 a) 3 [ 10 b) 3 r [ ]
3 [ ] 2
0,06 1 o0l 10 107 3
> 100+ 1 £ k|
-2 _ L L ]
I 10'F 1% [ ]
[ 1 F F ] r 10 3
v L 1 sof i 1t 3 ]
2 E i oL 4 300+ I 1
0,04 i I 10’ 1% 10 ]
= 2N 4 60 Fl \\. L \E
E ST r r \ L N
E o oaq = -1 [ |
i S RN 10 002 004 | 200 100,005 0,01
0,02 50 100 I t r t
) t i i
20; 100?
0 [ R oL s ‘ Ll ot oo P R
0 50 100 150 200 0 0,02 0,04 0,06 0,005 001 0015 002

t

FIG. 6. Translocation time distributions over the electrostatic barrier, for three different external loads F =15 (a), F =75 (b), and F =150 (c¢). The shaded
areas represent the histograms collected from the arrival time at L =1 of the trajectories generated by the numerical integration of Eq. (21). The black solid
lines are the distribution computed with the model of equivalent-square barrier, with ¢ =8.13 (a), ¢ =3.14 (b), and ¢ =2.365 (c) set from Eq. (23); consider
that no further parameter adjustment is required to fit perfectly the data. The insets are the lin-log plots of the main figures showing the exponential tail of the

distributions predicted by Eq. (16) (dashed line).

V. CONCLUSIONS

Translocation of molecules through narrow nanopores is
often described as one-dimensional driven diffusion over a
energy or free-energy profile. This approach is justified as
long as a single reaction coordinate is capable of characteriz-
ing the transport dynamics while the motion along any other
direction can be considered to be much faster.** Although
this assumption may not be true in general, one-dimensional
models are considered useful mathematical tools to describe
the qualitative features of the transport phenomenology across
Narrow pores.

In this paper, we investigated the diffusion of a single
particle driven by an external constant field along a realistic
energy profile. We worked out an analytical expression of the
average translocation time for generic energy profiles, and of
the Laplace transform of the translocation-time distribution
over a square barrier. As a representative case to compare with
our theoretical results, we selected the transport of a positive
charged particle through an aHL pore, whose electrostatic
potential has been computed via the Poisson equation.

In order to collect the statistics of the translocation time at
different values of the forcing, we performed numerical simu-
lations of the barrier crossing process by solving a Langevin
equation. The average translocation time has been found to
be in good agreement with the our analytical prediction. The
energy landscape strongly affects the transport at low forcing,
determining a non-trivial behavior of the average translocation
time with the force intensity F. At high forcing, the role of
the energy landscape can be neglected; thus, the translocation
process is equivalent to a driven-diffusion mechanism without
barriers. As a consequence, the average translocation time
shows the quasi-ballistic F~'-dependence.

Also, translocation time distributions clearly reflect the
presence of these two forcing regimes. At low forcing, where
the effects of the energy profile are particularly relevant, we
were unable to derive the exact expression of such distri-
butions, so we resorted to the simplest yet still meaningful
approximation by replacing the actual potential barrier with

an appropriate square profile. In this way, the true Laplace
transform of the translocation-time distribution over the «HL
electrostatic barrier is well approximated by the corresponding
distribution in the model with the “equivalent” square barrier.
Working with the Laplace transform is convenient as it
maps a differential equation problem into an algebraic one.
However, the main difficulty relies in the inversion of the trans-
formation, a step that is often done numerically. In this respect,
we have shown that by employing empirical Laplace transform
(22) of translocation-time raw data, the inversion procedure
can be skipped, as the comparison between theoretical and
numerical distributions is equivalent to comparing their respec-
tive transformations. We expect these observations to help
the development of new methods based on empirical Laplace
transforms for the analysis of experimental translocation data.
Finally, we obtained the analytical decay law of the arrival-time
distributions at large times for any square-barrier height and
any explored forcing. This exponential behaviour ,(f) ~
exp(—yt) is controlled by the coefficient y = F2e?/(1 + ¢?)?
that depends both on the barrier height ¢ and the drive F.

APPENDIX A: DERIVATION OF ANALYTICAL
EXPRESSION

In this appendix, we derive formulas (9) and (13) from
the Smoluchowski equation for a particle in a potential G(x)
= U(x) — Fx, where U(x) is significantly non-zero only in the
region [0, 1], Fig. 3 while F acts over | — co, 1]. We use natural
variables to get a dimensionless equation and we consider the
Laplace transform

Y(x,s) = /°° dtP(x,t)e™"" (A1)
0

of the probability distribution, which satisfies the equation

sY(x,s) = o(x) = :—x{%i’s)

with initial condition P(x,0) = 6(x). This problem cannot be
solved in a closed form except for some special choice of

+ G’(x)Y(x,s)} (A2)
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G(x); yet, according to (8), the exact expression of the average
translocation time derives from the solution of the simplified
problem with s = 0,

1
T=/ dxY(x,0). (A3)

00

As it is customary, the presence of the term &(x) in (A2)
requires to solve the homogeneous equation

i{aY(x,O)
ox ox
in each of the two domains R; =] — 00,0[ and R, = [0, 1],

ape’™ ifx <0
Y(x) = x ,
x) e “Ya; + by / dée®¥]  ifo<x<1
0

+ G’(x)Y(x,O)} -0 (Ad)

where we omit writing s = 0 for simplicity. The coefficients
are determined by the boundary conditions Y (—c0) = Y (1) = 0
and by the two matching conditions at x = 0, resulting from
the continuity, Y(0*) = ¥Y(07), and from integrating both mem-
bers of Eq. (A4) over the interval [—¢,€] then taking € — 0
(see Ref. 44, pp. 112-116). The latter leads to the following
current jump:

1= V(@) + G Y ()]0

—[Y'(x) + G'(0)Y (x)]x=0- (AS5)

which, assuming the continuity of U’(x) and Y(x) in x = 0,
reduces to —1 = Y’(0") — Y’(0). In other words, the deriva-
tive d,Y presents a discontinuity of magnitude 1 in x = 0.
These three conditions determine univocally the coefficients
ap,ay, by, which read

1 _
ap = —a; = / dgeV D-Fa, by =-1.
0

Then, according to formula (A3), the direct integration of Y (x)
over | — oo, 1] yields result (9),

J. Chem. Phys. 143, 154109 (2015)

1 1
r=2 +/ der(x)_Fx/ dye_U(y)+Fy.
F 0 X

The case with a square barrier in [0,1], U(x)
= ¢O[x(1 — x)], O(s) being the unitary step function, has the
advantage of being fully tractable even for s # 0. In this case,
Eq. (A2) reduces to

Y"(x,s) - FY'(x,s) — sY(x,s) = 0, (A6)

whose solutions in R; and R, are linear combinations of

exp(Fx/2 + VF2+4s/2), i.e.,
P2 (A1e? + Are™ ) x <0

Y(x,s) = )
e"*12(Bje?* + Bye™*) 0<x <1

(A7)

with ¢ = VF2 + 45/2. As before, the four coeflicients Aj, Ay,
By, B, are determined by the boundary conditions: Y (—oo,s)
=0, Y(1,s) = 0 and by the matching at the discontinuity of
the potential, Y (0™, 5)e? = Y (07, s), in which the barrier height
¢ appears.*> Again, the presence of the d-function imposes
constraint (AS5),

-1 =Y'(0%,s) = FY(0*,s) — [Y'(07,s) — FY(07,s)].

After simple but tedious algebra, we obtain the following
solution:

hi(s) eF*"? exp(gx x<0
Y(x.5)= {h;gs; efx2 snf)h([qq()l -x)] 0<x<1’ (A9
where the coeflicients &, h, read
() = 2¢? sinh(q) . ’
2q cosh(q) + [2e?q — F(e? — 1)] sinh(q) (A9)
ho(s) = =

24 cosh(q) + [2e?q — F(e? — 1)] sinh(q)"

Thus, after Laplace transforming Eq. (7), which yields #(s)
= J(1,s), we have

Py(s) =

that is, Equation (13) reported in Section III. When ¢ = 0, we

eFPVF2 + 45 (AL0)
VFZ? 1 45 cosh (%M) + [e¢m —F(e? - 1)] sinh (%M) ’
F* F .
volt) =exp{ =+ L0V, B

simply recover the Laplace transform of inverse Gaussian (14),

(F—M)

Po(s) = e% . (A1)

APPENDIX B: LAPLACE INVERSION

For the sake of completeness we report additional explicit
calculations concerning the inversion of the Laplace transform.
Using the shift property of the Laplace transformation, such
that s — s — F2/4, Eq. (A10) can be recast into the following
form:

hereafter, £~[...],, indicates the inverse Laplace transform of
argument u. Thus, we are left with the simpler function to be
inverted

N 25
O(Vs) = 2+/s cosh(v/s) + [2e%+/s — F(e?® — 1)] sinh(/s),
(B2)
that can be recast in the form
2+s

0(Vs) = eVs[(e? + s — w] — e Vs[(e? — 1)/s — w],
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where w = F(e? — 1)/2. In order to use Laplace transform
tables of elementary functions, Q(+/s) can be conveniently re-
written as a geometric series

o) = 2t Z 1 - I‘Cw)", (83)

witha =e? + 1.
It is immediate to treat the case F = O(w = 0), i.e., barrier
without drift, that reduces to invert

O(Ws) = 5 D e emV (1 - %) (B4)
n=0

leading to the formula

P —1\"2n+1 (2n + 1)
O e _
o ()= l+e¢z(e¢+l) exP{ 4 }

t3
(BS)

When ¢ is large, sum (B5) is dominated by the n = 0 term; thus,
we obtain the asymptotic approximation

J. Chem. Phys. 143, 154109 (2015)

2 exp{-1/(41)}
T+¢ N

For the case F' > 0, we perform a further binomial expan-
sion of the term raised to the n-power in Eq. (B3),

o =3 S e ( )( ‘fw)me-w (B6)

n=0 k=0

(0)(l)

and for shortness sake, we set ¢,, = 2n + 1 and

k+1
25 s
n, e Y7,
Onk(Vs) = ( Nl w)

Applying the Schouten-Van der Pol theorem (see
Ref. 46 and p. 77 of Ref. 47) we can invert each term of sum
(B6) with +/s replaced by s at the price of solving the inte-
gral

oo

duu

—u?/4t p-11 A
A \/We L7NOni()]u.  (BT)

L7NQn s (V) =

It can be shown that

1A 2\ w w(u —ty)
L7On k()] = (2) [6(u —ty) + (k+ I)EG)(u —t)M (k +2,2, T)] , (B8)

where O(u — t,,) is the unitary step function and M(a, B,u)
indicates the Kummer’s confluent hypergeometric function*®
which for @ = k + 2 and 8 = 2 is known to assume the form
M(k + 2,2, x) = e*Pr(x) of a product between an exponential
and a polynomial of degree k, such that Py(x) = Pr(0) = 1.

The above expression plugged into the integral (B7)
yields

. kL[, i3 /()
£10,u0), = (2] [’"

— +(k+1
Vs tler )

In,k(t) >

(B9)

where I, 4(¢) represents the integral

" dulu t+1y) exp {_(“ ) + w”} P, (ﬂ)
0 Va3 a
Combining all the above expressions together and considering

that the first term of Eq. (B9) reconstructs function Eq. (BS),
we obtain the final result as a sum

I, (1) =
p.a(®) 4¢ a

o

=N g+ kKL (B10)

(n,k)=0

w0 + —

L7'0Ws)] =
with coefficients

g+1
=17 (7)(2) @,

The substitution of Eq. (B10) into Eq. (A10) yields the first
arrival time distribution, which, despite the simplicity of the
problem, remains quite involved as it amounts to a double
series in the k,n indexes. However, one can easily derive the

simplest nontrivial correction to Eq. (BS) (F =0 case) by
retaining only the k = 0 terms in Eq. (B10),

~ o~ F2/4+F/2 |, (0) -1 <
Yolt) = e ['ﬁ ()+F(e¢+1)2;)1n,0(t) . (B11)

As a final remark, we stress that asymptotic behaviour
of Yg(t) at large times is fully determined, term by term,
by the explicit structure of the integrals I, ,(t). The large-
behaviour of I, 4(¢) can be estimated by evaluating the inte-
grand at the saddle point u™ = 2tw/a — t,, of its exponent. The
direct substitution shows that I, ,(¢) ~ exp[t(w/a)?] which
combined with the exponent —F?t/4 from Eq. (B1), and re-
calling that d/g))(t) ~ t73/2 is subleading, yields the large-time
behaviour of the distribution

e?F?
lﬂ(ﬁ(t) ~ eXp {—mt} .

where, we substitutedw = F/2(e? — 1),a = ¢? + 1. The analyt-
ical result, Eq. (B12), is an exact asymptotic property of the
arrival-time distribution of the driven-diffusion over a square
barrier, as it verified with great accuracy in the explored range
of F by the numerical inversion of Eq. (13) in Fig. 6.

(B12)

IS, Matysiak, A. Montesi, M. Pasquali, A. B. Kolomeisky, and C. Clementi,
Phys. Rev. Lett. 96, 118103 (2006).

2C.-T. A. Wong and M. Muthukumar, J. Chem. Phys. 128, 154903 (2008).

3L, Huang and D. Makarov, J. Chem. Phys. 129, 121107 (2008).

M. Chinappi, F. Cecconi, and C. M. Casciola, Philos. Mag. 91, 2034 (2011).

SM. Bacci, M. Chinappi, C. M. Casciola, and F. Cecconi, J. Phys. Chem. B
116, 4255 (2012).

6A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov, J. Chem. Phys.
116, 9952 (2002).



154109-9 Ansalone et al.

M. Muthukumar, Polymer Translocation (Taylor & Francis US, 2011).

81. Movileanu, J. P. Schmittschmitt, J. M. Scholtz, and H. Bayley, Biophys.
J. 89, 1030 (2005).

9C.-T. A. Wong and M. Muthukumar, J. Chem. Phys. 133, 045101 (2010).

10M, Muthukumar and C. Y. Kong, Proc. Natl. Acad. Sci. U. S. A. 103, 5273
(2006).

Hp, Panja, G. T. Barkema, and A. B. Kolomeisky, J. Phys.: Condens. Matter
25,413101 (2013).

125 L. Trick, E. J. Wallace, H. Bayley, and M. S. Sansom, ACS Nano 8, 11268
(2014).

131, Mereuta, M. Roy, A. Asandei, J. K. Lee, Y. Park, I. Andricioaei, and T.
Luchian, Sci. Rep. 4, 3885 (2014).

14D. K. Lubensky and D. R. Nelson, Biophys. J. 77, 1824 (1999).

I5A . Ammenti, F. Cecconi, U. Marini Bettolo Marconi, and A. Vulpiani, J.
Phys. Chem. B 113, 10348 (2009).

16A. Pelizzola and M. Zamparo, Europhys. Lett. 102, 10001 (2013).

17W. Im and B. Roux, J. Mol. Biol. 322, 851 (2002).

18M. Bacci, M. Chinappi, C. M. Casciola, and F. Cecconi, Phys. Rev. E 88,
022712 (2013).

19C. W. Gardiner, Springer Ser. Synergetics 13, 2963-2968 (1985).

20, Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, J. E. Gouaux
et al., Science 274, 1859 (1996).

21, Madampage, O. Tavassoly, C. Christensen, M. Kumari, and J. Lee, Prion
6, 110 (2012).

22A. G. Oukhaled, A. L. Biance, J. Pelta, L. Auvray, and L. Bacri, Phys. Rev.
Lett. 108, 88104 (2012).

23A. G. Oukhaled, J. Mathe, A. Biance, L. Bacri, J. Betton, D. Lairez, J. Pelta,
and L. Auvray, Phys. Rev. Lett. 98, 158101 (2007).

24]. Nivala, D. B. Marks, and M. Akeson, Nat. Biotechnol. 31, 247 (2013).

25D. Rodriguez-Larrea and H. Bayley, Nat. Nanotechnol. 8, 288 (2013).

264, Asandei, M. Chinappi, J.-k. Lee, C. H. Seo, L. Mereuta, Y. Park, and T.
Luchian, Sci. Rep. 5, 10419 (2015).

J. Chem. Phys. 143, 154109 (2015)

2D, Di Marino, E. L. Bonome, A. Tramontano, and M. Chinappi, J. Phys.
Chem. Lett. 6, 2963-2968 (2015).

28A. Asandei, M. Chinappi, H.-K. Kang, C. H. Seo, L. Mereuta, Y. Park, and
T. Luchian, ACS Appl. Mater. Interfaces 7, 1670616714 (2015).

29N. Henze and B. Klar, Ann. Inst. Stat. Math. 54, 425 (2002).

30T, J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen, G. Klebe,
and N. A. Baker, Nucleic Acids Res. 35, W522 (2007).

3y, Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).

32M. Holst, Adv. Comput. Math. 15, 139 (2001).

3A. Manzin, D. Ansalone, and O. Bottauscio, IEEE Trans. Magn. 47, 1382
(2011).

34A. Manzin, O. Bottauscio, and D. Ansalone, J. Comput. Chem. 32, 3105
(2011).

3N. A. Simakov and M. G. Kurnikova, J. Phys. Chem. B 114, 15180 (2010).

3D, Y. Ling and X. S. Ling, J. Phys.: Condens. Matter 25, 375102 (2013).

37R. L. Honeycutt, Phys. Rev. A 45, 600 (1992).

380.K. Dudko, G. Hummer, and A. Szabo, Phys. Rev. Lett. 96, 108101 (2006).

39M. Evstigneev and P. Reimann, J. Phys.: Condens. Matter 27, 125004
(2015).

40C. A. Plata, F. Cecconi, M. Chinappi, and A. Prados, J. Stat. Mech.: Theory
Exp. 2015, P08003.

41A. Talbot, IMA J. Appl. Math. 23, 97 (1979).

42J. Abate and P. Valké, Int. J. Numer. Methods Eng. 60, 979 (2004).

43A. Berezhkovskii and A. Szabo, J. Chem. Phys. 135, 074108 (2011).

44H. Risken, The Fokker-Planck Equation: Methods of Solution and Applica-
tions, Lecture Notes in Mathematics (Springer, 1996).

45V, Berdichevsky and M. Gitterman, J. Phys. A: Math. Gen. 29, 1567 (1996).

46, Schouten, Physica 2, 75 (1935).

4D. Duffy, Transform Methods for Solving Partial Differential Equations, 2nd
ed. (CRC Press, 2004), p. 77.

48G. B. Arfken and H. J. Weber, Mathematical Methods For Physicists, Inter-
national Student Edition (Academic Press, 2005).



