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Abstract. Several years after the pioneering work by Fermi, Pasta and Ulam, fun-
damental questions about the link between dynamical and statistical properties
remain still open in modern statistical mechanics. Particularly controversial is the
role of deterministic chaos for the validity and consistency of statistical approaches.
This contribution reexamines such a debated issue taking inspiration from the prob-
lem of diffusion and heat conduction in deterministic systems. Is microscopic chaos
a necessary ingredient to observe such macroscopic phenomena?

3.1 Introduction

Statistical mechanics, founded by Maxwell, Boltzmann and Gibbs, aims to
explain the macroscopic properties of systems with a huge number of degrees
of freedom without specific assumptions on the microscopic dynamics, a part
from ergodicity [1, 2]. The discovery of deterministic chaos [3], beyond its
undoubted important implications on many natural phenomena, enforced us
to reconsider some basic problems standing at the foundations of statistical
mechanics such as, for instance, the applicability of a statistical description to
low-dimensional systems. However, even after many years, the experts do not
agree yet on the basic conditions which should ensure the validity of statistical
mechanics.

The spectrum of viewpoints found in literature is rather wide, ranging
from the Landau (and Khinchin [4]) earlier belief on the key role of the many
degrees of freedom and the (almost) complete irrelevance of ergodicity, to
the opinion of those who, as Prigogine and his school [5] consider chaos as
the crucial requirement to develop consistent statistical approaches. Recently
some authors (e.g. Lebowitz [6] and Bricmont [7]) have given new life to the
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debate [10, 5], renewing the intuition of Boltzmann [8] and Maxwell [9] on the
relevance of the huge number of particles in macroscopic systems.

This volume offers the opportunity to celebrate the 100th and 50th an-
niversaries of two of the most influential works in statistical physics: Einstein’s
work on Brownian motion (1905) [11] and Fermi’s one (1955) on the non-linear
chain of oscillators (al secolo the FPU work, from the authors Fermi, Pasta and
Ulam [12]). We shall discuss some aspects related to diffusion problems and
heat conduction focusing on the role of (microscopic) chaos for the occurrence
and robustness of these (macroscopic) phenomena. Transport phenomena, de-
spite their ubiquity in everyday life, are still subject of debate among theoretic
physicists.

Because of the variety of specific interactions and technical difficulties in
realistic systems, simplified microscopic models are unavoidable tools for the
study of transport mechanism. Several simulations and theoretical works have
shown that, in systems with very strong chaos (namely hyperbolic systems),
there exists a close relationship between transport coefficients (e.g. viscos-
ity, diffusivity, thermal and electrical conductivity) and indicators of chaos
(Lyapunov exponents, KS entropy, escape rates) [13, 14]. At a first glance,
the existence of such relations would support the point of view of who consid-
ers chaos as the basic ingredient for the applicability of statistical mechanics.
However, it is not possible to extend those results to generic systems. In fact,
we shall see that many counterexamples prove that chaos is not a necessary
condition for the emergence of robust statistical behaviors [15, 16]. In partic-
ular, we shall see that phenomena such as diffusion [17] and heat conduction
[18] may take place also in non-chaotic systems. These and many other ex-
amples provide indication that microscopic chaos is not the unique possible
origin of macroscopic transport in dynamical systems.

The material is organized into two, almost self-contained, parts. In the
first, after a brief historical introduction to the different microscopic models
proposed to explain macroscopic diffusion, we discuss a recent experiment
(and the consequent debate it stimulated) aimed to prove that microscopic
chaos is at the origin of Brownian motion. This gives us the possibility to
introduce and discuss the problem of diffusion in non-chaotic deterministic
systems, and to point out the necessary microscopic conditions to observe
diffusion. The second part is mostly devoted to a discussion of the celebrated
FPU numerical experiments and its consequences for the ergodic problem and
heat conduction. We shall see that there are non-chaotic models displaying
(macroscopic) heat conduction, confirming the non-essential role of chaos on
transport.

3.2 On the Microscopic Origin of Macroscopic Diffusion

At the beginning of the twentieth century, the atomistic theory of matter was
not yet fully accepted by the scientific community. While searching for phe-
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nomena that would prove, beyond any doubt, the existence of atoms, Einstein
realized that “. . .according to the molecular-kinetic theory of heat, bodies of
microscopically-visible size suspended in a liquid will perform movements of
such magnitude that they can be easily observed in a microscope . . .,” as he
wrote in his celebrated paper in 1905 [11]. In this work, devoted to compare
the different predictions that classical thermodynamics and molecular-kinetic
theory of heat make about those small bodies, Einstein argued that their mo-
tion has a diffusive character. Moreover, he discovered an important relation
among the diffusion coefficient D, the fluid viscosity η, the particles radius a
(having assumed spherical particles), Avogadro’s number NA, the tempera-
ture T and the gas constant R:

D =
1
NA

RT

6πηa
. (3.1)

Einstein relation (3.1), which may be seen as the first example of the
fluctuation–dissipation theorem [19], allowed for the determination of Avo-
gadro’s number [20] and gave one of the ultimate evidences of the existence
of atoms.

Einstein’s work on Brownian motion (BM) is based on statistical mechan-
ics and thermodynamical considerations applied to suspended particles, with
the assumption of velocity decorrelation.

One of the first successful attempts to develop a purely dynamical theory of
BM dates back to Langevin [21] that, as himself wrote, gave “. . . a demonstra-
tion [of Einstein results] that is infinitely more simple by means of a method
that is entirely different.” Langevin considered the Newton equation for a
small spherical particle in a fluid, taking into account that the Stokes viscous
force it experiences is only a mean force. In one direction, e.g. the x-direction,
one has

m
d2x

dt2
= −6πηa

dx
dt

+ F , (3.2)

where m is the mass of the particle. The first term of the r.h.s. is the Stokes
viscous force. The second one F (t) is a fluctuating random force, independent
of v = dx/dt, modeling the effects of the huge number of impacts with the
surrounding fluid molecules, which is taken as a zero-mean, Gaussian process
with covariance 〈F (t)F (t′)〉 = cδ(t− t′). The constant c is determined by the
equipartition condition 〈(dx/dt)2〉 = RT/(mNA), i.e. c = 12πηaRT/NA.

Langevin’s work along with that of Ornstein and Uhlenbeck [22] are at the
foundation of the theory of stochastic differential equations. The stochastic
approach is however unsatisfactory being a phenomenological description.

The next theoretical challenge toward the building of a dynamical the-
ory of Brownian motion is to understand its microscopic origin from first
principles. Almost contemporarily to Einstein’s efforts, Smoluchowski tried to
derive the large-scale diffusion of Brownian particles from the similar physical
assumptions about their collisions with the fluid molecules [23].
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A renewed interest on the subject appeared some years later, when it was
realized that even purely deterministic systems composed of a large num-
ber of particles give rise to macroscopic diffusion, at least on finite time
scales. These models had an important impact in justifying Brownian motion
theory and, more in general, in deriving a consistent microscopic theory of
irreversibility.

Some of these works considered chains of harmonic oscillators of equal
masses [24, 25, 26, 27], while others [28, 29] analyzed the motion of a heavy
impurity linearly coupled to a chain of equal mass oscillators. When the num-
ber of oscillators goes to infinity, the momentum of the heavy particle was
proved to behave as a genuine stochastic process described by the Langevin
equation (3.2). When their number is finite, diffusion remains an effective
phenomenon lasting for a (long but) finite time.

Soon after the discovery of dynamical chaos [30], it was realized that simple
low-dimensional deterministic systems may also exhibit a diffusive behavior.
In this framework, the two-dimensional Lorentz gas [31], describing the mo-
tion of a free particle through a lattice of hard round obstacles, provided the
most valuable example. As a consequence of the obstacle convexity, particle
trajectories are chaotic, i.e. aside from a set initial conditions of zero measure,
exhibit a positive and finite Lyapunov exponent,. At long times, for the case
of billiards, the mean squared displacement from the particle initial position
grows linearly in time. A Lorentz system with periodically arranged scatter-
ers is closely related to the Sinai billiard [32, 33], which can be obtained from
the former by folding the trajectories into the unitary lattice cell. The ex-
tensive study on billiards has shown that chaotic behavior might usually be
associated with diffusion in simple low-dimensional models, supporting the
idea that chaos was at the very origin of diffusion. However, more recently
(see, e.g. [17]) it has been shown that even non-chaotic deterministic systems,
such as a bouncing particle in a two-dimensional billiard with polygonal but
randomly distributed obstacles (wind-tree Ehrenfest model), may exhibit a
diffusion-like properties. This example can lead to think that the external
source of randomness may play a role similar to chaos (for a more detailed
discussion about this point see Sect. 3.2.2).

Deterministic diffusion is a generic phenomenon present also in simple
chaotic maps on the line. Among the many contributions we mention the
work by Fujisaka, Grossmann [34, 35] and Geisel [36, 37]. A typical example
is the one-dimensional discrete-time dynamical system:

x(t+ 1) = [x(t)] + F (x(t) − [x(t)]) , (3.3)

where x(t) (the position of a point-like particle) performs diffusion in the real
axis. The bracket [·] denotes the integer part of the argument. F (u) is a map
defined on the interval [0, 1] that fulfills the following requirements:

(i) The map, u(t+ 1) = F (u(t)) (mod 1) is chaotic.
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(ii) F (u) must be larger than 1 and smaller than 0 for some values of u, so to
have a non-vanishing probability to escape from each unit cell (a unit cell
of real axis is every interval C ≡ [, + 1], with  ∈ Z).

(iii) Fr(u) = 1 − Fl(1 − u), where Fl and Fr define the map in u ∈ [0, 1/2[
and u ∈ [1/2, 1] respectively. This anti-symmetry condition with respect
to u = 1/2 is introduced to avoid a net drift.

A very simple and much studied example of F is

F (u) =
{

2(1 + a)u if u ∈ [0, 1/2[
2(1 + a)(u− 1) + 1 if u ∈ [1/2, 1] , (3.4)

where a > 0 is the control parameter. It is useful to remind the link between
diffusion and velocity correlation, i.e. the Taylor–Kubo formula, that helps to
unravel how diffusion can be realized in different ways. The velocity correlation
function is defined as C(τ) = 〈v(τ)v(0)〉, where v(t) is the velocity of the
particle at time t. It is easy to see that for continuous time systems [e.g. (3.2)]

〈(x(t) − x(0))2〉  2 t
∫ t

0

dτ C(τ) . (3.5)

Standard diffusion, with D =
∫∞
0

dτ C(τ), is always obtained whenever the
hypotheses for the validity of the central limit theorem are verified:

(i) finite variance of the velocity: 〈v2〉 <∞;
(ii) faster than τ−1 decay of the velocity correlation function C(τ).1

The first condition, independently of the microscopic dynamics under con-
sideration (stochastic, deterministic chaotic or regular), excludes unphysical
models, i.e. with infinite variance for the velocity. The second requirement
corresponds to a rapid memory loss of initial conditions. It is surely verified
for the Langevin dynamics where the presence of the stochastic force entails
a rapid decay of C(τ). In deterministic regular systems, such as the model of
many oscillators, the velocity decorrelation (i.e. the small fluctuations of C(τ)
around zero, for almost all the time) is the result of the huge number of degrees
of freedom that act as a heat bath on a single oscillator. In the (non-chaotic)
Ehrenfest wind-tree model decorrelation originates from the disorder in the
obstacle positions. Deterministic chaotic systems, in spite of the fact that non-
linear instabilities generically lead to a memory loss, are more subtle. Indeed,
there are many examples, namely intermittent systems [38], characterized by
a slow decay of the velocity correlation function.

We end this section by asking whether it is possible to determine, by the
analysis of a Brownian particle, if the microscopic dynamics underlying the
observed macroscopic diffusion is stochastic, deterministic chaotic or regular.
1 In discrete-time systems, the velocity v(t) and the integral

∫
dτC(τ ) are replaced

by the finite difference x(t+1)−x(t) and by the quantity 〈v(0)2〉/2+
∑

τ≥1 C(τ ),
respectively.
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3.2.1 Chaos or Noise? A Difficult Dilemma

Inferring the microscopic deterministic character of Brownian motion on an
experimental basis would be attractive from a fundamental viewpoint. More-
over it could provide further evidence to some recent theoretical and nu-
merical studies [39, 40]. Before discussing a recent experiment [41] in this
direction, we must open the “Pandora box” of the longstanding and contro-
versial problem of distinguishing chaos from noise in signal analysis [42] (see
also [45, 46, 47, 48, 49, 50]). For the sake of clearness on the terminology
used here, we specify that “chaos” refers to the motions originating from a
deterministic system with at least one positive but finite Lyapunov exponent,
and therefore a positive and finite Kolmogorov–Sinai entropy; “noise” instead
denotes the outcomes of a continuous valued stochastic process with infinite
value of Kolmogorov–Sinai entropy.

The first observation concerning the chaos/noise distinction is that, very
often in the analysis of experimental time series, there is not a unique model
of the “system” that produced the data. Moreover, even the knowledge of the
“true” model might not be an adequate answer about the character of the
signal. From this point of view, BM is a paradigmatic example: in fact it can
be modeled by a stochastic as well as by a deterministic chaotic or regular
process.

In principle, a definite answer exists. If we were able to determine the
maximum Lyapunov exponent (λ) or the Kolmogorov–Sinai entropy (hKS) of a
data sequence, we would know without uncertainty whether the sequence was
generated by a deterministic law (λ, hKS <∞) or by a stochastic one (hKS →
∞). Nevertheless, there are unavoidable practical limitations in computing
such quantities. They are indeed defined as infinite time averages taken in the
limit of arbitrary fine resolution. But, in experiments, we have access only to
a finite, and often very limited, range of scales and times.

However, there are measurable quantities that are appropriate for ex-
tracting meaningful information from the signal. In particular, we shall con-
sider the (ε, τ)-entropy per unit time [51, 52, 53] h(ε, τ) that generalizes the
Kolmogorov–Sinai entropy (for details see next section (3.8)). In a nutshell,
while for evaluating hKS one has to detect the properties of a system with
infinite resolution, for h(ε, τ) a finite scale (resolution) ε is involved. The
Kolmogorov–Sinai entropy is recovered in the limit ε→ 0, i.e. h(ε, τ) → hKS.
This means that if we had access to arbitrarily small scales, we could an-
swer the original question about the character of the law that generated
the recorded signal. Even if this limit is unattainable, still the behavior of
h(ε, τ) provides a very useful scale-dependent description of the signal char-
acter [42, 54].

For instance, chaotic systems (0 < hKS <∞) are typically characterized by
h(ε, τ) attaining a plateau ≈ hKS, below a resolution threshold, εc, associated
with the smallest characteristic length scale of the system. Instead, for ε > εc
h(ε, τ) < hKS, and in this range the details of the ε-dependence may be
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informative on the large scale (slow) dynamics of the system (see, e.g. [42,
54]). Indeed, at large scales typically chaotic systems give rise to behaviors
rather similar to stochastic processes (e.g. the diffusive behavior discussed in
the previous subsection) with characteristic ε-entropy. In stochastic signals,
although hKS = ∞, for any ε > 0, h(ε, τ) is a finite function of ε and τ . The
dependence of h(ε, τ) on ε and τ , when known, provides a characterization
of the underlying stochastic process (see [51, 53]). For instance, stationary
Gaussian processes with a power spectrum2 S(ω) ∝ ω−(2α+1) (being 0 < α <
1) are characterized by a power-law ε-entropy [51]:

lim
τ→0

h(ε, τ) ∼ ε−1/α . (3.6)

The case α = 1/2, corresponding to the power spectrum of a Brownian signal,
would give h(ε) ∼ ε−2. Other stochastic processes, such as time uncorrelated
and bounded ones, are characterized by a logarithmic divergence below a
critical scale, εc, which may depend on τ .

Definition and Computation of the ε-Entropy

For the sake of self-consistency in this subsection we provide some basic in-
formation on the definition and measurement (from experimental data) of the
ε-entropy, which was originally introduced in the context of information the-
ory by Shannon [52] and, later, by Kolmogorov [51] in the theory of stochastic
processes. The interested reader may find more details in [53] and [55].

An operative definition of h(ε, τ) is as follows. Given the time evolution of
a continuous variable x(t) ∈ �d, that represents the state of a d-dimensional
system, one introduces the vector in �md

X(m)(t) = (x(t), . . . ,x(t+mτ − τ)) , (3.7)

which represents a portion of the trajectory, sampled at a discrete time interval
τ . After partitioning the phase space �d using hyper-cubic cells of side ε,
X(m)(t) is coded into an m-word: Wm(ε, t) = [i(ε, t), . . . , i(ε, t + mτ − τ)],
where i(ε, t+jτ) labels the cell in �d containing x(t+jτ). For bounded motions,
the number of available cells (i.e. the alphabet) is finite. Under the hypothesis
of stationarity, the probabilities P (Wm(ε)) of the admissible words {Wm(ε)}
are obtained from the time evolution of X(m)(t). Then one introduces the
m-block entropy, Hm(ε, τ) = −

∑
{Wm(ε)} P (Wm(ε)) lnP (Wm(ε)), and the

quantity hm(ε, τ) = [Hm+1(ε, τ) − Hm(ε, τ)]/τ . The (ε, τ)-entropy per unit
time, h(ε, τ) is defined by [52]

h(ε, τ) = lim
m→∞hm(ε, τ) . (3.8)

The Kolmogorov–Sinai entropy is obtained in the limit of small ε:
2 The power spectrum S(ω) is the Fourier transform of 〈(x(t) − x(0))2〉.
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hKS = lim
ε→0

h(ε, τ) . (3.9)

In principle, in deterministic systems h(ε), and henceforth hKS, depend neither
on the sampling time τ [3] nor on the chosen partition because its rigorous
definition[53] would require the infimum to be taken over all possible partitions
with elements of size smaller than ε. However, in practical computations, the
specific value of τ is important, and the impossibility to take the infimum
over all the partitions implies that, at finite ε, h(ε) may depend on the chosen
partition. Nevertheless, for small ε, the correct value of the Kolmogorov–Sinai
entropy is usually recovered independently of the partition [3].

Let us stress that partitioning the phase space does not mean a discretiza-
tion of the states of the dynamical system, which still evolves on a contin-
uum. The partitioning procedure corresponds to a coarse-grained description
(due, for instance, to measurements performed with a finite resolution), that
does not change the dynamics. On the contrary, discretizing the states would
change the dynamics, implying periodic motions in any deterministic sys-
tems. This happens, for instance, in any floating point computer simulations;
however such periods are, apart from trivial cases, very long and practically
undetectable.

In experimental signals, usually, only a scalar variable u(t) can be mea-
sured, and moreover the dimensionality of the phase space is not known a
priori. In these cases, one uses delay-embedding techniques [45, 46], where the
vector X(m)(t) is build as (u(t), u(t+ τ), . . . , u(t+mτ − τ)), now in �m. This
is a special instance of (3.7). Then to determine the entropies Hm(ε), very ef-
ficient numerical methods are available (the reader may find an exhaustive
review in [45]). The delay-embedding procedure can be applied to compute
the ε-entropy of deterministic and stochastic signals as well. The dependence
of the ε-entropy on the observation scale ε can be used to characterize the
process underlying the signal [53].

In the following, we exemplify the typical difficulties by analyzing the map:

x(t+ 1) = f(x(t)) = x(t) + p sin(2πx(t)) . (3.10)

As soon as p > 0.7326 . . . , f(x) is such that f(x) > 1 and f(x) < 0 for some
x ∈]0, 1[. This implies that the trajectory can travel across different unitary
cells giving rise to large-scale diffusion, i.e. asymptotically:

〈[x(t) − x(0)]2〉  2Dt , (3.11)

where D is the diffusion coefficient. We note that p = O(1) sets the intrinsic
scale of the displacements to be O(1). Therefore, as far as the ε-entropy is
concerned, for ε� 1 (small-scale observations) one should be able to recognize
that the system is chaotic, i.e. h(ε) displays a plateau at hKS = λ. For ε� 1
(large scale observations), due to the diffusive behavior, h(ε) is characterized
by the scaling (3.6) with α = 1/2, therefore
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Fig. 3.1. Numerically evaluated (ε, τ )-entropy for the map (3.10) with p = 0.8
computed by the standard techniques [45] at τ = 1 (◦), τ = 10 (�) and τ = 100
(�) and different block length (m = 4, 8, 12, 20). The boxes refer to the entropy
computed with τ = 1 but by using periodic boundary condition over 40 cells. The
use of periodic boundary conditions is necessary to probe scales small enough to
recover the Lyapunov exponent. The straight lines correspond to the two asymptotic
behaviors, h(ε) = hKS � 1.15 and h(ε) ∼ ε−2

h(ε) 
{
λ for ε� 1
D/ε2 for ε� 1 , (3.12)

where λ is the Lyapunov exponent and D is the diffusion coefficient. The typ-
ical problems encountered in numerically computing h(ε) can be appreciated
in Fig. 3.1. First notice that the deterministic character (i.e. h(ε, τ) ≈ hKS)
appears only at ε < εc ≈ 1. However, the finiteness of the data set imposes a
lower cut-off scale εd below which no information can be extracted from the
data (see [56]). As for the importance of the choice of τ note that if τ is much
larger or much shorter than the characteristic time-scale of the system at the
scale ε, then the correct behavior of the ε-entropy [42] cannot be properly
recovered. Indeed the diffusive behavior h(ε) ∼ ε−2 is roughly obtained only
by considering the envelope of hm(ε, τ) evaluated at different values of τ . The
reason for this is that the characteristic time of the system is determined by
its diffusive behavior Tε ≈ ε2/D. On the other hand, the plateau at the value
hKS can be recovered only for τ ≈ 1, even if, in principle, any value of τ could
be used.

We also mention that if the system is deterministic, to have a meaningful
measure of the entropy, the embedding dimension m has to be larger than
information dimension of the attractor [3].
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Experiments on the Microscopic Origin of Brownian Motion

We are now ready to discuss the experiment and its analysis reported in [41].
In this experiment, a long-time record (about 1.5 × 105 data points) of the
motion of a small colloidal particle in water was sampled at regular time
intervals (Δt = 1/60 s) with a remarkable high spatial resolution (25 nm).
To our knowledge, this is the most accurate measurement of a BM. The data
were then processed by means of standard methods of non-linear time-series
analysis [45] to compute the ε-entropy.3 This computation shows a power-law
dependence h(ε) ∼ ε−2. Actually, similarly to what is displayed in Fig. 3.1, this
behavior is recovered only by considering the envelope of the h(ε, τ)-curves,
for different τs. However, unlike to Fig. 3.1, no saturation h(ε, τ) ≈ const.
is observed for small ε. Nevertheless, the authors assume from the outset
that the system dynamics is deterministic and, since in deterministic systems
h(ε, τ) ≤ hKS ≤

∑+
i λi, deduce from the positivity of h(ε) the existence of

positive Lyapunov exponents. Their conclusion is thus that microscopic chaos
is at the origin of the macroscopic diffusive behavior.

However, as several works pointed out (see [57, 58]), the huge amount of
involved degrees of freedom (Brownian particle and the fluid molecules), the
impossibility to reach a (spatial and temporal) resolution high enough, and
the limited amount of data points do not allow for such optimistic conclusions.
Avoiding a technical discussion on these three points we simply notice that
the limitation induced by the finite resolution is particularly relevant to the
experiment. For example, if the analysis of Fig. 3.1 would be restricted to the
region with ε > 1 only, then discerning whether the data were originated by
a chaotic system or by a stochastic process would be impossible.

Particularly interesting is the fact that, as shown by Dettman et al. [17, 57],
the finite amount of data severely limits our ability to distinguish not only if
the signal is deterministic, chaotic or stochastic but also if it is deterministic
regular, i.e. of zero entropy. The following example serves as a clue to better
understand the way in which a deterministic non-chaotic systems may give
rise (at least on certain temporal and spatial scales) to a stochastic behavior.

Let us consider two signals, the first generated by a continuous ran-
dom walk:

ẋ(t) =
√

2Dη(t) , (3.13)

where η is a zero mean Gaussian variable with 〈η(t)η(t′)〉 = δ(t− t′), and the
second obtained as a superpositions of Fourier modes:
3 Of course in data analysis, only scalar time series are available and the dimen-

sionality of the space of state vectors is a priori unknown. However, one can use
the delay embedding technique to reconstruct the phase-space. In this way, the
ε-entropy can be evaluated as discussed in the previous section. It is worth stress-
ing that this procedure can be applied even though the equations of motion of
the system, which generated the signal, are unknown. Moreover, this approach is
meaningful independently of the stochastic or deterministic nature of the consid-
ered signal.
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Fig. 3.2. a Signals obtained from (3.14) with M = 104 and random phases uniformly
distributed in [0, 2π]. The numerically computed diffusion constant is D ≈ 0.007.
b Time record obtained with a continuous random walk (3.13) with the same value
of the diffusion constant as in a. In both cases, data are sampled with τ = 0.02, i.e.
105 data points

x(t) =
M∑

i=1

X0i sin (Ωit+ φi) . (3.14)

The coordinate x(t) in (3.14), upon properly choosing the frequencies [29, 42]
and the amplitudes (e.g.X0i ∝ Ω−1

i ), describes the motion of a heavy impurity
in a chain of M linearly coupled harmonic oscillators. We know [29] that x(t)
performs a genuine BM in the limit M →∞. For M <∞ the motion is quasi-
periodic and regular, nevertheless for large but finite times it is impossible to
distinguish signals obtained by (3.13) and (3.14) (see Fig. 3.2). This is even
more striking looking at the computed ε-entropy of both signals (see Fig. 3.3).

The results of Fig. 3.3 along with those by Dettman et al. [57] suggest
that, by assuming also the deterministic character of the system, we are in
the practical impossibility of discerning chaotic from regular motion.

It is worth mentioning that recently some interesting works [43, 44] applied
the entropy analysis to the motion of a heavy impurity embedded in an FPU-
chain (see Sect. 3.3.1), which is a chaotic variant of the above example. The
purpose was again to infer the chaotic character of the whole FPU-chain by
observations on the impurity motion only. It was found that the impurity does
not alter the behavior of the FPU-chain so it can be considered as a true probe
of the dynamics. The impurity performs a motion that, when observed at
small but finite resolutions, closely resembles a Brownian motion. Time series
(ε, τ)-entropy analysis both in momentum and position allows for detecting
the chaotic nature of the FPU unperturbed system, and clearly locating the
stochasticity threshold.
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Fig. 3.3. Numerically evaluated (ε, τ )-entropy using using 105 points from the time
series of Fig. 3.2. We show the results for embedding dimension m = 50. The straight
lines show the D/ε2 behavior

From the above discussion, one reaches a pessimistic view on the possi-
bility to detect the “true” nature of a signal by means of data analysis only.
However, the situation is not so bad if the question about the character of a
signal is asked only relatively to a certain interval of scales. In this case, in
fact, it is possible to give an unambiguous classification of the signal character
based solely on the entropy analysis and free from any prior knowledge of the
system/model that generated the data. Moreover the behavior of h(ε, τ) as a
function of (ε, τ) provides a very useful “dynamical” classification of stochas-
tic processes [53, 59]. One has then a practical tool to classify the character
of a signal as deterministic or stochastic, on a given scale, without referring
to a specific model, and is no longer obliged to answer the metaphysical ques-
tion, whether the system that produced the data was a deterministic or a
stochastic [42, 60] one.

3.2.2 Diffusion in Deterministic Non-chaotic Systems

With all the proviso on its interpretation, Gaspard et al. [41] experiment
had a very positive role not only in stimulating the discussion about the
chaos/noise distinction but also in focusing the attention on deep conceptual
aspects of diffusion. From a theoretical point of view, the study of chaotic
models exhibiting diffusion and their non-chaotic counterpart is indeed im-
portant to better understand the role of microscopic chaos on macroscopic
diffusion.

In Lorentz gases, the diffusion coefficient is related, by means of periodic
orbits expansion methods [13, 14, 61], to chaotic indicators such as the Lya-
punov exponents. This suggested that chaos was or might have been the basic
ingredient for diffusion. However, as argued by Dettman and Cohen [17], even
an accurate numerical analysis based on the ε-entropy, being limited by the
finiteness of the data points, has no chance to detect differences in the diffu-
sive behavior between a chaotic Lorentz gas and its non-chaotic counterpart,
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such as the wind-tree Ehrenfest’s model. In the latter model, particles (wind)
scatter against square obstacles (trees) randomly distributed in the plane but
with fixed orientation. Since the reflection by the flat edges of the obstacles
cannot produce exponential separation of trajectories, the maximal Lyapunov
exponent is zero. The result of [17] implies thus that chaos may be not indis-
pensable for having deterministic diffusion. The question may be now posed
on what are the necessary microscopic ingredients to observe deterministic
diffusion at large scales.

We would like to remark that, in the wind-tree Ehrenfest’s model, the
external randomness amounting to the disordered distribution of the obstacles
is crucial. Hence, one may conjecture that a finite spatial entropy density hS is
necessary for observing diffusion. In this case, deterministic diffusion might be
a consequence either of a non-zero “dynamical” entropy (hKS > 0) in chaotic
systems or of a non-zero “static” entropy (hS > 0) in non-chaotic systems.
This is a key-point, because someone can argue that a deterministic infinite
system with spatial randomness can be interpreted as an effective stochastic
system.4

With the aim of clarifying this point, we consider here a spatially disor-
dered non-chaotic model [62], which is the one-dimensional analog of a two-
dimensional non-chaotic Lorentz system with polygonal obstacles. Let us start
with the map defined by (3.3) and (3.4), and introduce some modifications to
make it non-chaotic. One can proceed as exemplified in Fig. 3.4, that is by
replacing the function (3.4) on each unit cell by its step-wise approximation
generated as follows. The first-half of C is partitioned in N micro-intervals

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.5

1.0

F
(u

)

Fig. 3.4. Sketch of the random staircase map in the unitary cell. The parameter
a defining the macroscopic slope is set to 0.23. Half domain [0, 1/2] is divided into
N = 12 micro-intervals of random size. The map on [1/2, 1] is obtained by applying
the antisymmetric transformation with respect to the center of the cell (1/2, 1/2)

4 This is probably a “matter of taste.”
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[ + ξn−1, + ξn[, n = 1, . . . , N , with ξ0 = 0 < ξ1 < ξ2 < · · · < ξN−1 < ξN =
1/2. In each interval, the map is defined by its linear approximation

FΔ(u) = u− ξn + F (ξn) if u ∈ [ξn−1, ξn[ , (3.15)

where F (ξn) is (3.4) evaluated at ξn. The map in the second half of the unit
cell is then determined by the anti-symmetry condition with respect to the
middle of the cell. The quenched random variables {ξk}N−1

k=1 are uniformly
distributed in the interval [0, 1/2], i.e. the micro-intervals have a random ex-
tension. Further they are chosen independently in each cell C (so one should
properly write ξ()n ). All cells are partitioned into the same number N of ran-
domly chosen micro-intervals (of mean size Δ = 1/N). This modification of
the continuous chaotic system is conceptually equivalent to replacing circular
by polygonal obstacles in the Lorentz system [17].

Since FΔ has slope 1 almost everywhere, the map is no longer chaotic, vio-
lating the condition i) (see Sect. 3.2). For Δ → 0 (i.e. N →∞) the continuous
chaotic map (3.3) is recovered. However, this limit is singular and as soon as
the number of intervals is finite, even if extremely large, chaos is absent. It
has been found [62] that this model still exhibits diffusion in the presence of
both quenched disorder and a quasi-periodic external perturbation

x(t+ 1) = [x(t)] + FΔ(x(t) − [x(t)]) + γ cos(αt) . (3.16)

The strength of the external forcing is controlled by γ and α defines its fre-
quency, while Δ indicates a specific quenched disorder realization. The sign
of γ is irrelevant; without lack of generality we study the case γ > 0.

The diffusion coefficient D is then numerically computed from the linear
asymptotic behavior of the mean quadratic displacement, see (3.11). The re-
sults, summarized in Fig. 3.5, show that D is significantly different from zero
only for values γ > γc. For γ > γc, D exhibits a saturation close to the value of
the chaotic system (horizontal line) defined by (3.3) and (3.4). The existence
of a threshold γc is not surprising. Due to the staircase nature of the system,
the perturbation has to exceed the typical discontinuity of FΔ to activate the
“macroscopic” instability which is the first step toward the diffusion. Data
collapsing, obtained by plotting D versus γN , in Fig. 3.5 confirms this argu-
ment. These findings are robust and do not depend on the details of forcing.
Therefore, we have an example of a non-chaotic model in the Lyapunov sense
by construction, which performs diffusion.

Now the question concerns the possibility that the diffusive behavior arises
from the presence of a quenched randomness with non-zero spatial entropy per
unit length. To clarify this point, similarly to [17], the model can be modified
in such a way that the spatial entropy per unit cell is forced to be zero, and
see if the diffusion still persists.

Zero spatial entropy per unit length may be obtained by repeating the
same disorder configuration every M cells (i.e. ξ()n = ξ

(+M)
n ). Looking at the

diffusion of an ensemble of walkers it was observed that diffusion is still present
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Fig. 3.5. Log–Log plot of the dependence of the diffusion coefficient D on the ex-
ternal forcing strength γ. Different data relative to a number of cell micro-intervals
N = 50, 100 and 150 are plotted vs the natural scaling variable γN to obtain a col-
lapse of the curves. Horizontal line represents the result for chaotic system (3.3, 3.4)

with D very close to the expected value (as in Fig. 3.5). A careful analysis
(see [62] for details) showed that the system displays genuine diffusion for a
very long times even with a vanishing (spatial) entropy density, at least for
sufficiently large M .

These results along with those by Dettman and Cohen [17] allow us to draw
some conclusions on the fundamental ingredients for observing deterministic
diffusion (both in chaotic and non-chaotic systems).

• An instability mechanism is necessary to ensure particle dispersion at small
scales (here small means inside the cells). In chaotic systems, this is realized
by the sensitivity to the initial condition. In non-chaotic systems, this may
be induced by a finite size instability mechanisms. Also, with zero maximal
Lyapunov exponent one can have a fast increase of the distance between
two trajectories initially close [63]. In the wind-tree Ehrenfest model this
stems from the edges of the obstacles, in the “stepwise” system of Fig. 3.4
from the jumps.

• A mechanisms able to suppress periodic orbits and therefore to allow for
a diffusion at large scale.

It is clear that the first requirement is not very strong while the second is
more subtle. In systems with “strong chaos,” all periodic orbits are unsta-
ble and, so, it is automatically fulfilled. In non-chaotic systems, such as the
non-chaotic billiards studied by Dettman and Cohen and the map (3.16), the
stable periodic orbits seem to be suppressed or, at least, strongly depressed, by
the quenched randomness (also in the limit of zero spatial entropy). However,
unlike the two-dimensional non-chaotic billiards, in the one-dimensional sys-
tem (3.4,3.15,3.16), the periodic orbits may survive to the presence of disorder,
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so we need the aid of a quasi-periodic perturbation to obtain their destruction
and the consequent diffusion.

3.3 The Heritage of the Fermi–Pasta–Ulam Problem
for the Statistical Mechanics

The ergodic theory begun with Boltzmann’s effort to justify the determination
of average values in kinetic theory. Ergodic hypothesis states that time aver-
ages of observables of an isolated system at the equilibrium can be computed
as phase averages over the constant-energy hyper-surface. This statement can
be regarded as the first attempt to establish a link between statistical me-
chanics and the dynamics of the underlying system. One can say that proving
the validity of ergodic hypothesis provides a “dynamical justification” of sta-
tistical ensembles.

The ergodic problem, at an abstract level, had been attacked by Birkhoff
and von Neumann who proved their fundamental theorems on the existence
of time averages and established a necessary and sufficient condition for the
ergodicity. In spite of their mathematical importance, on a practical ground
such theorems do not help very much to really solve the ergodic problem in
statistical physics.

There exists a point of view according to which the effectiveness of a
statistical mechanics approach resides mainly on the presence of many de-
grees of freedom rather than on the underlying (chaotic or regular) dynamics.
Khinchin in his celebrated book Mathematical Foundation of the Statistical
Mechanics [4] presents some important results on the ergodic problem that
need no metrical transitivity. The main point of his approach relies on the
concept of relevant physical observables in systems with a huge number of
degrees of freedom. Since physical observables are non-generic functions (in
mathematical sense), the equivalence between time and ensemble averages
should be proved only for a restricted class of relevant observables. Moreover
for physical purposes, it is “fair” to accept the failure of ergodicity for few (in
the sense of sets of small measure) initial conditions.

In plain words, Khinchin’s formulation, coinciding with Boltzmann’s point
of view (see, e.g., Chap. 1 of [2]), asserts that statistical mechanics works,
independently of ergodicity, because the (most meaningful) physical observ-
ables are practically constant, a part in regions of very small measure, on
the constant energy surface. Within this approach, dynamics have a marginal
role, and the existence of “good statistical properties” is granted by the large
number of degrees of freedom. However, the validity of Khinchin’s statement
restricts to a special class of observables not covering all the physically inter-
esting possibilities. Therefore for each case, a detailed study of the specific
dynamics is generally needed to assess the statistical properties of a given
system.
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The issue of ergodicity is naturally entangled with the problem of the
existence of non-trivial conserved quantities (first integrals) in Hamiltonian
systems. Consider a system governed by the Hamiltonian

H(I, φ) = H0(I) + εH1(I, φ) , (3.17)

where I = (I1, . . . , IM ) are the action variables and φ = (φ1, . . . , φM ) are the
phase variables. If ε = 0 the system is integrable, there are M independent
first integrals (the actions Ii) and the motion evolves on M -dimensional tori.
Two questions arise naturally. Do the trajectories of the system (3.17) remain
“close” to those of the integrable one? Do some conserved quantity, besides
energy, survive in the presence of a generic (small) perturbation εH1(I, φ)? Of
course whenever other first integrals exist the system cannot be ergodic.

In a seminal work, H. Poincaré [64] showed that generally a system
like (3.17) with ε �= 0 does not possess analytic first integrals other than
energy. This result sounds rather positive for the statistical mechanics ap-
proach. In 1923, Fermi [65], generalizing Poincaré’s result, proved that for
generic perturbations H1 and M > 2, there cannot exist, on the 2M − 1 di-
mensional constant-energy surface, even a single smooth5 surface of dimension
2M − 2 that is analytical in the variables (I, φ) and ε. From this result, Fermi
argued that generic (non-integrable) Hamiltonian systems are ergodic.

At least in the physicists’ community, this conclusion was generally ac-
cepted and, even in the absence of a rigorous demonstration, there was a vast
consensus that the non-existence theorems of regular first integrals implied
ergodicity.

3.3.1 FPU: Relaxation to Equilibrium and Ergodicity Violation

Thirty-two years later Fermi itself, together with Pasta and Ulam, with one
of the first numerical experiments, in the celebrated paper Studies of Non-
linear Problems [12] (often referred with the acronym FPU) showed that the
ergodic problem was still far from being solved. The FPU model studies the
time evolution of a chain of N particles, interacting by means of non-linear
springs:

H =
N∑

n=0

[
p2
n

2m
+
K

2
(qn+1 − qn)2 +

ε

α
(qn+1 − qn)α

]
, (3.18)

with boundary conditions q0 = qN+1 = p0 = pN+1 = 0, α = 3 or 4 and K > 0.
The Hamiltonian is of the form (3.17) with a harmonic (integrable) part and
a non-integrable (anharmonic) term O(ε). For ε = 0, one has a collection of
N non-interacting harmonic modes of energies Eks, which remain constant.
What happens if an initial condition is chosen in such a way that all the energy
is concentrated in a few normal modes, for instance E1(0) �= 0 and Ek(0) = 0
for k = 2, . . . , N? Before the FPU work, the general expectation would have
5 For instance, analytic or differentiable enough.
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Fig. 3.6. E1(t)/Etot, E2(t)/Etot, E3(t)/Etot for the FPU system, with N = 32,
α = 3, ε = 0.1 and energy density E = Etot/N = 0.07. (Courtesy of G. Benettin [66])

been that the first normal mode would have progressively transferred energy
to the others and that, after some relaxation time, every Ek(t) would fluctuate
around the common value. Therefore, it came as a surprise the fact that no
tendency toward equipartition was observed, even for long times. In other
words, a violation of ergodicity and mixing was found. Figure 3.6 shows the
time evolution of the fraction of energy contained in three modes (k = 1, 2, 3),
in a system with N = 32.

At the beginning all the energy is contained in mode 1. Instead of a dis-
tribution of the energy among all the available modes, with a loss of memory
of the initial state, the system exhibits a close to periodic behavior. The ab-
sence of equipartition can be well appreciated looking at Fig. 3.7, where the
quantities

E(av)k(T ) =
1
T

∫ T

0

Ek(t)dt , with k = 1, . . . , N , (3.19)

i.e. the energies in the modes, averaged along the observation time T , are
displayed. As one can see, almost all of the energy remains confined in the
first four modes.

The existence of non-ergodic behavior in non-integrable Hamiltonian sys-
tems is actually a consequence of the so-called KAM theorem [67, 68, 69],
whose first formulation, due to A. N. Kolmogorov, dates back to the year be-
fore the FPU paper. This was surely unbeknown to Fermi and his colleagues.
The FPU result can be seen (a posteriori) as a numerical “verification” of the
KAM theorem and, above all, of its physical relevance, i.e. the tori survival
for physically significant values of the non-linearity. After Kolmogorov and
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FPU, it is now well established that ergodicity is a non-generic property of
mechanical systems.

Concerning the FPU problem, in terms of the KAM theorem, the following
scenario, at least for large but finite times, can be outlined [70, 71, 72]. For
N particles and for a given energy density E = E/N there is a threshold εc
for the strength of the perturbation such that

(a) if ε < εc the KAM tori are dominant and the system is essentially regular;
(b) if ε > εc the KAM tori are negligible and the system is essentially chaotic.

However, the long-time evolution of very large chains with small ε is hindered
by the presence of metastable states. To probe such an asymptotics by nu-
merical simulations is extremely hard, for a discussion on the subject see the
contributions by Benettin et al. and Lichtenberg et al. in this volume.

In most of the physical situations where the strength of the perturbation
(i.e. the Hamiltonian) is fixed, the control parameter is E . There exists a crit-
ical energy density, separating regular from chaotic behaviors. This is evident
by comparing Fig. 3.8 with Fig. 3.7. In Fig. 3.8 the same quantities of Fig. 3.7
are plotted, but now they refer to a system where the energy density is much
greater than before: E = 1.2; the system has entered the chaotic region and
equipartition is established.

However, also when most KAM tori are destroyed, and the system turns
out to be chaotic, the validity of ordinary statistical mechanics is not auto-
matically granted. Indeed the relaxation time for reaching equipartition may
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Fig. 3.7. Time averaged fraction of energy, in modes k = 1, 2, 3, 4 (bold lines, from
top to below) and
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are the same as in Fig. 3.6 (Courtesy of G. Benettin [66].)
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parameters of the system are N = 32, α = 3, ε = 0.1 and energy density E =
Etot/N = 1.2 (Courtesy of G. Benettin [66])

become very large (see [73, 74, 75, 76, 77, 78, 79] for a detailed discussion
about this point).

The problem of slow relaxation is rather common in high-dimensional
Hamiltonian systems, where [80, 81] though the phase-space volume occupied
by KAM tori decreases exponentially with the number of degrees of freedom
(which sounds like a good news for statistical mechanics) nonetheless very long
time-scales are involved. This means that it takes an extremely long time for
the individual trajectories to forget their initial conditions and to invade a
non-negligible part of the phase space. Indeed, even for very large systems,
Arnol’d diffusion is very weak and different trajectories, although with a high
value of the Lyapunov exponent, maintain some of their own features for a
very long time.

We conclude this part emphasizing that also in high-dimensional systems
the actual role of chaos is not yet well understood. For instance, in [82] de-
tailed numerical computations on the FPU system show that both the internal
energy and the specific heat, computed with a time average, as functions of
the temperature are rather close to the prediction of the canonical ensemble.
This is true also in the low-energy region (i.e. low temperature) where the
system behaves in a regular way (the KAM tori are dominant). This supports
Khinchin approach (though the observables are not in the class of the sum
functions6) on the poor role of dynamics. Indeed strong chaos seems to be

6 Khinchin defines sum functions as any function of the form
∑N

n=1 fn(qn, pn), fn

assuming order 1 values. Such observables, in the large N limit, are self-averaging,
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unnecessary for the prediction of the statistical mechanics to hold. However,
this is not the end of the story because in other non-linear systems (such
as a chain of coupled rotators) the situation is different: even in the pres-
ence of strong chaos one can observe disagreement between time average and
ensemble average [82].

In the following, we discuss the problem of heat transport that allows us
to discuss the role of chaos for the validity of transport properties.

3.3.2 Heat Transport in Chaotic and Non-chaotic Systems

As stated in the introduction, a part of the statistical mechanics community
accepts the picture according to which the instabilities of microscopic particle
dynamics are the basic requirement for the onset of macroscopic transport.
In this framework, several works [13, 14] have shown that, in some systems,
there exists a relationship between transport coefficients (thermal or electri-
cal conductivity, viscosity, diffusivity, etc.) and Lyapunov exponents. Such
a link is of remarkable importance because it establishes a straightforward
connection between the microscopic dynamical properties of a system and its
macroscopic behavior, which is the main goal of statistical mechanics. How-
ever, as exemplified in the previous sections, chaotic dynamics does not seem
to be a necessary condition to both equilibrium and out-of-equilibrium statis-
tical mechanics approaches. In fact, we have seen that transport may occur
even in the absence of deterministic chaos. These counterexamples pose some
doubts on the generality and so on the conceptual relevance of the links found
between chaotic indicators and macroscopic transport coefficients.

Heat conduction is a typical phenomenon that needs a microscopic mech-
anism leading to normal diffusion that distributes particles and their energy
across the whole system. Since a chaotic motion has the same statistical prop-
erties of a “random walk,” when observed at finite resolution, this mechanism
can be found in the presence of either exponential instability in deterministic
dynamics or intrinsic disorder and non-linearities.

In the context of the conduction problem, FPU chains have recently played
an important role in further clarifying the transport properties of low spatial
dimension systems. FPU models represent simple but non-trivial candidates
to study heat transport by phonons in solids whenever their boundaries are
kept at different temperatures. This issue becomes even more interesting at
low spatial dimensions where the constraints set by the geometry may induce
anomalous transport properties characterized by the presence of divergent
transport coefficients in the thermodynamic limit [83]. Thermal conductivity
χ, defined via the Fourier’s Law

J = −χ∇T ,

i.e. they are practically constant on the constant-energy surface, aside a region of
small measure.
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relates the heat (energy) flux J to a temperature gradient. When a small
temperature difference δT = T1 − T2 is applied to the ends of a system of
linear size L, the heat current across the system is expected to be

J = −χδT
L

.

For some one- and even two-dimensional systems, theoretical arguments, con-
firmed by several simulations, predict a scaling behavior J ∼ Lα−1 implying
a size dependent conductivity

χ(L) = Lα . (3.20)

As a consequence, χ diverges in the limit L → ∞ with a power law whose
exponent α > 0 depends on the specific system considered. The presence of
this divergence is referred to as anomalous heat conduction in contrast with
normal conduction which, according to dimensional analysis of Fourier’s Law,
prescribes a finite limit for χ. FPU chains are systems where the anomaly in
the heat transport is clearly observed. Its origin can be traced back to the
existence of low-energy modes which survive long enough to propagate freely
before scattering with other modes. Such modes can carry much energy and
since their motion is mainly ballistic rather than diffusive, the overall heat
transport results to be anomalous. Models other than FPU indeed presents
this peculiar conduction, as widely shown in the literature [18, 84, 85]. Then
the issue is the general understanding of the conditions leading to this phe-
nomenon and more specifically the role of microscopic dynamical instabilities.
A well-known chaotic system, such as the Lorentz Gas in a channel [86] config-
uration, provides an example of a system with normal heat conduction. This
model consists of a series of semicircular obstacles with radius R arranged in
a lattice along a slab of size L × h (h << L) see Fig. 3.9. As in a Lorentz
system, particles scatter against obstacles but do not interact with each other.

T1

φ ψ
T1 T2

T2

Fig. 3.9. Example of channel geometry used in [84, 86] to study heat transport in
low-dimensional chaotic (upper panel) and non chaotic billiards (lower panel)
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Two thermostats at temperatures T1 and T2 respectively are placed at
each end of the slab to induce transport. They reinject into the system those
particles reaching the ends with a velocity drawn from a Gaussian velocity
distribution with variance proportional to the temperatures T1 and T2. In
the case of semicircular obstacles, the system is chaotic and one observes a
standard Fourier’s Law [86].

In [18] and [84], some non-chaotic variants of the Lorentz channel have
been proposed in order to unravel the role of exponential instabilities in the
heat conduction. In those models, called the Ehrenfest Channel, the semicircu-
lar obstacles were replaced with triangular ones, so that the system is trivially
non-chaotic since collisions with flat edges of the obstacles cannot separate
trajectories more than algebraically. The results show that when two angles
(e.g. φ and ψ) of the triangles are irrational multiple of π, the system exhibits
a normal heat conduction. On the contrary, for rational ratio, such as isosce-
les right triangles, the conduction becomes anomalous. The single particle
heat flux across N cells J1(N) scales as J1(N) ∼ Nα, while the temperature
gradient behaves as 1/N implying that χ(N) diverges as N → ∞. The ex-
planation of such a divergence can be found in the single-particle diffusivity
along the channel direction which occurs in a non-standard way. Indeed, the
evolution of a large set of particles has a mean squared displacements from
initial conditions which grows in time with a power-law behavior

〈[x(t) − x(0)]2〉 ∼ tb

with an exponent 1 < b < 2. This super-diffusion is the unique responsible
for a divergent thermal conductivity independently of Lyapunov instabilities,
since the model has a zero Lyapunov exponents.

When an Ehrenfest Channel with anomalous thermal conductivity is disor-
dered, for instance, by randomly modulating the height of triangular obstacles
or their positions along the channel, the conduction follows Fourier’s law, be-
coming normal [18]. This scenario is rather similar to that one discussed in
Sect. 3.2.2 for diffusion on non chaotic maps.

The works in [83, 87, 88] suggest that the anomalous conduction is associ-
ated with the presence of a mean free path of energy carriers that can behave
abnormally in the thermodynamic limit. For FPU the long mean free path
is due to soliton-like ballistic modes. In the channels, the long free flights,
between consecutive particle collisions, become relevant. The above consider-
ations suggest a very week role of chaos for heat transport, and for transport
in general, since also systems without exponential instability may show trans-
port, even anomalous.

3.4 Concluding Remarks

The problem of distinguishing chaos from noise cannot receive an absolute
answer in the framework of time series analysis. This is due to the finiteness
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of the observational data set and the impossibility to reach an arbitrary fine
resolution and high embedding dimension. However, we can classify the signal
behavior, without referring to any specific model, as stochastic or determin-
istic on a certain range of scales.

Diffusion may be realized in both stochastic and deterministic systems.
In particular, as the analysis of polygonal billiards and non-chaotic maps (see
Sect. 3.2.2) shows, chaos is not a prerequisite for observing diffusion and, more
in general, nontrivial statistical behaviors.

In a similar way, we have that for the validity of heat conduction chaos is
not a necessary ingredient. Also in systems with zero maximal Lyapunov ex-
ponent (see [84, 85, 86]) the Fourier’s law (or its anomalous version) can hold.

We conclude by noticing that the poor role of exponential instability for
the validity of statistical laws does not seem to be limited to transport prob-
lems. For instance it is worth mentioning the interesting results of Lepri
et al. [89] showing that the Gallavotti–Cohen formula [90], originally proposed
for chaotic systems, holds also in some non-chaotic model.
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