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A (DIS)ORIENTED TOUR AROUND SCALING, DIMENSIONS, REVERSIBILITY AND
EQUILIBRIUM IN TURBULENCE

-INVISCID CONSERVED QUANTITIES AND FLUXES IN 2D-3D FLOWS

-EQUILIBRIUM AND OUT-OF-EQUILIBRIUM FLOWS

-TUNING/REVERSING THE ENERGY FLUX IN TURBULENCE BY PLAYING WITH HELICITY-
WHAT DO WE LEARN?
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Intermittency in a cascade model for three-dimensional turbulence

M. H. Jensen, G. Paladin,* and A. Vulpiani*
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark
(Received 6 July 1990)

We discuss a possible mechanism for intermittency of the energy dissipation in a model for three-
dimensional fully developed turbulence. We compute the structure functions for the velocity field
and show that their behavior can be described in the context of a multifractal approach. We also
compute the instantaneous maximum Lyapunov exponent and the corresponding (stability) eigen-
vector. Violent bursts of energy dissipation are related to a sudden increase of the instantancous
Lyapunov exponent, and simultaneous localization of its eigenvector on the high wave numbers at
the end of the inertial range. In particular, we relate the correction to the kK ~3* Kolmogorov law
for the energy spectrum to the fractal dimension extracted by temporal sequences both of the in-
stantaneous Lyapunov exponent and of the eigenvector.
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NAVIER-STOKES 3D-2D

“With turbulence, it's not just

a case of physical theory

being able to handle only
simple cases—we can't do any.
We have no good fundamental
theory at all.” (Feynman, 1979,
Omni Magazine, Vol. 1, No.8).
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FULLY OUT-OF-EQUILIBRIUM (SINKS AND SOURCES AT DIFFERENT SCALES)

2D: ENERGY GOES UP (IN SCALES)
3D: ENERGY GOES DOWN



Ov+ (v-0)v=—0P + vAv+F
0-v=20
+ Boundary Conditions

DIRECT <-> INVERSE ENERGY TRANSFER

3D + ROTATION + HELICITY INJECTION (Mininni & Pouquet 2013)
THICK LAYER + ROTATION (Smith et al 1996)

SQUEZED DOMAINS (Celani et al 2010, Xia et al 2012)

STRONG SHEAR (Herbert et 2012)

SMALL SCALES HELICITY INJECTION (Sulem et al 1986)




1. NAVIER-STOKES 3D
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2. NAVIER-STOKES 3D
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2. NAVIER-STOKES 3D
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2. NAVIER-STOKES 3D
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ON THE ROLE OF INVISCID INVARIANTS (HELICITY & ENERGY) IN 3D FORWARD/
BACKWARD ENERGY CASCADES

H=/d3xw-v
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w(k) = ut(k)h* (k) +u (k)h~ (k)

({11 (), u— () Yices) = o~ PE=oF

J. Fluid Mech. (1973), vol. 59, part 4, pp. T45-752 745
Printed in Great Britain

Helical turbulence and absolute equilibrium

By ROBERT H. KRAICHNAN
Dublin, New Hampshire

(Received 22 January 1973)
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3D FULL NS EQUILIBRIUM WITH 3D HELICAL NS EQUILIBRIUM WITH
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FIG. 1: (Color online). Accessible thermodynamic space for 3D helical flows (left: 8 > |a|kmaz) and for phase space reduced
to maximal symmetry breaking (right: 8 + akmin > 0 and 8 £ akmas > 0 for Ay, marked with slanted lines and shaded in
blue (resp. red) — note that the intersection coincides with the full phase space condition 8 > |&|kmqz). Contrary to 2D
turbulence, there is no accessible negative temperature for 3D flows, but they are recovered in the restricted phase space A+.
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3D HELICAL NS EQUILIBRIUM WITH

NEGATIVE TEMPFIBATURE
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FIG. 3: (Color online). Equilibrium energy (solid blue lines) and helicity (dashed red lines) spectra (E.(k), H, (k)) for the
different (c, 3) regimes, for restricted phase space Ay. Left: a > 0,8 < 0 (regime I); the spectra have a well shape, with an
infrared divergence and an increase at large k (the thin lines indicate the k and k? scaling). Middle: a > 0,3 > 0 (regime II);
the spectra increase with k, with scalings (k?, k%) at low-k and (k, k?) at large k. Right: a < 0,8 > 0 (regime III); the spectra
increase as k increases, and there is an ultraviolet divergence (the thin lines indicate the (k?, k®) scalings at low k).
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FIG. 4: (Color online). Equilibrium energy (solid blue lines) and enstrophy (dashed red lines) spectra (E(k), (k)) for the
different (a, 8) regimes in 2D Turbulence. Left: o > 0,8 < 0 (regime I); the spectra have an infrared divergence (the thin
lines indicate the k and k! scaling). Middle: a > 0,8 > 0 (regime II); the energy spectrum has a bell shape, the enstrophy
spectrum increases with k, with scalings (k, k) at low-k and (k™ 1, k) at large k. Right: a < 0,8 > 0 (regime III); the spectra
increase as k increases, and there is an ultraviolet divergence (the thin lines indicate the (k, k%) scalings at low k).




Cascades, thermalization and eddy viscosity in helical Galerkin truncated Euler flow

G. Krstulovic!, P.D. Mininni®3, M.E. Brachet!:3, and A. Pouquet?
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Ddynamical ensemble equivalence (Gallavotti)
reversible equilibrium ~ irreversible flux coexistency

u+ (u-90)u=-90p+g-+ a(u)Au, 0-u=0
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5 Time-reversible dynamical systems for turbulence™*
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\ Abstract. Dynamical ensemble equivalence between hydrodynamic dissipative equations and
-14 ) suitable time-reversible dynamical systems has been investigated in a class of d ical systems
5 for turbulence. The reversible dynamics is obtained from the original dissipative equations by
-4 2 0 2 4 6 8 10 12 14 imposing a global constraint. We find that, by increasing the input energy, the system changes
from an equilibrium state to a non-equilibrium stationary state in which an energy cascade, with
the same statistical properties of the original system, is clearly detected.
Inky,)

Figure 1. T, versus k, in log-log scale obtained from an integration of the model with
N =23, Ko = 6.25 x 1072 and different values of the forcing: f =5 x 107>(1 + i) (plus),
f =6x1073(1 +i) (squares), f =8 x 10~3(1 + i) (cross). Diamonds represent the results
obtained in the benchmark integration (i.e. the original GOY model).
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MILD SYMMETRY - HOMOGENEOUS OK
E =3 [ut (k) + |u ; BREAKING - ISOTROPY OK
{H =Y e k(ut(k)? - 9[°).

- MIRROR SYMMETRY NO

vt =P (—vt - Vot —VpT) +vAvT + fF
V.ot =0




HELICAL DECIMATED NAVIER-STOKES EQUATIONS
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INVERSE ENERGY FLUX: FROM SMALL TO LARGE SCALES in 3D!
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LARGE SCALES FORCING: DIRECT HELICITY CASCADE

0.1
0.08
0.06 |
0.04
0.02 |

-0.02
-0.04
-0.06 r
-0.08
-0.1

FLUX HELICITY

10" 102

o

10

1

10 162
K k

L.B., S. MUSACCHIO & F. TOSCHI

730,309 (2013) (2013)



SPLIT ENERGY-HELICITY CASCADES

P.D. Mininni and A. Pouquet. Phys. Rev. E 79, 026304 (2009)

1'3_8 L

FIG. 2. Energy (solid) and helicity (dash) spectra in run A3 with
the same forcing as run A2 but lower Rossby number. Different
slopes are shown as a reference. The inset gives the energy and
helicity fluxes and shows that there is both a direct and an inverse
cascade of energy but only a direct cascade of helicity.
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PRL 104, 184506 (2010)

PHYSICAL REVIEW LETTERS TSy S Upscale energy transfer in thick turbulent

Turbulence in More than Two and Less than Three Dimensions

Antonio Celani,' Stefano Musacchio,?” and Dario Vincenzi®

fluid layers

H. Xia', D. Byrne', G. Falkovich? and M. Shats'*

Nat Phys. 2011
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FIG. 3. Kinetic energy spectrum of horizontal (squares) and
vertical (circles) velocities. Dashed lines represents Kolmogorov
scaling. Parameters of the simulation: L, = 2, €,/L, = 1/8,
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ESISTENCE AND UNIQUENESS OF WEAK SOLUTIONS OF THE HELICAL-DECIMATED NSE

vt =P (—vt . Vot —Vph) +vAvT + f7
V-vt =0

HILBERT-NORM COINCIDES WITH THE SIGN-DEFINITE HELICTY
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CONSERVATION HELICITY: NEW APRIORI BOUND ON THE VELOCITY
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ON THE ROLE OF HELICITY IN 3D FORWARD/BACKWARD TURBULENT ENERGY TRANSFER

Q: Can we dissect (and reconstruct) NS equations to extract interesting information
from its elementary constituents?

A: Yes, we can!

1) We showed that ALL flows in nature posses a class of nonlinear interactions
characterized by a backward energy transfer (inverse energy cascade),
triggered by the dynamics of Helicity, and that this happens even in fully
isotropic, homogeneous 3D turbulence

2) Connections to small-scales intermittency ?

3) Connections to regularity of NS equationsin 3D ?

4) Extensions to Magnetohydrodynamics ?

5) Connections to energy reversal in rotating turbulence?

6) How does energy really flow in Fourier space?

u(k) =u"(k)h"(k) + e(k)u™ (k)h~ (k)




