

Entropy production mesoscopically and macroscopically

Erik Aurell

September 22, 2014 Angelo Vulpiani birthday party conference "Strolling on Chaos, Turbulence and Statistical Mechanics"

Sept 22, 2014

Angelo the intellectual

Angelo the friend of the North

KTH/CSC

Angelo the unpredictable, but so interested in predictability

Happy Birthday!!!

Entropy production in stochastic thermodynamics [Sekimoto 2010]

The system: Of the whole world, a part which is properly cut out is called the system

work made on the system δ

 $W \Delta U = \delta W + \delta Q$

2 heat given *to* the system

 $\approx 4nm \cdot pN$

The external system: It is an agent which is capable of controlling macroscopically the system through a parameter *a* of the potential energy

The thermal environment: The background to which the system is connected... ...keeps no memories of the systems's actions...

This entropy production is both physics and mathematics

As physics entropy production remains increased disorder in the environment and hence has to obey Clausius' law:

$$\delta S_{env} = -\delta Q / T$$

As mathematics it is also a ratio of path probabilities:

$$\frac{\Pr_B(\text{path})}{\Pr_F(\text{path})} = e^{-\delta S_{env}}$$

For stochastic kinetics the two definitions agree:

Jarzynski, Phys. Rev. E **56** 5018 (1997); Kurchan, J. Phys. A **31** 3719 (1998); Lebowitz & Spohn, J. Stat. Phys. **95** 333 (1999); Chétrite & Gawędzki, Comm. Math. Phys. (2008)

All fluctuation relations in classical stochastic systems follow from the definition as ratios of path probabilities:

Maes, J. Stat. Phys. **95** 367-392 (1999) Gawędzki, arXiv:1308.1518 (2013)

Suppose we can "properly cut out a piece of the world" more or less accurately, as descriptions of "The System".

What happens to entropy production if we do this? Relations between macroscopics, mesoscopics, and, microscopics?

Test example: the underdamped Langevin equation...

KTH/CSC

$\frac{dp}{dt} = -\partial_x V(x,\lambda_t) - \gamma \frac{p}{m} + \sqrt{2T\gamma} \dot{\omega}_t$ $-\gamma \frac{p}{m} + \sqrt{2T\gamma} \dot{\omega}_t$ force from the environment on the sustant ...which there is an opposite reaction force V(z,t) $-d'Q = dx \circ \left(\gamma \frac{p}{m} - \sqrt{2T\gamma} \dot{\omega}_t \right) \begin{bmatrix} \dots \end{bmatrix} \text{ heat is the work done by the} \\ \text{retained degrees of freedom against the} \\ \text{thermal environment that represents the} \end{bmatrix}$

Ken Sekimoto, *Stochastic Energetics*, Lecture notes in Physics **799**, (Springer 2010) thermal environment that represents the eliminated degrees of freedom.

Sept 22, 2014

...compared to its overdamped

Aalto University School of Science

KTH/CSC

Small length: $\ell = v_{th} m/\gamma$ **Small time:** $t_r = m/\gamma$

Underdamped Kramers-Langevin (SDE)

limit.

Large length: L**Large time:** $t_f = L^2 / D$

Overdamped Kramers-Langevin (SDE)

Underdamped Fokker-Planck (PDE) Overdamped Fokker-Planck (PDE)

$$dX_{t} = \left(f/\gamma - \frac{1}{2} \partial T/\gamma + \frac{1}{2} T \partial \gamma^{-1} \right) dt + \sqrt{2T/\gamma} \circ dW_{t}$$

Sept 22, 2014

 $t_{\rm r}/t_{\rm f} = \varepsilon^{2}$

 $\mathcal{E} = \ell / L$

Expected entropy production

$$\partial_{t}S + \left(f/\gamma + T\partial\gamma^{-1}\right) \cdot \partial S + T/\gamma \partial^{2}S = -T/\gamma \partial \cdot \tilde{f} - \left(f/\gamma + T\partial\gamma^{-1}\right) \cdot \tilde{f} - A$$

Fact 1: a "thermoentropic" force:

$$\widetilde{f} = \left(f / T - (\partial T / T) \right)$$

 $A = \frac{(d+2)}{6\pi}$

$$\left\langle e^{-\int \widetilde{f} \circ dX_t} \right\rangle_{x_i}^{x_f} = \left\langle 1^b \right\rangle_{x_f}^{x_i}$$

$$X_{t} = \left(f/\gamma - \frac{1}{2} \partial T/\gamma + \frac{1}{2} T \partial \gamma^{-1} \right) dt + \sqrt{2T/\gamma} \circ dW_{t}$$

Chétrite-Gawędzki (2008) & Matsuo-Sasa (2010)

Fact 2: part of expected entropy production is not an expectation over (even corrected) force times distance. An "anomalous" contribution to the entropy production remains:

$$\left[\mathbf{E}_{x,v,t} \left[\delta \mathbf{S}_{env} \right] = \mathbf{E}_{x,t} \left[\int_{t}^{t_{f}} \widetilde{f} \circ dX_{t} + A dt \right] + \Delta \mathbf{E} \left[\log \frac{e^{-\frac{mv^{2}}{2T}}}{(2\pi T/m)^{\frac{n}{2}}} \right] + O(\varepsilon) \right]$$

The entropy production per unit volume of a fluid at rest but in a temperature gradient is

Landau-Lifshitz *Fluid Mechanics* 49.6 κ is the thermal conductivity of the medium [κ has dimension 1/(length · time)]

The "anomalous" mesoscopic entropy production term is hence normal 3D macroscopic entropy

$$\left(E_{x,t}\left[\int_{t}^{t_{f}}Adt\right] = \left(t_{i} - t_{f}\right)\int\frac{5\left|\partial T\right|^{2}}{6\gamma T}\rho dV$$

as w/ equivalent mesoscopic thermal conductivity (5=3+2)

 $\kappa_{meso,3D} = 5T\rho/6\gamma$

Antonio Celani, Stefano Bo, Ralf Eichorn, E.A., Phys Rev Lett (2012); Stefano Bo, E.A., Ralf Eichhorn, Antonio Celani, EPL (2013); Stefano Bo, Antonio Celani, J Stat Phys (2014)

Sept 22, 2014

Erik Aurell, KTH & Aalto U

Effects of rotation and asymmetry

$$\dot{p} = -\partial_x V(x, \lambda_t) - \gamma \frac{p}{m} + \sqrt{2T\gamma} \dot{\eta}_t$$
$$\dot{x} = p/m \qquad I_j^i = \tilde{I}_j^i m R^2 \quad \Gamma_j^i = \tilde{\Gamma}_j^i \gamma R^2$$
$$Q^{-1} \frac{d(QI\omega)}{dt} = -\Gamma \omega + Q^{-1}M + \sqrt{2T}\sigma \dot{\xi}$$

Brownian particle of radius *R*. We need a friction matrix D (in general not a symmetric) and a diffusion matrix S.

 $D = I^{-1}\Gamma$ $S = I^{-1}\Gamma I^{-1}$

A multi-scale analysis gives an anomalous contribution to the entropy production from the angular velocities with a mesoscopic thermal conductivity

$$\kappa_{meso,3D}^{rot} = \frac{T\rho}{2\gamma} \operatorname{Tr}\left(1 + \frac{2m}{\gamma}D\right)^{-1}$$

Yueheng Lan, E.A., arXiv:1405.0663

And an analogous result if also γ is promoted to a metrix.

Raffele Marino, Ralf Eichhorn, E.A. (in preparation)

and Technology

Mean flow and the advectiondiffusion limit

Stokes number $\mathbf{St} = \frac{t_r}{t_u} = \frac{t_r u}{L}$ Péclet number $\mathbf{Pe} = \frac{t_f}{t_u} = \frac{Lu}{D}$ $\frac{\mathbf{St}}{\mathbf{Pe}} = \frac{t_r}{t_f} = \mathcal{E}^2$ $\dot{p} = -\partial_x V(x, \lambda_t) - \gamma \left(\frac{p}{m} - u(x)\right) + \sqrt{2T\gamma} \dot{\omega}_t$ $\dot{x} = p/m$ $\mathbf{Pe} \cdot \mathbf{St} = \frac{t_f t_r}{t_u^2} = \frac{v_{th}^2}{u^2}$

$$\mathbf{E}_{x,v,t}\left[\delta S_{env}^{AD(u)}\right] = \mathbf{E}_{x,t}\left[\int_{t}^{t_{f}} \frac{m}{2\gamma} \left(\partial_{i} u_{j} \partial_{j} u_{i} + \partial_{j} u_{i} \partial_{j} u_{i}\right)\right] + O(\varepsilon)$$

Yueheng Lan, E.A., arXiv:1405.0663

This matches the other two terms in Landau-Lifshitz *Fluid Mechanics* 49.6 Sept 22, 2014

$$\frac{\eta}{2T} \left(\partial_k u_i + \partial_i u_k - \mathbf{1}_{ik} \, \frac{2}{3} \, \partial \cdot u \right)^2 \right)$$

$$\underbrace{\frac{\varsigma}{T}(\partial \cdot u)^2}$$

...and microscopics

Suppose that the microscopic entropy production is the change of the von Neumann entropy of a bath

Esposito, Lindenberg, van den Broeck, New Journal of Physics **12** 013013 (2010) Pucci, Esposito, Peliti. J. Stat. Mech. P4005 (2013)

Use Feynman-Vernon

A reminder: fluctuation relations in isolated quantum systems

Initial state of the system taken to be in equilbrium

School of Science

and Technology

$$\rho^{eq} = |n\rangle \langle n| \frac{\exp(-\beta E_n)}{Z^{init}(\beta)} \implies |i\rangle \langle i| \implies \rho_f = \Phi(|i\rangle \langle i|) \implies |f\rangle \langle f|$$

On an isolated system, work done should be: $\delta W[i, f] = E_f - E_i$ Unitary time development implies: $\Phi(\mathbf{1}) = \mathbf{1}$

$$\left\langle e^{-\beta\delta W} \right\rangle_{eq} = \sum_{i} \frac{e^{-\beta E_{i}}}{Z^{init}} \sum_{f} \left\langle f \left| \Phi\left(\left| i \right\rangle \left\langle i \right| \right) f \right\rangle e^{-\beta\left(E_{f} - E_{i}\right)} = \frac{Z^{final}}{Z^{init}} = e^{-\beta\Delta F}$$

Jorge Kurchan, A Quantum Fluctuation Theorem, cond-mat/0007360September 2, 2014Erik Aurell, KTH & Aalto U15

Other quantum fluctuation relations require frequent measurements

Saira et al, Test of Jarzynski and Crooks fluctuation relations in an electronic system, PRL **109**, 180601 (2012); Koski et al, Distribution of Entropy Production in a Single-Electron Box, Nature Physics **9**, 644 (2013); Hekking & Pekola, Quantum jump approach for work and dissipation in a two-level system, PRL **111**, 093602 (2013); Horowitz & Parrondo, New J. Phys **15** 085028 (2013)

Change of von Neumann entropy

$$\begin{array}{c} \rho_{TOT}^{init} & \rho_{TOT}^{final} & \rho_{TOT}^{post} = \frac{|f\rangle\langle f| \otimes \langle f| \rho_{TOT}^{final} | f\rangle}{\mathrm{Tr}_{\mathrm{F}}[\langle f| \rho_{TOT}^{final} | f\rangle]} \\ |f\rangle\langle f| & \rho_{B}^{post} = \frac{1}{P_{if}} \langle f| \rho_{TOT}^{final} | f\rangle \\ \delta \mathrm{Tr}[-\rho_{B} \log \rho_{B}] = -\frac{1}{P_{if}} \mathrm{Tr}[\langle f| \rho_{TOT}^{final} | f\rangle \log \rho_{B}^{eq}] + \mathrm{Tr}[\rho_{B}^{eq} \log \rho_{B}^{eq}] + O(\delta\rho^{2}) \\ \log \rho^{eq} = |n\rangle\langle n|(\beta F - \beta E_{n}) = \beta F|n\rangle\langle n| + \beta \frac{d}{d\varepsilon} \langle n|e^{-\varepsilon H_{B}} |n'\rangle|_{\varepsilon=0} |n\rangle\langle n'| \\ \delta \mathrm{Tr}[-\rho_{B} \log \rho_{B}] = -\frac{\beta}{P_{if}} \frac{d}{d\varepsilon} \mathrm{Tr}[e^{-\varepsilon H_{B}} \langle f| \rho_{TOT}^{final} | f\rangle] \\ \end{array}$$

For finite ε the integrals over the bath are, as in Feynman-Vernon, Gaussian, and...

$$\delta \operatorname{Tr}\left[-\rho_{B}\log\rho_{B}\right] = -\frac{\beta}{P_{if}}\frac{d}{d\varepsilon}\operatorname{Tr}_{if}\int \partial x \partial y e^{\frac{i}{\hbar}S_{S}[x]-\frac{i}{\hbar}S_{S}[y]+\frac{i}{\hbar}S_{i}[x,y]-\frac{1}{\hbar}S_{r}[x,y]-\varepsilon(P+Q+R)+\dots}\Big|_{\varepsilon=0} + O\left(\delta\rho^{2}\right)$$

P, Q and R are new terms, of similar type but not the same as in Feynman-Vernon.

September 2, 2014

Erik Aurell, KTH & Aalto U

Caldeira-Leggett model...

and Technology

KTH/CSC

 \sum

 \rightarrow

 $\int f(\omega)d\omega$

Ohmic spectral density of the bath oscillators

 $\frac{f(\omega)C^2(\omega)}{m(\omega)} = \frac{2\eta\omega^2}{\pi}$ $\Omega\hbar\beta << 1$

First spectral cut-off Ω is taken large. Then a high-temperature limit is taken such that

 $S_i[x, y] = -\frac{\eta}{2} \int (x_s - y_s)(\dot{x}_s - \dot{y}_s) + \text{potential renormalization}$

 $S_r[x, y] = \frac{\eta}{\hbar\beta} \int (x_s - y_s)^2$

$$\delta \operatorname{Tr} \left[-\rho_{B} \log \rho_{B} \right] = -\frac{\beta}{P_{if}} \frac{d}{d\varepsilon} \operatorname{Tr}_{if} \int \partial x \partial y e^{\frac{i}{\hbar} S_{S}[x] - \frac{i}{\hbar} S_{S}[y] + \frac{i}{\hbar} S_{i}[x,y] - \frac{1}{\hbar} S_{r}[x,y] - \varepsilon(P + Q + R) + ...} \right|_{\varepsilon = 0} + O(\delta \rho^{2})$$

$$p(s-u) \approx -\frac{2\eta}{\hbar^{2} \beta^{2}} \delta(s-u)$$

$$P[x, y] = -\frac{\eta}{\hbar^{2} \beta^{2}} \int (x_{s} - y_{s})^{2} = -\frac{1}{\beta \hbar} S_{r}[x, y]$$

$$Q[x, y] = \eta \int \dot{x}_{s} \dot{y}_{s} + \text{boundary terms}$$

$$R[x, y] = \frac{i\eta}{\hbar\beta} \int \dot{x}_{s} y_{s} - x_{s} \dot{y}_{s} = \frac{2i}{\hbar\beta} S_{i}[x, y] + \text{bound. terms}$$

Simple consequence

$$\delta \operatorname{Tr}\left[-\rho_{B}\log\rho_{B}\right] = -\frac{\beta}{P_{if}}\frac{d}{d\varepsilon}\operatorname{Tr}_{if}\int \partial x \partial y e^{\frac{i}{\hbar}S_{S}[x] - \frac{i}{\hbar}S_{S}[y] + \frac{i}{\hbar}S_{i}[x,y] - \frac{1}{\hbar}S_{r}[x,y] - \varepsilon(P + Q + R) + \dots}\Big|_{\varepsilon=0} + O\left(\delta\rho^{2}\right)$$

The most divergent new term in exponent is

This gives a contribution to the entropy change

$$\left(Q[x,y]=\eta\int\dot{x}_s\dot{y}_s\right)$$

$$\frac{1}{P_{if}} \left< \beta \eta \int \dot{x}_s \dot{y}_s \right>_i^f$$

 $\int (-\eta v) dx = \int -\eta v^2 dt$

Compare the work done *on* the system by a friction force (heat transferred *from* a bath)

By Clausius' formula the entropy production *in* the bath by reaction to the friction force is then

$$\delta S_{env} = \int \beta \eta v^2 dt$$
 The same!

The other (sub-leading) contributions are more tricky to compute...

The two sorts of entropy School of Science production in Feynman-Vernon and Technology **KTH/CSC** $\delta \mathrm{Tr} \Big[-\rho_B \log \rho_B \Big] = \frac{\beta \langle P+Q+R \rangle_{if}}{P_{\cdot c}}$ $\delta S[i, f] = -\log \frac{P_{fi}^{R}}{P_{fi}}$ $\Phi^{\vec{R}}$ $P_{fi}^{R} = \int \psi_{f}(x_{f}) \psi_{f}^{*}(y_{f}) \psi_{i}^{*}(x_{i}) \psi_{i}(y_{i}) K_{FV}^{R}(x_{f}, y_{f}, x_{i}, y_{i}) dx_{i} dy_{i} dx_{f} dy_{f}$ $= \operatorname{Tr}_{\mathrm{fi}} \int \partial x \partial y e^{\frac{i}{\hbar} S_{S}^{R}[x] - \frac{i}{\hbar} S_{S}^{R}[y] + \frac{i}{\hbar} S_{i}^{R}[x, y] - \frac{1}{\hbar} S_{r}^{R}[x, y]}$

The two sides have different structure. At best, if there are frequent measurements.

$$\Re[\mathbf{i},\mathbf{f}] \approx -\frac{\left\langle \Delta S_{S}[x] + \Delta S_{S}[y] + \Delta S_{i}[x,y] + \Delta S_{r}[x,y] \right\rangle_{if}}{P_{if}}$$

And in this case (frequent measurements) one can get equality between the two sides if time reversal leads to...

$$\Delta S_{s}[x] = \Delta S_{s}[y] = 0$$
 ...kind of natural
$$\Delta S_{i}[x, y] = -\beta R$$
 ...can actually be true
$$\Delta S_{r}[x, y] = -\beta (P + Q)$$
 ...not true for friction

be true

Thanks

Ralf Eichhorn Antonio Celani Stefano Bo

Yueheng Lan Raffaele Marino NORDITA Vetensk

Vetenskapsrådet

Karol Życzkowski Jakub Zakrzewski Jukka Pekola

Happy birthday Angelo!

and Technology