

Entropy production mesoscopically and macroscopically

Erik Aurell

September 22, 2014 Angelo Vulpiani birthday party conference "Strolling on Chaos, Turbulence and Statistical Mechanics"

Sept 22, 2014 **AV60** 1

Angelo the intellectual

Angelo the friend of the North

KTH/CSC

Angelo the unpredictable, but *so* **interested in predictability**

Happy Birthday!!!

Entropy production in stochastic thermodynamics [Sekimoto 2010]

The system: Of the whole world, a part which is properly cut out is called the system

 δW ΔU δW $\delta \Delta$ work made *on* the system

 $\Delta U = \delta W + \delta Q$ $\left| \begin{array}{c} \delta Q \end{array} \right|$ δQ heat given *to* the heat given *to* the system

 ≈ 4 *nm* \cdot *pN*

The external system: It is an agent which is capable of controlling macroscopically the system through a parameter *a* of the potential energy

The thermal environment: The background to which the system is connected... ...keeps no memories of the systems's actions...

This entropy production is both physics and mathematics

As physics entropy production remains increased disorder in the environment and hence has to obey Clausius' law:

$$
\delta S_{\text{env}} = -\delta Q / T
$$

As mathematics it is also a ratio of path probabilities:

$$
\frac{\Pr_B(\text{path})}{\Pr_F(\text{path})} = e^{-\delta S_{env}} \quad \text{ratio}
$$

For stochastic kinetics the two definitions agree:

 $=\partial Q / T$ Phys. 95 333 (1999); Chétrite & Jarzynski, Phys. Rev. E **56** 5018 (1997); Kurchan, J. Phys. A **31** 3719 (1998) ; Lebowitz & Spohn, J. Stat. Gawędzki, Comm. Math. Phys. (2008)

All fluctuation relations in classical stochastic systems follow from the definition as $\mathcal{L} = e^{-\delta S_{env}}$ ratios of path probabilities:

Maes, J. Stat. Phys. **95** 367-392 (1999) Gawędzki, arXiv:1308.1518 (2013)

Suppose we can "properly cut out a piece of the world" more or less accurately, as descriptions of "The System".

What happens to entropy production if we do this? Relations between macroscopics, mesoscopics, and, microscopics?

Test example: the underdamped Langevin equation...

KTH/CSC

dx p p dp 2*II* $\left| \frac{a}{2} \right|$ $V(x, \lambda)$ $\left| \gamma \frac{p}{\gamma} + \sqrt{2T\gamma} \dot{\omega}_t \right|$ $=\frac{P}{q}$ $= -\partial_x V(x, \lambda) + \gamma \frac{P}{\lambda} + \sqrt{2T\gamma \dot{\omega}}$ $\mathcal{L}_x V(x, \lambda_t)$ $\left| \gamma \frac{P}{m} + \sqrt{2T\gamma \dot{\omega}_t} \right| = \frac{1}{\lambda t} = \frac{1}{m}$ *dt m dt* $m \left(\begin{array}{ccc} v & -l & -l \\ v & -l & -l \\ v & v & v \end{array} \right)$ dt i **force from the** $-\gamma\frac{P}{\tau}+\sqrt{2T\gamma}\dot{\omega}_{\tau}$ force from $T\gamma\dot{\omega}_{\overline{\tau}}$ environment **environment on** m $v = f$, v_t characterized **the system... ...which there is an opposite reaction force** $V(z,t)$ $p \sqrt{2\pi}$; \sum $-d'Q = dx \circ \left(\gamma \frac{p}{\gamma} - \sqrt{2 T \gamma } \dot{\omega}_{t} \; \right) \stackrel{[...] \textit{heat is the
retained degree} }$ $\bigg\}$ [...] heat is the […] *heat is the work done by the* $d'Q = dx \circ | \gamma P - \sqrt{2T\gamma \dot{\omega}_{t}} | \frac{1}{2}$ retained de $\chi P - \sqrt{2T}$ *retained degrees of freedom against the* m v^{--} , v_t fermal environment of v_t $\binom{m}{m}$ \int thermal enviror *thermal environment that represents the* Ken Sekimoto, *Stochastic Energetics*, *eliminated degrees of freedom.*

Lecture notes in Physics **799**, (Springer 2010)

Sept 22, 2014 **AV60** 8

...compared to its overdamped

o Universitv

School of Science and Technology

KTH/CSC

Small length: $\ell = v_{th} m / \gamma$

Underdamped Kramers-Langevin (SDE)

limit.

 $= v_{\text{th}} m/\gamma$ **Large length:** *L* **Small time:** $t_r = m/\gamma$ **Large time:** $t_f = L^2/D$

Overdamped Kramers- χ Langevin (SDE)

Underdamped Fokker-Planck (PDE)

Overdamped Fokker-Planck (PDE) $\varepsilon = \ell/L$ **Quandampad Falz**

Matsuo-Sasa (2010)

$$
dX_t = \left(\frac{f}{\gamma - \frac{1}{2}\partial T}{\gamma + \frac{1}{2}T\partial \gamma^{-1}}\right)dt + \sqrt{2T/\gamma} \circ dW_t
$$

Sept 22, 2014 **AV60** 9

 $t_{\rm r}/t_{\rm f} = \varepsilon^{2}$

Expected entropy production

$$
\partial_{t}S + \left(f/\gamma + T\partial\gamma^{-1}\right)\cdot\partial S + T/\gamma\partial^{2}S = -T/\gamma\partial\cdot\widetilde{f} - \left(f/\gamma + T\partial\gamma^{-1}\right)\cdot\widetilde{f} - A
$$

Fact 1: a "thermoentropic" force:

$$
\widetilde{f} = (f/T - (\partial T/T))
$$

$$
\left\langle e^{-\int \widetilde{f} \circ dX_t} \right\rangle_{x_i}^{x_f} = \left\langle 1^b \right\rangle_{x_f}^{x_i} \qquad \text{Cheitrite-Ga}
$$

$$
dX_t = \left(\frac{f}{\gamma - \frac{1}{2}\partial T}{\gamma + \frac{1}{2}T\partial \gamma^{-1}}\right)dt + \sqrt{2T/\gamma} \circ dW_t
$$

x Chétrite-Gawędzki (2008) & Matsuo-Sasa (2010)

Fact 2: part of expected entropy production is not an expectation over (even corrected) force times distance. An "anomalous" contribution to the entropy production remains:

$$
\left[\mathbf{E}_{x,v,t}\left[\delta S_{env}\right] = \mathbf{E}_{x,t}\left[\int\limits_{t}^{t_f} \widetilde{f} \circ dX_t + Adt\right] + \Delta \mathbf{E}\left[\log \frac{e^{-\frac{mv^2}{2T}}}{(2\pi T/m)^{\frac{n}{2}}}\right] + O(\varepsilon)\right)\left(A = \frac{(d+2)}{6\gamma T}\left|\partial T\right|^2\right)
$$

$$
A = \frac{(d+2)}{6\gamma T} |\partial T|^2
$$

KTH/CSC

The entropy production per unit volume of a fluid at rest but in a temperature gradient is

2 2 Landau-Lifshitz *Fluid Mechanics* 49.6 T^2 \int ^{rrms} different $|\nabla T|^2$ Landau-Lifshitz Fluid Mechanics 49.6
 $|\nabla T|^2$ k is the thermal conductivity of the medium K^{\perp} [k has dimension 1/(length ⋅ time)]

The "anomalous" mesoscopic entropy production term is hence normal 3D macroscopic entropy

$$
E_{x,t} \left[\int_{t}^{t_f} A dt \right] = \left(t_i - t_f \right) \int_{0}^{t_f} \frac{5|\partial T|^2}{6\gamma T} \rho dV
$$
 *thermal conductivity (5=3+2)

$$
\left(\frac{\kappa_{meso,3D}}{\kappa_{meso,3D}} = 5T\rho/6\gamma \right)
$$*

 $\left(t_i - t_f\right)$ $\left| \frac{S|C_1|}{S_2} \right|$ ρdV $\left| \frac{\text{thermal conductivity (5=3+2)}}{\sigma} \right|$ $5|\partial T|^2$ as w/ equivalent mesoscopic
thermal conductivity (5, 2+2)

Antonio Celani, Stefano Bo, Ralf Eichorn, E.A., Phys Rev Lett (2012); Stefano Bo, E.A., Ralf Eichhorn, Antonio Celani, EPL (2013); Stefano Bo, Antonio Celani, J Stat Phys (2014)

Sept 22, 2014 11

April 14, 2014 **Erik Aurell, KTH & Aalto U** 12

Effects of rotation and asymmetry

$$
\begin{aligned}\n\dot{p} &= -\partial_x V(x, \lambda_t) - \gamma \frac{p}{m} + \sqrt{2T\gamma} \dot{\eta}_t \\
\dot{x} &= p/m \qquad I^i_j = \tilde{I}^i_j mR^2 \quad \Gamma^i_j = \tilde{\Gamma}^i_j \gamma R^2 \\
Q^{-1} \frac{d(QI\omega)}{dt} &= -\Gamma \omega + Q^{-1}M + \sqrt{2T} \sigma \dot{\xi} \\
\text{general not a symmetric} \\
\text{and a diffusion matrix } S.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Brownian particle of radius } R. \text{ We need a function } \dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field.} \\
\text{Equation of the electric field, and the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field,}\n\dot{R} = \frac{P}{Q} \dot{R}^2 \quad \text{Equation of the electric field
$$

Brownian particle of radius *R.* We need a friction matrix D (in and a diffusion matrix S.

A multi-scale analysis gives an anomalous contribution to the entropy production from the angular velocities with a mesoscopic thermal conductivity

$$
\kappa_{meso,3D}^{rot} = \frac{T\rho}{2\gamma} \text{Tr}\left(1 + \frac{2m}{\gamma}D\right)^{-1}
$$
\nYueheng Lan, E.A., arXiv:1405.0663

And an analogous result if also γ is promoted to a metrix.

Raffele Marino, Ralf Eichhorn, E.A. (in preparation)

$$
\left(\begin{array}{c}\right)\\ \left(\begin{array}{c}\right)\end{array}\right)\end{array}\right)\end{array}\right)\end{array}\right)
$$

and Technology

 $D = I^{-1} \Gamma$ $S = I^{-1} \Gamma I^{-1}$

Mean flow and the advectiondiffusion limit

 $\int_{x}^{x} V(x, \lambda_t) - \gamma \left| \frac{P}{m} - u(x) \right| + \sqrt{2T\gamma \dot{\omega}_t}$ $\dot{x} = p/m$ **P** m $\left(\cdots\right)$ $\sqrt{2}$ $\sqrt{2}$ \cdots $\sqrt{2}$ \cdots $p \left(\begin{array}{c} \sqrt{2} & \sqrt{2} \\ \sqrt{2}$ $\dot{p} = -\partial_x V(x, \lambda_t) - \gamma \left(\frac{P}{m} - u(x) \right) + \sqrt{2T\gamma} \dot{\omega}_t \quad \dot{x} = p/m$ $\sqrt{2T}$ $\vert -u(x)\vert + \sqrt{2T\gamma}$ $\left(m\right)$ $\left(n\right)$ $\left(\begin{array}{cc} p & \sqrt{p} \end{array}\right)$ $\dot{x} = -\partial_x V(x, \lambda_t) - \gamma \frac{P}{\lambda} - u(x) + \sqrt{2T\gamma \dot{\omega}_t}$ $\dot{x} = p/m$ **Pe**. $=p/m$ **Pe** \cdot **St** $= \frac{t_f t_r}{t^2} = \frac{v_{th}^2}{v^2}$ Stokes number *L* number *t_ru* Péclet $t_{\rm u}$ \sim L $t_r = \frac{t_r u}{l}$ **Péclet** $Pe = \frac{t_r u}{l}$ u \overline{L} $St = \frac{t_r}{t} = \frac{t_r u}{l}$ Péclet number $\mathbf{r} \bullet \mathbf{r} = t_{\mathbf{u}} - b$ $D \qquad \qquad \mathbf{D}$ ^{t_f} $=\frac{t_f}{t}=\frac{Lu}{D}$ $\frac{Dv}{T}=\frac{t_r}{t_i}=\mathcal{E}$ t_f $t_{\rm H}$ u \overline{U} $\text{Pe} = \frac{l_f}{t} = \frac{L u}{D}$ $\text{Pe} \cdot \text{St} = \frac{t_f t_r}{t_u^2} = \frac{v_{th}^2}{u^2}$ v_{th}^2 t_u^2 u^2 $t_f t_r = v_{th}^2$ *u* \cdot *St* = $\frac{r_f r_r}{r^2} = \frac{v_{th}^2}{r^2}$ 2 Pe $\left\{\begin{matrix} t_f & -t_f \end{matrix}\right\}$ \mathbf{S} t_r 2 $=\frac{t_r}{t_s}=\varepsilon^2$ *f* $r - c^2$ t_f \sim t_r α^2

Overdamped limit: $St \rightarrow 0$ and Pe const. – gives no effects Inertial particles limit: $\text{Pe}\to\infty$ and St const.– too difficult (for us) Advection-diffusion limit: $St = Pe^{-1} \rightarrow 0$ - one can do – one can do

$$
\mathbf{E}_{x,v,t}\left[\delta S_{env}^{AD(u)}\right] = \mathbf{E}_{x,t}\left[\int_{t}^{t_f} \frac{m}{2\gamma} \left(\partial_i u_j \partial_j u_i + \partial_j u_i \partial_j u_i\right)\right] + O(\varepsilon) \qquad \text{Yueheng Lan, E.A.,}
$$
\n
$$
\text{a}^2 \cdot \text{A}^2 \cdot \text{B}^2 \cdot \text{B}^2 \cdot \text{B}^2 \cdot \text{B}^2 \cdot \text{B}^2 \cdot \text{C}
$$

Sept 22, 2014 13 This matches the other two terms in Landau-Lifshitz *Fluid Mechanics* 49.6

$$
\frac{\eta}{2T} \big(\partial_k u_i + \partial_i u_k - \mathbb{1}_{ik} \tfrac{2}{3} \partial \cdot u \big)^2 \Bigg) \Bigg(\frac{5}{T} \big(\partial \cdot u \big)^2 \Bigg)
$$

$$
^2\left[\frac{5}{T}(\partial\cdot u)^2\right]
$$

...and microscopics

Suppose that the microscopic entropy production is the change of the von Neumann entropy of a bath

Esposito, Lindenberg, van den Broeck, New Journal of Physics **12** 013013 (2010) Pucci, Esposito, Peliti. J. Stat. Mech. P4005 (2013)

Use Feynman-Vernon

Measurement Initial state of the Measurement \bigcup // Measurement **A reminder: fluctuation relations in isolated quantum systems**

system taken to be in equilbrium

system taken to be
in equilibrium

$$
\rho^{eq} = |n\rangle\langle n| \frac{\exp(-\beta E_n)}{Z^{init}(\beta)} \implies |i\rangle\langle i| \implies \rho_f = \Phi(|i\rangle\langle i|) \implies |f\rangle\langle f|)
$$

control

School of Science and Technology

On an isolated system, work done should be: $\delta W[i, f] = E_f - E_i$ Unitary time development implies: $\Phi(1) = 1$

$$
\left\langle e^{-\beta \delta W} \right\rangle_{eq} = \sum_{i} \frac{e^{-\beta E_i}}{Z^{init}} \sum_{f} \left\langle f \left| \Phi \right\rangle \middle\langle i \right\rangle \middle\langle i \right| f \left\rangle e^{-\beta \left(E_f - E_i\right)} = \frac{Z^{final}}{Z^{init}} = e^{-\beta \Delta F}
$$
\nJorge Kurchan, *A Quantum Fluctuation Theorem*, cond-mat/0007360
\nSeptember 2, 2014
\nErik Aurell, KTH & Aalto U

Jorge Kurchan, *A Quantum Fluctuation Theorem*, cond-mat/0007360

Other quantum fluctuation relations require frequent measurements

Saira *et al*, *Test of Jarzynski and Crooks fluctuation relations in an electronic system*, PRL **109**, 180601 (2012); Koski *et al*, *Distribution of Entropy Production in a Single-Electron Box*, Nature Physics **9**, 644 (2013); Hekking & Pekola, *Quantum jump approach for work and dissipation in a two-level system*, PRL **111**, 093602 (2013); Horowitz & Parrondo, New J. Phys **15** 085028 (2013)

Change of von Neumann entropy *final init TOT final TOT post f f f f* **KTH/CSC** *TOT TOT final* Tr^B *f f TOT post final f f f f* ¹ *i i ^B if P TOT* ² Tr log Tr log ¹ *final eq eq eq* Tr log *^f ^f ^O ^P if ^B ^B TOT B B B eq H^B* log ' ' *d n n F E F n n n e n n n n d* 0 *TOT ^f ^B ^H d final* Tr log Tr simple terms *^e d f B B if ^P* 0

For finite ε the integrals over the bath are, as in Feynman-Vernon, Gaussian, and...

$$
\delta \text{Tr} \left[-\rho_B \log \rho_B \right] = -\frac{\beta}{P_{if}} \frac{d}{d\varepsilon} \text{Tr}_{\text{if}} \int \exp\left(\frac{i}{\hbar} S_s [x] + \frac{i}{\hbar} S_s [y] + \frac{i}{\hbar} S_s [x, y] - \frac{i}{\hbar} S_r [x, y] - \varepsilon (P + Q + R) + \dots \right) \left| \varepsilon = 0 + O(\delta \rho^2) \right]
$$

actalers.

P, Q and R are new terms, of similar type but not the same as in Feynman-Vernon.

September 2, 2014 Erik Aurell, KTH & Aalto U 19

Caldeira-Leggett model…

 $\int_{c}^{\Omega} f(x) dx$ Ohmic spectral density of \sum_{i} \rightarrow $\int_{0}^{f(\omega)d\omega}$ the bath oscillators $\frac{f(\omega)}{n}$ \rightarrow $\left| f(\omega)d\omega \right|$ \rightarrow $\left| f(\omega)d\omega \right|$ \rightarrow $\left| f(\omega)d\omega \right|$ $\begin{array}{ccc} 0 & \hspace{1.5cm} & \end{array}$

 $\frac{1}{i}$ $\frac{1}{0}$ (iii) the bath oscillators (m(ω) π) $\frac{f(\omega)C^2(\omega)}{m(\omega)} = \frac{2\eta\omega^2}{\pi}$ ω and π $m(\omega)$ π $\Omega \hbar \beta << 1$

First spectral cut-off Ω is taken large. Then a high-temperature limit is taken such that

 $[x, y] = -\frac{\eta}{2} \int (x_g - y_g)(\dot{x}_g - \dot{y}_g) +$ potential renormalization $\left| \int S_r[x, y] = \frac{\eta}{h\beta} \int (x_g - y_g)^2 \right|$ $S_i[x, y] = -\frac{\eta}{2} \int (x_s - y_s)(\dot{x}_s - \dot{y}_s) +$ potential renormalization

 $S_r[x, y] = \frac{\eta}{\hbar \beta} \int (x_g - y_g)^2$

$$
\overline{\delta \text{Tr}\left[-\rho_{B} \log \rho_{B}\right]} = -\frac{\beta}{P_{if}} \frac{d}{d\varepsilon} \text{Tr}_{ij} \int \exp\left(-\frac{i}{\hbar} S_{s}[x] + \frac{i}{\hbar} S_{i}[x,y] + \frac{i}{\hbar} S_{i}[x,y] - \varepsilon (P+Q+R) + \dots\right|_{\varepsilon=0} + O(\delta \rho^{2})
$$
\n
$$
\overline{\rho(s-u) \approx -\frac{2\eta}{\hbar^{2} \beta^{2}} \delta(s-u)}
$$
\n
$$
\underbrace{\left[P(x,y] = -\frac{\eta}{\hbar^{2} \beta^{2}}\int (x_{s} - y_{s})^{2} = -\frac{1}{\beta \hbar} S_{r}[x,y]\right]}_{\text{f}(s-u) \approx -i\frac{2\eta}{\hbar \beta} \delta(s-u)}
$$
\n
$$
\underbrace{\left[Q(x,y] = \eta \int x_{s} y_{s} + \text{boundary terms}\right]}_{\text{f}(x,y) = \frac{i\eta}{\hbar \beta} \int x_{s} y_{s} - x_{s} y_{s} = \frac{2i}{\hbar \beta} S_{i}[x,y] + \text{bound. terms}}
$$

Simple consequence

$$
\delta \text{Tr} \left[-\rho_B \log \rho_B \right] = -\frac{\beta}{P_{if}} \frac{d}{d\varepsilon} \text{Tr}_{\text{if}} \int \exp \left(\frac{i}{\hbar} S_s [x] + \frac{i}{\hbar} S_s [y] + \frac{i}{\hbar} S_s [x, y] - \frac{i}{\hbar} S_r [x, y] - \varepsilon (P + Q + R) + \dots \right) \left| \varepsilon = 0 + O(\delta \rho^2) \right]
$$

The most divergent new term in exponent is

This gives a contribution to the entropy change

$$
\left(\begin{array}{c}Q[x,y]=\eta\int\dot{x}_{s}\dot{y}_{s}\end{array}\right)
$$

$$
\boxed{\color{purple}{\frac{1}{P_{if}}\left\langle \beta\eta\int\!\dot{x}_{_s}\dot{y}_{_s} \right\rangle _i^f}}
$$

 $\int (-\eta v) dx = \int -\eta v^2 dt$

Compare the work done *on* the system by a friction force (heat transferred *from* a bath)

By Clausius' formula the entropy production *in* the bath by reaction to the friction force is then

$$
\overline{\left(\delta S_{\text{env}} = \int \beta \eta v^2 dt\right)}
$$
 The same!

The other (sub-leading) contributions are more tricky to compute…

THE I THE TWO Sorts of entropy
\n**PROduction in Feynman-Vernon**
\n
$$
\delta S[i, f] = -\log \frac{P_{ff}^R}{P_{tf}} \underbrace{\Phi^R}_{\text{ATICAInology}}
$$
\n
$$
\delta S[i, f] = -\log \frac{P_{ff}^R}{P_{tf}} \underbrace{\Phi^R}_{\text{ATICAInology}}
$$
\n
$$
= \text{Tr}_{fi} \int \rho x \rho y e^{\frac{i}{h} S_s^R [x] - \frac{i}{h} S_s^R [y] + \frac{i}{h} S_i^R [x, y] - \frac{1}{h} S_r^R [x, y]}
$$

The two sides have different structure. At best, if there are frequent measurements…

$$
\delta S[i,f] \approx -\frac{\left\langle \Delta S_S[x] + \Delta S_S[y] + \Delta S_i[x,y] + \Delta S_r[x,y] \right\rangle_{if}}{P_{if}}
$$

And in this case (frequent measurements) one can get equality between the two sides if time reversal leads to…

$$
\frac{\Delta S_s[x] = \Delta S_s[y] = 0}{\Delta S_i[x, y] = -\beta R}
$$
...can actually be true

$$
\frac{\Delta S_r[x, y] = -\beta (P + Q)}{\Delta S_r[x, y] = -\beta (P + Q)}
$$
...not true for friction

Thanks

Ralf Eichhorn Antonio Celani Stefano Bo

Yueheng Lan

Raffaele Marino

NORDITA

Vetenskapsrådet

Karol Życzkowski Jakub Zakrzewski Jukka Pekola

Happy birthday Angelo!

and Technology