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Two intertwined motivations

The macroscopic objectification problem

The problem:
"the very possibility of performing measurements on a
microsystem combined with the assumed general validity of the
linear nature of quantum evolution leads to a fundamental
contradiction" Bassi and Ghirardi, Physics Letters A, (2000)

Proposed way out (list not complete):
von Neumann-Pauli-Lüders postulate (standard, F.A.P.P.)
Decoherence
Alternative theory (e.g. D. Bohm )
Modifications of Q.M. (G.R.W, Gisin, Pearle)
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Two intertwined motivations

Effective description Open Quantum System

The problem: a physical system is never really isolated but
always interacts with the surrounding environment.

Standard Quantum Mechanics describes closed systems.
Contemporary experiments require modeling interaction with
the environment.
Detailed description of the environment computationally very
hard and physically not relevant.
Need of an effective description of the system.
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The F.A.P.P. postulates of Quantum Mechanics

"Kinematic" postulates
Remark: A Hilbert space H ≈ Cd is enough for "most" of Q.M. (e.g. d = 2)

States and Operators

System⇔ unit ray ψ , in a Hilbert space H ⊆ Cd : ψ†ψ =
∑d

i=1 ψ
∗
i ψi = 1

Measurable quantity⇔ linear self-adjoint operator A on H: if the
spectrum of A is non-degenerate

- possible measurement outcomes are the eigenvalues {ai}d
i=1 of A

- Prob(ai) = |v†aiψ|2 = Tr(ψψ† vai v†ai ) for Avai = ai vai

Composite system postulate
The state space is the tensor product of
the state spaces of the component
physical systems H = HS ⊗ HE

dimH = dimHS × dimHE

System

Environment
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The F.A.P.P. postulates of Quantum Mechanics

Dynamic postulate I

Unitary evolution of pure states ( Schrödinger eq. )

ı ∂tψ(t) = Hψ(t)

ψ(0) = ψo

}
⇒ ψ(t) = Ut ψo

Unitary evolution of mixtures ( Liouville-von Neumann eq.)

ı ∂tρ(t) = [H , ρ(t)]

ρ(0) =
∑

i ciψo,iψ
†
o,i

 ⇒ ρ(t) = Ut ρ(0)U
†
t

ci = epistemic probabilities.

Remark: ~ = 1 everywhere.
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Entanglement and the intertwined motivations

The problem with multipartite system description

Evolution generates system-environment "entangled states"

ı ∂tψ(t) = Hψ(t)

ψ(0) = s1 ⊗ e1

}
⇒ ψ(t) =

dimHS∑
i=1

dimHE∑
i=1

ci,j(t) si ⊗ ej 6= ψS(t)⊗ ψE(t)

{si}dimHS
i=1 , {ei}dimHE

i=1 complete bases of HS, HE resp.

Quantum Integrated circuit
Qubit
Amplifier (LC circuit)
Resistor element: N = 109

fermions
Amplifier

Resistor
Qubit

Normal metal
Insulator
Superconductor
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Entanglement and the intertwined motivations

The distinctive trait

When two systems, of which we know the states by their
respective representatives, enter into temporary physical
interaction due to known forces between them, and when
after a time of mutual influence the systems separate
again, then they can no longer be described in the same
way as before, viz. by endowing each of them with a repre-
sentative of its own. I would not call that one but rather the
characteristic trait of quantum mechanics, the one that en-
forces its entire departure from classical lines of thought.
By the interaction the two representatives [the quantum
states] have become entangled.
————————
Erwin Schrödinger
"Discussion of Probability Relations Between Separated Systems"
Proceedings of the Cambridge Philosophical Society, 1935
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Entanglement and the intertwined motivations

The macroscopic objectification problem

Initial state: system + measurement device, tensor product

Observable A of the system A =
∑d

i=1 aiviv
†
i

Initial state of the system ψo = (v1 + v2)/
√

2
Measurement device: in a ready state µr out of a set of {µi}i ≥ 1
orthogonal states (i.e distinguishible macroscopic)

Final state: system + measurement device entangled

Utψ ⊗ µr = (v1 ⊗ µ1 + v2 ⊗ µ2)/
√

2

the apparatus is not in any macroscopic definite configuration!

A more general argument: Bassi and Ghirardi, Physics Letters A, (2000)
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Entanglement and the intertwined motivations

Dynamic postulate II (von Neumann-Pauli-Lüders)

The generalized measurement postulate
An experiment has M distinct possible outcomes.
To the i-th outcome is associated an operator Mi on H so that

M∑
k=1

M
†
i Mi = 1d d = dimH

If the i-th outcome is observed, the state collapses to a new value

ψ(t)→ ψ′(t + dt) =
Miψ(t)
‖Miψ(t)‖

"Quantum Jumps"
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Entanglement and the intertwined motivations

Two dynamics?

We never experiment with just one electron or atom or
(small) molecule. In thought-experiments we sometimes
assume that we do; this invariably entails ridiculous con-
sequences..
————————
Erwin Schrödinger, "Are there Quantum Jumps?",
The British Journal for the Philosophy of Science, 1952.
As quoted in
Serge Haroche, and Jean-Michel Raimond,
"Exploring the Quantum: Atoms, Cavities, and Photons" Chap 1
Oxford Graduate Texts, 2006, X,616.
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Entanglement and the intertwined motivations

From "Neverwhere" to everywhere

2012 Nobel Prize in Physics
Serge Haroche and David J. Wineland,
for ground-breaking experimental
methods that enable measuring and
manipulation of individual quantum
systems"

Wineland, Reviews of Modern Physics, (2013)
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Entanglement and the intertwined motivations

A lesson in life

Which goes to show that the best of us must sometimes
eat our words,
————————
Albus P. W. B. Dumbledore
as quoted in
J.K. Rowlings
"Harry Potter and the Chamber of Secrets" Chap 18
Bloomsbury 1998.
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The GKLS master equation

Effective dynamics from the measurement postulate

Classical master equation

A set {sα}d
α=1 of states.

w(i |j) = Rate(sj → si)∑
i ∈ I w(i |j) = 1

p(i , t) probability to find the
system in the state si at time t
before the transition.
After transition

p(i , t + dt) =
d∑

j = 1

w(i |j) p(j , t)

Non selective measurement
A set {Mα}Mα=1 of operators.
℘α = Tr

(
Mα ρM

†
α

)
probability of

observing α if the state of the
system is ρ before the
measurement.∑M

α=1M
†
αMα = 1d

Selective measurement:

ρα(t) =
Mαρ(t)M†α

Tr
(
Mα ρ(t)M

†
α

)
Non-selective measurement:

ρ′(t) =
∑
α

℘α ρα(t)
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The GKLS master equation

ρ(t + dt) =
∑

α ℘α ρα(t) =
∑

α Mαρ(t)M†α

"Null outcome": for H† = H and R† = R = A†A (positive definite)

M0 = 1d −
(
ıH+

R

2

)
dt + o(dt)

"Jump" outcome: M†0M0 = 1−M†1M1 + o(dt) requires

M1 = A
√

dt + o(
√

dt)

Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation

ρ(t + dt) = ρ(t)−
(
ı [H , ρ(t)] +

A†A ρ(t) + ρ(t)A†A
2

−A ρ(t)A†
)

dt
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The GKLS master equation

Axiomatic rigorous derivation

Most general form always reducible to

d
dt
ρ(t) = −ı [H , ρ(t)]−

d2−1∑
α=1

(
L†α Lα ρ(t) + ρ(t)L†α Lα

2
− Lα ρ(t)L†α

)

Linear
Markovian
Self-adjoint
Trace preserving: Tr ρ(t) = 1
Complete positivity

Sudarshan, Mathews, and Rau,
Physical Review, (1961)
Lindblad, Communications in
Mathematical Physics, (1976)
Gorini et al., Journal of
Mathematical Physics, (1976)

A pedagogic derivation: Pearle, European Journal of Physics, (2012),
ArXiv:1204.2016
History: Chruściński and Pascazio, Open Systems & Information Dynamics,
(2017), ArXiv:1710.05993
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The stochastic Schrödinger equation

Kolmogorov’s picture of classical stochastic dynamics

Forward evolution of densities ("Schrödinger picture"):

(∂t + ∂x · b(x , t)− Tr ∂x ⊗ ∂xD(x , t))p(x , t) = 0

p(x ,0) = po(x)

}
p(x , t) = E δd (ξt − x)

Backward evolution of observables ("Heisenberg picture"):

(∂t + b(x , t) · ∂x + TrD(x , t)∂x ⊗ ∂x)f(x , t) = 0
f(x ,T ) = fo(x)

}
f(y , t) = E

(
fo(ξT )

∣∣ξt = y
)

dξt = b(ξt , t)dt +
√

2D(ξt , t)dwt

ξ0
law
= po

0 ≤ t ≤ T
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The stochastic Schrödinger equation

"Unraveling" of the GKLS master equation
Evolution of state operators ("Schrödinger picture"):

ı
d
dt
ρ(t) = [H , ρ(t)] +

∑d2−1
α=1

[L†αLα , ρ(t)]+ − 2Lα ρ(t)L†α
2 ı

ρ(0) = ρo

 ρ(t) = Eψtψ
†
t

Evolution of observables ("Heisenberg picture"):

1
ı

d
dt
X(t) = [H ,X(t)]−

d2−1∑
α=1

L†αLαX(t) +X(t)L†αLα − 2L†αX(t)Lα
2 ı

X(t) = Tr
(
Xρ(t)

)
= E

(
ψ†t Xψt

)
dψt = ¿drift? dt + ¿diffusion?d¿noise?

ψ0
law
= po
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The stochastic Schrödinger equation

Construction from the measurement postulate

To summarize:
Measurement is a form of system-environment interaction.
Incorporate the measurement into the dynamics

Working hypothesis: For given ψ the measurement only admits two outcomes:

“Null result” with probability

Tr
(
ψ(t)ψ†(t)M†0M0

)
= 1− E

(
dνt
∣∣ψ(t))

“Detection” with (infinitesimally small) probability

Tr
(
ψ(t)ψ†(t)M†1M1

)
= E

(
dνt
∣∣ψ(t))

Detection occurs at random times⇔ increments of a Poisson process
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The stochastic Schrödinger equation

Quantum jump process
Poisson process {νt}t ≥ 0:

independent increments

(dνt)
2 = dνt

E
(
dνt |ψ(t)

)
= ‖Aψ(t)‖2dt

≡ Tr
(
ψ(t)ψ†(t)M†1M1

)

νt

ts

νs

τ1

τ2

τ3

τ4

τ5

τ6

Measurements at random time induce the state’s stochastic update rule

ψ(t + dt) = ψ(t) + (1− dνt)

(
M0ψ(t)
‖M0ψ(t)‖

−ψ(t)
)
+ dνt

(
Aψ(t)
‖Aψ(t)‖

−ψ(t)
)

under the condition that for all ψ(t)

1 = Tr
(
ψ(t)ψ†(t)M†0M0

)
+ Tr

(
ψ(t)ψ†(t)M†1M1

)
⇒ M0 = 1d −

(
ıH+

A†A

2

)
dt + o(dt)
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The stochastic Schrödinger equation

Stochastic Schrödinger equation I

Main result (after straightforward differential algebra):

dψ(t) = −
(
ıH+

A†A

2
− ‖Aψ(t)‖

2

2

)
ψ(t)dt +

(
Aψ(t)
‖Aψ(t)‖

−ψ(t)
)

dνt

Stochastic process in Ito sense:
random increments independent
of the current state of the system.
Non-linear.
Non-local.
Pathwise probability preserving:

d
(
ψ†(t)ψ(t)

)
= 0

Dalibard, Castin, and Mölmer, Physical Review Letters, (1992)
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The stochastic Schrödinger equation

Stochastic Schrödinger equation II

Complex Wiener Noise

dψ(t) = −

ıH+
d2−1∑
α=1

LαLα + ψ†(t)Lαψ(t)Lα − 2|ψ†(t)Lαψ(t)|2

2

ψ(t)dt

+
d2−1∑
α=1

(
Lα − ψ†(t)Lαψ(t)

)
ψ(t)dζα

ψ(0) = ψo

E dζα = 0
E dζαζβ = 0
E dζ∗αζβ = δa βdt

Gisin, Physical Review Letters, (1984)
Ghirardi, Rimini, and Weber, Physical Review D, (1986)
Gardiner, Parkins, and Zoller, Physical Review A, (1992)

I. C. Percival "Quantum State Diffusion" C U P 2003
Bassi and Ghirardi, Physics Reports, (2003)
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