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on (5.3) 1s not appropriate anymaore

equation of moti |
wond law and write an expression

to use the Newton st

present case the simple
leration of the test particles

The correct approach 1s
for the Lagrangian acce

d*x
(5-30) pp (“2
and F the force per unit volume acting o

it. In the simplest case F may be represented by the sum of two terms. The
first term is the force density exerted by the fluid in the position occupied |y
the test particle. This is clearly given by the fluid density times the acceler
ation that would be impressed to a hypothetical fluid particle placed i x (1) iy

the Bpirit of the Archimede print‘illll‘- The second term 1s of phenomenological
origin and represents the linear Stokes drag felt by a test particle whose
different from the local fluid velocity w(x. 1) Thus

istantaneous velocity X 1s

=V,

where p_ is the test particle density,

: O —
et dt? D1

where 0 =pr/pp i« the ratio of the fluid to the particle density. The total
derivative Du/Dt = é,u + (u - V)u. The parameter j 1Is a coefhicient weighting
the effect of the Stokes drag[LLST] and 1s llll\'ilHIHL\' related to the loid
viscosity. Equation (5.31) has been derived with naive arguments. A\ more

detailed analysis[H59] vields the same result, up to the so-called Basset tepm

which in many cases can be neglected. The main difference 15 in the coefficient.
d and u which now become
30 21

3 — = -
240 2 ‘ 240

§—d =

This rescaling, however, does not change the qualitative behaviow

system.
Additional effects can be added to the right*hmul side of (5.31) such

example, the acceleration due to gravity, as given by a bouyancy tern

the acceleration due to the effects of electromagnetic fields on charged po

and plasmas. However. we shall not consider these additional terms
For é = 1, i.e. p; = p,. one recovers (5.3). Indeed in this case (5317

to
d /dx dx
5.32 d ,,) g
o df(df ,u(m u)‘

which may be immediately integrated to give

dx
(5.33) —=U+ (U, —u(x(0), 0)]exp|— ut].

dt

b AL RS TS S, VORI )
. . # - ’ il 1_‘:;




. 23 .--s%‘w

LAGRANGIAN CHAOS! TRANSPORT, MIXING AND DIFFUSION IN FLUIDS

where u, = dx/dt at the initial time, and @ (x(0). 0) is the Eulerian velocity at
time [ =0 and spatial position x(0). Therefore. in this case (5.31) reduces to
(5.3) after a transient fixed by the value of g Physically (5.31) desceribes the
Lagrangian motion of a fluid particle whose initial velocity is different from
that of the Eulerian flow in that point. After a transient, the particle behaves
like every other particle in the fluid.

The parameter p fixes the characteristic seale of the model. In fact, it is
casy to see that tor large values of g the dominat part of (5.31) is given by (5.3)
up to a time . which diverges as p— o However, small regions exist. usually
around the separatrices of (5.3). where the inertial part is relevant also at small
time. On the other hand. for £ > ¢ the inertial part can play a nontrivial role.
In addition. one can see that a rescaling of time and lengths transforms (5.31)
into an equivalent system with g = 1. Consequently. the value of p affects only
the velocity of the process, without altering the qualitative aspects of the
dynamies at large times.

To discuss (5.31) we use again the velocity field (5.19) given by the
projection of the ABC flow with ' = 0 on the (o, y)-plane and | 4| =|B|. In
this case (5.3) does not have chaotic trajectories. Conversely, they may be
present for (5.31). The value § = 1 separates two very different dynamical

regimes. Linear stability analysis shows that for 6 > |

test particles less
dense than the fluad

| (5.31) has stable and attracting fixed points located at
the centre of the convective cells. In this case, the trajectory of a tracer will
tend to one of these fixed points, see fig. 28. On the contrary, for 0 < 6 < 1 the

fixed pomts are unstable and particles may undergo chaotie paths which lead
to ditfusion. fig. 29

A numerical study shows[CFPrV90| that for 0 < 8 < 1 the trajectories are
indeed chaotic with a maximum l..}'upunnr exponent

(D.34) /

e

~

f~0.14.

O & r T

0.8 0.4 () 0.4 0.8 ; 1.2 ﬁ
Fig. 28 Example of trajectory of the system (53.31) for p = | d = 1.2 and a convecting field l
(5.19) wth A = B. the initial condition 18 x, = Y, = 1.2 with zero initial velocity. The trajectory |

) has been followed i 5 107 times steps Af = 001 natural time umts.
1
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Fig. 29. - The same as fig. 28 with 0 = 0.9.

where ¢ =1 — 5 For small values of ¢ the transport on large distance jg
diffusive with effective diffusion coefficient, see fig. 30.

(5.35)

For larger values of ¢ the motion becomes ballistic in a direction which depends

on the initial conditions.

It 1s inbereﬁting to compare these results to those obtained from (5 ). I

D,~D,~¢",

that case, if y # 0, we have

(5.36)

Ao~ 7

10"

D..D,

w‘“La_____h.*.,a___._.____d,2 SRR -

107?
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a~(0.25.

b =~0.3,

O
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Fig. 30. - Diffusion coefficients (D, (*) and D (0)) for system (5.31), (5.19) »s. th

parameter ¢ = 1 — d. Typical error bars are about three or four times as large as the « 1

employed.
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and (see (5.20))
(9.37) D, ~ D, » 875 VN5t sclily,

Therefore the motion of particles denser than the surrounding fluid and the
dynamics of fluid particles in the presence of additive noise indicates a strong
similarity. Note in particular that a/p ~a'[B’.

Similar results are obtained for | A| # | B|[CFPTVI1].

Heuristically, this similarity is not completely surprising. Both problems
may be thought of as a perturbation of (5.3). In both cases, a singular
perturbation in the case of (5.31) and a random foreimg
observes that the diffusion takes place along the separatrices of (5.3). Thus

a perturbation of (5.3) seems to lead to a somewhat generie situation. in which
standard ditfusion process s observed

in the case (5.1), one

6. Technical details.

This section contains some technical or pedagogical subjects which we
imclude for the sake of self-consistency .

6 1. Hamiltonian systems. — The evolution of a Hamiltonian system is
ruled by the equations

dg, OH dp. O

6.1) = — = —— % T
| (11 apl- (l/ aq'. : =

where H (q,, ..., q,, p,, ..., Ppo 1) 15 the Hamiltonian and ¢, and P are conjugate
variables. The number n is traditionally called the number of degrees of
freedom. while the dimension of the manitold where the motion develops is
N = 2n in the nonautonomous case_ and N = 2n — 1 in the autonomous case. If
Il does not depend exphicitly on time, then H is a constant of motion.

et us remark that a Hamiltonian system 1s a dynamical
particular type. A small perturbation of (6.1) dest rovs the H
ture | LL83|. Therefore such a system has properties which
from those of a general, non-Hamiltonian svstem. Nevertheless, dynamical
systems with the Hamiltonian structure have a relevant role in many applica-
tions, ¢.g., celestial mechanies. particles accelerators, fluid mechanics and
plasma physics|1L1L83].

A completely integrable system is a limit case of an autonomous Hamil-
tonian system, in which » independent constants of motion. F.. exist and are in
mvolution, 7.

system  of
amiltonian strue-
are very different

(H, FY=1{F,. PY=0

where {: Indicates the Poisson brackets. In such a system  there 18[A76],
although it may not be easy to find. a canonical transformation

I‘-‘h' !IIJ r[”l i‘]
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: . mation in the form
which reduces the equations of the motion 11

_ oH (I)
: .Ei.{.f-—._.-(l de!'—“}i(l) -7 '
(6.2) dt ) dt l

The solution of (6.2) 1s
[.() = 1.(0). 9,‘ (t) = 0:‘ ({')) + (r),-(I(“)) 7
- n-dimensional tori. A small perturbation e.

e ion is confined o | .
and th( motio ?‘..f_". ]f }] has thf;‘ ](“]-]1]

stroys the complete integrability.

(6.3) H=H,I) +eH, (I 0).

- cases, for -
due to Poincaré, can be brietly sketched ag
constants of motion. tor the system

then, apart from very particular
the motion is H. This result,
follows, see [LL83]. Let us try to find the
(6.3), in the form

Fo=1,.

L B gl y + SEFZ et e Wwhere

We have to impose {H, F} =0, in order to determine F',. F',, .... The equation

for F, has the form
(6.4) e (7, F,).

It is easy to see that (6.4) has no global solution. Let us consider the Fourier
expansion of H, and F:

k

(6.5) H,=Yc@exptk-0], F,= S ful)explik - 0].
k

where the vector k = (k,, ..., k,) has integer components. Inserting (6.5) into
(6.4) and noting that

: ofi . .
{H(}r ()}= Zw;(I) ag and {Hl‘- F0}= —'IZA’jf‘k(I){‘XIIIHk'UI.
1=1 ! k
one has
(6.6) Yol = )

?=1w1(1)k‘;'

This equation for f, (I) shows that the problem admits no solution becaus

scalar product @ - k, that appears in the denominator of (6.6), can as<i

arbitrarily small values. This is the celebrated small divisors problem.
One of the most relevant results, in the field of Hamiltonian systen

ﬁ;g? by the KAM theorem (from Kolmogorov, Arnold and Moser) K54

¢ « 1 the only surviving integral of

s &



a) ¢ sufficiently small.

b) det Q # 0, where Qij(I) — azHGKGI-aL
i ]J?

easure of t.‘hf_* 'mvariant tori, on a fixed con: & _ 1%
:1.1111?1 goes tO l .{i”r El—j?*l R_.““ghl-“'_ Speaking r?;;a}?a:se?ii} tilllrfiﬁet:m pUSItIEE'
. variant tori is orde oG e similar to that of ‘th fitecmt ] 1)1'-1‘0[1 on the

[Jet s note thﬂt thﬂ. ll]yarlant t”l".i h&‘i,’th {_lim{unqi”n g rlr:‘ﬁ‘ h}ht.ems_-

hase space has tltmf‘_ﬂ"fllm 2n — 1. Thus ip the r-alw - :'lle w16 wvailable
e s that can exhibit different chaotic hf.hm,'i'{-‘e_,n:
_ 2 the rnmpl('mPntar}' of the s : (O

for the Arnold diffusion: the System can move ah
: * abo

o constant _vnf:‘g}-' l};.\'l_‘-}'ffflﬁlflg among the unperturbed tori [AA68]. The
presence of the . Il lln;f I( ( 1ffu:-m:--n has been Proved for particular HV“;t-;mf-a 'hut lt
1S l,}Elif-VPd t'{_’ _h” el .a; SENETIC system . Unfnrtunatelv It 1S nu_t‘. Lea,qvl:mﬂ i\'é
thewrvt-iﬂal E‘:tjl-n_.m“(ﬂ o _t_h‘J Arnold diffusion time se , 1n the t:;_t:.'ner‘algca-
59[P\-T8-1-~ MPV86]. One of the most relevant results in this (lire(-ti(); i:‘-a.(luf‘ .tD

NEkh”mShm’?.l -}“\.TTI‘ We do not entep n details and defer the reader to the
iterature [ BGS6]. .

[t is possible t“ilﬁh_m"' that the continuous time dynamics given by (6.1) can
he reduced to a flht'lf_*_tiz‘ map. For the sake of simplicity. we consider an
qutonomous Hamiltonian sSystem with two degre ' _
studying the continuous flow

'S
allow ut the whole surface

es of freedom. Instead of

I'(0)—=T @)

b,

where I'(t) =[q(t). p(t)|e R*
a discrete map m R-

The energy 1s a constant of motion, so only 3 variabl
sufficient tor a complete specification of the
a plane S dt‘ﬁ[‘l't‘(l by 2y = b = constant and denote by P(0), P(1). P(2), ... the
intersections of the flow I' () with the plane S and dax,/dt < 0. at the successive
times ¢y, ¢y, {5, .... The plane S is called the Poincaré section of the flow (6.1).
Due to the deterministic nature of the flow ['(0)—=TI(t). the intersection
P(k+ 1)e R* can be obtained by the previous one via a map, called Poincaré
map:

One can investicate the system (6.1) in terms of

€S ¥y, x, and x, are
state of the system. Consider

(6.7) Pk +1)=g[P(k).

The knowledge ot P (k) is equivalent to the knowledge of I'(t,).

The above argument can be repeated for a generic Hamiltonian system with
n degrees of treedom. The energy conservation reduces the dimension c)fjt-h(:

¥ R . . e

phase space to 2n — 1. Intr ulu:.-m;;{ a section S, the intersection P(k+1)e R*" 2
of the trajectory I'(f) with S is related to P (k) via a map of the form (6.7).
Moreover it i1s possible to show that the Poincaré map assoclated to Hamil-
tonian system 1s symplectic [ LL83], i.e. the matrix A. defined by 4;; = 0g,/0P;,
has the following property

| ¥ =l
A‘JA=J. where J= (__ | “) :
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Another case in which one can reduce the continuous problem to the study
of a symplectic map is given by time ]wrindir Hmmﬁltu‘mmm: Hq. p,t + 1) =
= H(q. p, t). In this case the analogous of P (k) 1s just (g (kt). p(kT)).

The Poincaré map simplifies the study of a continuous dynamical system
because

a) the time is discrete;

b) the dimension of the phase space 13 reduced.
NOMOUS:

if the system 18 auto-

¢) it is easier to visualize whether the motion is regular or chaotic

2 the track on the Poincaré section of a regular
ated points (periodic motion) or by
n the contrary, a chaotic trajectory
different features can he

For instance, for n =
trajectory is given either by a set of 180
a regular curve (quasi-periodic motion). O
leads to an unstructured spot. An example of these

found in[HH64|.

6'2. Motion near a separatrix: Melnikor's method. Here we briefly discuss

a simple method, due to Melnikov [M63]. for studyving ”“l_ motion close to
a separatrix of a quasi-integrable Hamiltonian system. This method  vields
a criterion for the existence of chaotic motion. We concentrate on the
one-dimensional time-dependent Hamiltonian case. buf this approach can he
also applied to multi-dimensional systems[WS8S].

Consider a Hamiltonian function of the torm

H(g p t)= Hy(q. p) + e+ (q, p, 1),

where H, is periodic in time, with period 1. The evolution equation fo)
X=(g. p) s

dx
(6.8) E=f‘°’(x) +ef'M(x; t), with fWx t+ 1) =F"x, t).

The unperturbed systems is integrable and is assumed to possess a hyperbolic

fixed point £, and a separatrix orbit X, (f) such that lim X, (/) = X,. See

' & P i

fig. 31 for an illustration of the phase space. The stable and the unstable orbits.
x5 and x5, respectively, are smoothly joined. Let us consider the Poincare map
of the perturbed dynamics (6.8). 2.

X(ly) =Xty +1)=Tx(l,).

where {, denotes a shift in the initial condition. The hyperbolic fixed pomt. x
of the map T stays close to X,:X, = X, + () (¢). Morcover the stable (unstable)
orbit x}(x"), lying on the stable (unstable) manifold W (W~ . is close to
X, (t) for t— o0 (— ov), that is

6.9) X2, L) = Xo(t —ty) + exi (1, L) + O(%), e[ty ],

XE(M, o) =X (t — 1) + exi(t, o) + O(e®), te|— o, t,].

R
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A

>

R u ) W LY ¥ - | ‘ ' ' |
Fig. 31. Phase space around an unperturbed hyperbolic fixed point. of a one-dimensional
Hamiltonian system, with a homoclinie orbit.

In the generie case, fig. 32, W', intersects W, , in a homoelinie point P.

and it 15 not difficult to see that this implies a chaotic motion around the
unperturbed separatrix. For simplicity we do not consider here the nongeneric
case of a tangent contact. First of all let us observe that one intersection
between W', and W, implies an infinite number of intersections. Indeed.
the forward or backward iterations of the Poincaré map starting from P, bring
to points T*" (P). that, by construction, belong both to W, and to W, . So

2 I
r + . e o . =y = 2. " p
one has that W intersects W,  Moan intinite number of homoclinie points,

although W, —and W, cannot have self-intersections.

The intersections form a kind of trellis, a tissue, an infinite tight lattice:
each of curves must never self-intersect. but it must fold itselt in a very
complex way. 5o as to return and cut the lattice an infinite number of times»
(Poimncare [PY9]).

The existence of one. and therefore infinite. homoclinic intersection implies
chaos. This has been discussed in a rigorous way by Birkhotf|B27] and
Holmes [H90|. Without entering into technical details, we observe that. be-
cause of the area conservation. the succesive loops formed between homoechnic

pmss

-

Fig. 32. - Some homochnic intersections due to a perturbation of the hyperbolie fixed point of

fig. 31
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' h the same area. Moreover. the 'If"‘ta""" _}""‘*}"'f'n SUCCEs]v e
poults T ootut @ ex]mnentially. as the fixed '”,Inf' IS APProache
ywth of the length of the Joop. and

clinic points decreases )
homocl po nential gr¢ - _ o
[le point. One has that a small part of

Therefore one has an €Xpo J
near the sadc | .
and folded. and two points_initially o]«

a strong bending of I*Vi-:l:; S ontolind

- 1 ¢ streLc \
th_e ese argufnd :E ;rlt' after few iterations. (m‘t-kf'nl'u-mwr_ and Holmes [(; HK3 )
B N e bove scenario, by showing the equivalence betweey t),,.

roved rigorously the a ol
l!:ferated E‘)m‘ﬂh‘w map anfj 'thl[3 d}fnam“‘fﬁ !'lfdl’. +x£-. | i ' I |
Th istence (or not) of the homoclinic intersection can be determined |,

tfl e; dUP..-tO Melnikov, that is a perturbative ft-nmputntnm Using thy
e e ' ler to prove the existence ot a homoelini,.

roperties (6.9). Basically, in orde e
gnifz one has to estimate the («signed») distance

dt. t,) =x. (. ty) — %: (1. lo) =x5(t, to) — X1 (L. Ly).

A direct computations gives

d
— X7 (L, ty) =

dt

M(xo)x?u“- . LT — 1), 1),

where
of

Jj lxoplt — o)

Let us introduce the Melnikov distance (L, ty) » N-d wl;‘:ir-h 1S 1_.hr- projection
of d along a normal N to the unperturbed orbit X, at time [, v.e. N(t. 1) =
— (=[O £19). One can write D(l. 1y) in the form

D¥Y =fFO x x% "

(6.10) D=D*— D", with

and @ x b=a,b, —a,b,.
Taking the derivative of (6.10). using (6.8) and the conservative properties

of the system, i.e. Tr M(x,) = 0. one obtains

dD

6.11 l_ (0) (1)
(6.11a) py Frexyg

dD

6.11% L O o f)
(6.115) oy xf

= (), the integration of

By noting that D*(w, ty) =f7(x,(0 —t,)) x x}
(6.11a) from t, to oo gives

D*(ty, to) = — |, SO xfVdt.

In an analogous way, by integrating (6.115) from — o« to [, one obtal
R =" SO xrVde.
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So finally one has

Dty t,) = — 5‘:1_ O 5 £V g;

If D(t,.ly). which is an explicitly computable function. changes sign at some 1.
then one has a homoelinie point and chaos Appears aruunlll t he wpuratrix.
Let us remark that, although the Melnikov method is based on a simple
pﬁrtlll‘hﬂti”ﬂ method, 1t is of considerable relevance.
The above analysis can he repeated for the case in which the unperturbed
system has a heteroclinic orbit. which tends asvmptotically to an unstable
equilibrium pomnt for f— — « and towards another one for t— + 0.

63 (Thﬂ-rﬂf‘fﬁ’f’f--‘{“‘f‘ Lyi!p!fﬂfﬂ‘ FJ‘[JHH#H!H nnd f}F'HP?’fIHEF’d I_,ynpnn.{ﬂ‘ FI])IIHFH(-_‘F.
— The characteristic Lyapunov exponents (CLE) are a natural extension of the
linear stability analysis to aperiodic motion in dyvnamical systems. {uughl}'
speaking. they measure the typical rates of the exponential divergence of
nearby trajectories. This sensitive dependence on initial conditions 1s one of the
main characteristies of deterministic chaos. which renders the forecasting of the
dynamies practically impossible since the initial state of the system cannot he
known with an infinite precision | BGGSS0. LL83. ER85).

Consider a differentiable dynamical system with an evolution law given, in
the case of continuous time f. by the differential equation

dx
(6.12) [—“=flx(fl|'

or. in the case of discrete times £, by the map

(6.13) x(t+1)y=gl[x(t)].

The variable x and the differentiable functions f and g vary in a _phase space
which can be RY or a compact manifold. or an infinite-dimensional space.
Equations (6.12) and (6.13) generate a mapping of the phase space nto itself.

(6.14) x(0y—x(1) = T'x(0),

where T is the nonlinear time evolution operator.

To study the separation between two initially close points, one il]t[‘(}dllf'ﬂﬁ
the tangent vector z (t) which can be regarded as an infinitesimal pertgrhatmn
6x(t) of the trajectory x(f). The time evolution of z(t) is described by

a mapping of the tangent space into itself
(6.15) 2(0)—z(t) = D o T'2(0)

: . . el :
in terms of the linear operator D, T".

The formal evolution law (6.15) is obtained from (6.13) and (6.14) as

2 linear differenti;-d t'i_ii,lﬂtillfl

1 'j xtr)

$
f
3
3
]
|
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or a map

A e 2+ (L),
(6.16) z(t+ 1) = O 2 ()

Jlx(r)
: : R T . chain rule of differentiation. we hav

respectively. In this last case, using the cham 1 we have
(-1

D.wv:{['il.rlr = ﬂ DI“‘T'

r =0

nce given by a product of matrices. For the sake

- l & v "
'he linear operator D.T" is h
However all the result also hol

of simplicity we only discuss the case of maps.
for the differential equations. . |

The study of the separation of nearby trajectories can then be reduced t
the study of the properties of products ntf lll:l.“‘l{:t‘:-i. !* rom the mathematicy]
point of view, the most important I‘t‘Hll!i In '[]lI.H field 1s the H:-:rhwlm: theorem
[068]. Let us consider an initial condition x(0) and :htt sequence of matrices
(A(1). A(2), ...) given by the linear operator D.oyT s %e.

Jy i

a.l‘ jIx(k)

A, (k) =

and denote by Py (x(0)) the product of the first N matrices of the sequence.
The Oseledec theorem states:

Theorem.

Consider the transformation (6.13). T being a diffeomorphism of class (' of
a compact connected Riemann manifold M onto itselt, and g an ergodic
invariant measure of the system. Then. there exists a measurable subset
M, CM, u(M,) =1, such that, for all x(0)e M, .

lim (PL (x(0)) Py (x(0)))"*Y = V(x(0))

N—=ux

exists. The matrix ¥V (x(0)) has d real positive eigenvalues exp |4, (x(0))] repeat-
ed according to their multiplicity. The exponents 4, > /4, > ... > /4, are called
characteristic Lyapunov exponents.

Moreover chosen p < d «enericr random vectors (2'1(0), ..., 2 (0)] one has

~ ! r (1) (p)
8+ . A =lm-In(VOL [2"(t), ..., 27 (1)]),

t—=x |

there VOLP [Z‘”,_..., Zm] 18 the volume of the open parallelepiped generated by
the p vectors 2! and each z" (k) obeys (6.16). |

The spectrum of Lyapunov exponents 4, > 4, > .../, does not depend o
the initial conditions if the dynamical system has an ergodic invariant measore
This if often not the case in low-dimensional symplectic svstems, wher
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disconnected chaotic regions can exist A sk

al bilhards | BS7 There . e
”:,:‘t Illli]fl-ﬁ_,".,,l.nltHh:‘tfl:ll .“ llf 2%, r‘_" some values of the parameter. there are up to
{ll,._:l1 e s l;l ! ’;;H -ll. l[--;_{l:-nm: .’f*‘l'lﬁ-l‘ifl-tt‘_‘(l h\ mvariant tori. In general. the
e 5 aponents assume different values in each of the disconnected
regiorns,

pressive example can be found in

2 rQ Y ' \ .
| 1-1_’“!!":.\ ]-““I‘; f‘l“‘l'”}i ‘t-h( “hl*lf‘llt-'{' theorem states that for almost all perturba-
tion, v.e. almost all Z(0), the distance between the trajectory and the perturbed
one grows exponentially as ‘

[Z() ] ~12(0)[exp[A,t][1 + O (exp[— (A; — 4,)t1)].

rl‘ll]iH I'l'lﬂti'”.] I{LH(IH 1S t[} intl‘ll{]l_l{‘(‘

| _ the response R to a perturbation in x (1)
H“l‘l' ol t”]“' f I]'\, t]]l" error ;_{I'”\yth

rate

|zt 4+ t)]

R_(t)
|z (1)|

T

r b g, - ’ e - o L
'he maximum Lyapunov exponent 4, can then be defined by averaging the

logarithm ot the response over the possible initial conditions along the trajec-
tory |

B o )
(6.17) A =1lim-{In R(t)),

t—= o |

where ( + ) denotes the time average lim (]I.."'T)STHT(')(“. The Oseledec the-
T—

orem implies that for large time In R (1) is a nonrandom qguantity. in the sense
that for almost all the initial conditions its value does not depend on the
specific initial condition, so that the average in (6.17) can be neglected.
Since the typical growth of a generic tangent vector is given by the
maximum Lyvapunov exponent, it is clear the R (f) alone cannot be used to

extract the other Lyvapunov exponents. To this end one introduces the n order
response R™ as|[BGGSSO]

RO (1) :]zl(f + ) X T, + 7)) X .2+ r)l_

|2, (3} % 2454T) %o X T D)

where z, are n nonparallel, generic tangent vectors. [t is possible to show that
the sum of the first » Lyapunov exponent 1s

| |
Y. A= - O B2 G >

s 1
1= ] I :

[ll (ltht-‘l‘ u’ul‘('lH ”lt' <L ot !}'u* first n < (l L}'n}nlmn' t_-‘}{]mnf*nt JIVES thl' t.}']m*al
rate of t‘.\'pmlt*nti:tl orowth of a n-dimensional volume in the tangent space.

ll'l thl:' Case of continuous ﬂnu 3. i1t 18 easy to see thut al ll-';?t:-:t one nt tht*
L.\'apunm* t'tlumt'il? has to be zero, sinee Z () cannot grow l'*K‘nttll.‘l'ltlilH}-' 11
time in the direction tangent to the flow.
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Due to its global nature the maximuin L_\'Hf]lllllfﬂ‘ vxpnm-n{ r_:mm.:t glIve any
further information on intermittency properties, ¢.¢. on the finite-time flucty.
ations of the growth rate. For these properties It 1s necessary to consider the
full probability distribution of the response B 1 Serdin

A direct calculation of the probability distribution ot A IS a rather hapg
task. However. it can be reconstructed, under general conditions, from the
knowledge of the moments { £7). We then introduce the generalized Lyapunoy
exponent L (q) of order ¢ as[BPPV85, PV8ia]

1
L(g)=lim—In{R ().

=

It is easy to see that
d/L (q)

dq g=0

Ly =

and in the absence of fluctuations
Lig)= A

By general inequalities of probability theory. L (q) 1s a concave function [F71).
The L (g) give an indication on the large fluctuations ot £ (/) at finite time ¢,
Define indeed a local exponent parameter (LIP) y as

R (t) ~exp[y(r)t], t>1,

and classify the trajectories of length ¢t x (7). x(t + 1). .... X (7 + 1) according to
their LEP.

In the limit t— oo the probability of finding y # 4, should vanish. as
a consequence of the Oseledec theorem. Therefore for large (. the probability of
having a trajectory of length ¢ with a given LEP is peaked about the most
probable value £,. If L (g) is finite for all finite ¢. one can assume the following
ansaltz:

dZ,(y) =du(y)exp[— S(y)t] with S(y)=>0,
where, for the Oseledec theorem. S(y) >0 for y# /, and S(4,) = 0. The
function u(y) is a smooth function of 7.

The function S (y) is related to the generalized Lyapunov exponent L (¢). In
tact. the moments ( R?) can be evaluated by averaging over the y-distribution

(B = _[dy (y)expl(gy — S(y))t] ~exp[L(g)t].

For large ¢ the integral can be calculated by the saddle point method

(6.18) L(g) = max[qy — S(y)].

/

The Legendre transformation (6.18) shows that each value of g selects a par-
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ticular ¥ given by

it ds (7)

q

dy

We can thus obtain S () from | :
; 4 1€ ]‘ r - . .
(6.18). [4) by iny erting the Legendre transformation
The probability distributio : :
. . i n ot R(t) fc e "l
distribution *{b) for £ 1 is usually close to a log-normal

|

(6.19) P(R(1)] ~ A L )2
| R“)me:\p[ (In R(t) — 2,6)?/(2ut)).

where

B W 111 e -. r =% L = . .
[ndeed writing t = I7_, where 1_ is the typical correlation decay time. one has

t
R(t)=|] R(k)y with Rk)=r
k=1

t+(k— 1]1.',:'

Thereﬂ:r-‘:*. E*-lin{'{:‘ InR (k) are practically uncorrelated variables. one can use the
t-g:ntra.l lflllllt theorem for lq]i’m (n) and, after a change of variables. one obtains
(6.19). Under the hypothesis that R (1) is exactly a log-normal variable one has

_ L
L(q)=/iq + %qz.

In general, even if t-'hv_ log-normal is a good approximation. (6.19) is correct
only for small ¢. This is because the moments of the log-normal distribution
grow very fast with ¢[(22, 070].

6'4. Generalized fractal dimensions and multifractals. — Fractal structures
appear in many physical phenomena such as turbulence. random walks. chaotic
dynamical systems [M82]. The concept of dimension plays a central role in the
characterization of fractals. Usually the dimension of an object is defined as
the number of independent directions for a point moving on it. In this case, it
s called topological dimension d; and is a positive integer number. [t is equal or
smaller than the dimension d of the space where the object is embedded.
However a smooth line and a random-walk trajectory have the same topologi-
cal dimension d; = | but very different characteristics since the latter densely
ills a 2d space. For this reason, it is necessary to introduce the fractal
dimension dg of a geometrical object, considering the scaling of the number
N (g) of hypercubes of size & necessary to cover the object

Nigy~e~% for >0
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A more precise definition requires :-.-:n]lhi:-:tiratt.m_i llliiifl‘lt‘lllﬂtll'ﬂl lt_lt‘tht'ul:-a and
leads to the introduction of the Hausdorff dimension[HI19]. which in some
cases can be different from dg. For a smooth ceometrical nh']w;t as a line or
a sphere, d; = d. but, for instance. a random walk has dg = 2. |

However, the scaling laws appearing in nature cannot Ijuu {'l‘l.‘:‘ll'-‘:l;-tv]"tzv{lb]1‘\,
Just one geometrical parameter. One has to rnns]dt.ﬂ: the :-;valilmg...," properties nﬁi an
appropriate density u (xX) (in many cases a ]m_mlmlnht}' density) over the object.
One defines the coarse-grained measure

p.(r) = | 1 (x) dx .
B(x, £)

where B (x. ¢) is a hypercube of linear size & centred in the point x of the Il!l.]l‘t't.
In general p_(x) scales with an exponent which depends on the particular
point x

D, (X) ~ &°

. b X . 1 2 L s NOrravele = -
and. if the density is not uniform. a # dg. The object can be regarded as the
superposition of different fractals

B ]
F(x) = {.’r such that p, (x) ~¢&* tor e—>U; .

each one characterized by a different exponent a. The object is called multi-
fractal [PFS85. BPPVS84. PV87a]. The fluctuations of the exponents o are ruled
by a probability distribution which can be studied analysing the scaling law of
the moments

N(e)

P = Z [, (x(k))]T ~ g+t for g—0.

p=1

where x (k) is centred in the k-th hypercube and the average 1s a weighted sum
over the hypercubes, i.e.

(<)) =2 ) p (x(E).

The d, are called generalized dimensions[G83, HP83] and it can be shown that
dp =d,. In a homogeneous fractal d, = dg for all ¢, and n general standard
arguments of probability theory assures that d_ is a nonincreasing tunction ot ¢.
The exponent d, < d, is the fractal dimension of the probability measure or
information dimension.

The number of hypercubes of size & necessary to cover a subset F'(x) of the
object should behave in the scaling hypothesis as

n(a) ~e 7,

where f(x) < dg is the fractal dimension of the subset F (x)[HJKPS86]. Since
the probability measure of a hypercube with centre xe F' (x) scales as &”. the
weight Z2 () of the corresponding subset should scale as

P(a) ~ef?®  with H(x)=a—f(a).

The function H (x > 0) is an entropy function, similar to the entropy function
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‘(~) introduced for T .

S(7) l_l 6'3. The s the finite-time fluctuations of the Lyapunov ex t

subsect. © 5. 1€ Sum over the hypercubes can be tJ‘ i FEpRE
ype : > es

: Imated as
Niz)

k=1

L | P\ X (k)] ~ j‘lfx n (o) g+ 1)

s limit e— 0. the ; i e .
[n the € Integral is dominated by the saddle point value
(Pl ~ gla+tHG)

where o 1s given by the minimum condition

mjn[aq — H@)] or dH (x)

— l
T
T—x
The genepahzed‘ dimensions are thus related to the fi{e) fanction via' the
Legendre transtormation

(6.20) (9 — 1)d, = min [2g — f(x)].

x

From this formula, it is evident that each order ¢ moment selects a particular
exponent o. The less probable the o, the larger the corresponding entropy
function H (x). In particular the minimum H(x) =0 — corresponding to the
relation o = f(«) — 1s reached for o = d,. selected by ¢ =1 in (6.20), while the
maximum of the f(a) curve is given by the fractal dimension

O = dg = max f(a),
" |
selected by ¢ =0 mn (6.20).

In fig. 33 and 34 we show the typical shapes of f(x) as a function of « and of
its Legendre transformation d, as a function of ¢. In the limit e—0. all the
exponents different from d, cannot be detected. since their probability vamghe:s
being H > 0. In this sense, d, is the most probable scaling exponent. This 1s
a well-known result in the context of the information theory. Arguments
borrowed from the Shannon-MecMillan theorem [K57] show that the number

T nin dl

Fig. 33. - Typical shape ol flx) as a function of x. The dashed line has slope 1.
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d,
Fig. 34. — Typical shape of d, as a function of g. The dashed line has slope —a7/2.

N . (€) < N (¢) of the hypercubes which give the leading contribution to the

iformation
N(e)

l()=— )

k

p(x (k) In p,(x(k) =~ —d; Ine
1

should scale as N (¢) ~ ¢ . In this sense. the information dimension is the

fractal dimension of the probability measure.
The Legendre transformation becomes trivial in the hmit g— + o0 where
the minimum condition picks up the extreme values of the local exponents

o .. = lim d_
q—l —

g—
b

Anin = M .
If the & are random Gaussian variables of mean d, and variance o log-
normal distribution of the coarse-grained measure p, the entropy function
has a parabolic shape
P
(0 —a,)"

H (&) = 5g 2

i — 0'2(1/2‘ In typical cases, this form is

with Legendre transtormation d_,
a good approximation only for small ¢. i.e. around the maximum of the

probability distribution (bottom of the H (x) curve).

We finally note that in practice appropriate probability measures p,  are
chosen according to the different physical phenomena. For mstance, in tully
developed turbulence p, is determined by the density of energy dissipation, in
chaotic dynamical sysems by the probability measure obtained from trequency
of visit on the invariant set of the time evolution, in aggregates of particles by
the growing probability and so on[PV87a].

6'5. Truncations of the Navier-Stokes equations. — We briefly recall a stan-
dard procedure to obtain a finite-degrees-of-freedom approximation from the
Navier-Stokes equations (2.5)[L87]. If we consider periodic boundary condi-
tions on a square of edge 2m and take into account the mmcompressibility
condition, the expansion of # in Fourier series may be written as

k.L
Uux) = Zexp[i(k 'x)]ka,
k
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where k = (A l "‘2)- k- = U\;- — k,) and =
. 3 : 1 k
expanding P and f in

) % | |
S @*, because u(x) is real. By
a similar wav :

| one has the evolution ations for
* 1 equations for
q truncation Z of @, l

[J_(t)h = — 2 (kF)L : (k”) L‘k”‘z I lk,\z) 1% /)% 2
(1! K +k” +k=0 2|k’ ‘k”llk‘ Qk'(l)k”_""\k‘ Qk +fk.

1‘1111{1]1{1 kj‘ k”‘ keryj E"l].’l{l ﬁ(f iH El Htlt l]f \.\.
_ ke ¥. Let us define, for instance

ave vectors such that if ke . then

_ cthe modes 1.2 g corresponding to the
following set:
k,=(1, 1), k,= (3. 0. Es=1[2. = ),
k,=(1, 2) ks=(0.1), k.,=(1.0).
E,=(1, —2), k3=(3. ) B = A
;:1.11{1 [_H]Hf’
Qk}, :Ql‘ kaz _!.QE" Qk_q,:(l)ﬁ
(Jk4=JIQ4; Qk*ﬁ:QS‘ Qk{,=;((,'h*
Ry, = W, Qkﬂ=(l)3~ quz 1y -

After rescaling by a factor /10, letting v=1 (that is equivalent to
a change of time and length_ units)_and assuming a foreing along the mode K.
the equations for the amplitude Q;(j =1, ... 9) become

(dE
(ff{l = :")Ql + 'lerQ} T 'l‘(i)-i(l)ﬁ :
‘ ‘;’f = — 90, + 3Q,Q; + 9Q4Qs + 3Q,Qs.
(
| 9
dQ3 oy — 10,0, + *?QlQ'f — o, Wg + Re .
dl \f §
{-l(;)fht = — 5Qy — Q@5 + 5Q3Qs + W60
(
(6.21) - :;){5 = — Qs — 3Q,04 + V5Q,Q6 — ¥a2ls.
d_(;)j ==~ \EQIQS — 30400
(1!
Y |
d({)? . '-](l)‘F .-"Ql(l)3 + (l)-l(t,'-}‘
! N O
dQg 10Qg — 8,¥s .
1
ﬂ(_‘_)f = — 8@y — -lngQT = 4(‘)4(‘)6'
di

S R e
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Here Re oc /5 1s the Reynolds number. the only control parameter for (6.21).
. S i" " . - 3 - ) . i ) ] ‘1-—-{. y p—
The studies done on (6.21). considering 5. 6, 7. 8 and 9 modes | BF79. [L87].

. . . ! x Tay n' - 2 Ay T 3 L -
have reported the following behaviours for increasing Revnolds number:

a) stable fixed ]Hki!]tH.
b) Hopt bifurcation to periodic cyelie orbits,

¢) periodic/aperiodic/chaotic orbits.

For large Re (case ¢)) the behaviours are strongly dependent on the
truncation. For example, the 5 modes model becomes regular. while the

—_—

/- modes one remains chaotic at very large Reynolds number,
L
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