A CRISANTI, M. FAl CIONL. G. PALADIN and 4 VULp
R B

28
N “"li{‘ll Lfﬁ'pg-.; . 2
I (k) is the powerl spectrum of O(TJ: B ;.1,|H C AN Oy
“'l]{"‘ﬁi I( I 't']ii “.El\'i‘ .\.{.l.tt.rﬁ '\‘llt”.;[l ]]}"“rlll tlh { q Lo
contamed 1
’ | @ (02 (x))
— — “'x)ql.?(':\f" LX) ¥
kYdk = — &
[romas- 3]
0
_ - W,
where V is the volume covered b thr‘ -HI{-}M-‘.
A power spectrum following a power [aw,
1)
looal if 1 < & < 3 (see e.g. [RS78, BBS84] for a detailed diseuggigy,
mined locally in the Fourier space. ;, from
e. from

is said to be
Onlyv for local spectra,
the & in the neighbour

S, (r) is deter

=1 . | .
llntul Hf ! ) dnll

with &£ ~ -

Sp(r) = kI (k). :

s0o that
‘Nﬂ' (?) oL ?'H = :

(4.16)

4'3.1. The power spectrum: dynamical systems approgey

k. ' 3 e . ' ! . o ol e ¢ _

In three-dimensional turbulent f.]lll{lh. for large Prandtl number v/y, (v is the
kinematic viscosity of the fluid), the power spectrum obeys the Obuk.
=33 1n the mmertial range (where the nonlineay

hov-Corrsin scaling law I" (k) oc & | - (wher
transfer of the fluid energy overwhelmes its molecular dissipation) 049, (51]

and the Batchelor law I' (k) oc & “!in the viscous convective range (where the
velocity field behaviour is dominated by viscous effects but the molecyly,
diffusion of the passive scalar 1s still m-*gligihlt-)[If.’?il].

It is interesting to observe that Batchelor's m‘i;{n_lﬂl result was obtained by
depicting the turbulent fluid, in the viscous convective range. as composed of
blobs. with linear size of the order of the Kolmogorov microscale, that ape
subjected to the straining action of a velocity tield considered regular on these
length scales. Then, it 1s not surprising that one can derive Batchelor's result
by means of ideas borrowed from the dynamical systems theory. without using
phenomenological assumptions. In fact, the k™! regime is a spectral property of
an advected scalar which follows directly from Lagrangian chaos. and does no
depend on the dimensionality d. for d > 2[V89, CFPVY0b|. Turbulent fluids
and very simple flows, for instance periodic in time, exhibit this same property.

Let us consider a smooth itial condition @, (x) and N > | particles,
convected according to (4.5) by a smooth velocity field. The /-th particle is
initially in x'(0) and transports its own @ = @, (x" (0)). At time f, by the

definition (4.14), one has

(4.17) Se(r)x N72) (@Y — @)2P (x® xU ¢),

L
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where P, (x", xD_ 1} is the probability density to have |x® — x| =r at time
{. The dominant contribution to the sum (:LIT) comes from the couples of
particles with large | @9 _ @', that is from initiallv distant particles, since
&, (X) 1s smooth. In the presence of Lagrangian chaos. two particles which are
initi:!ll}‘ at distance [, can approach up to a distance () (r) after a time
b~ A "In(ly/r). Here 4y is again the maximum Lyapunov exponent of the
time rm*rrm_*rl (+.7). In other terms. f, 15 the typical time necessary to get
a ‘good mixing' on scale r the A" of the particles in a box of edge r. after this
time, are distributed in the whole range ot disposable values. Therefore

(1) 1) . ' \ . . »
- Z x 1) for t > {, becomes independent of » (a part from logarithmie
corrections), so that

(4.18) N (r) ~ o, with 5 = 0.

One cannot use directly the di
value n = 0 is out of the
can only assert that

mensional relations (4.15) and (4.16) because the
validity range for locality in the power spectrum. One

I'(k) k™ witheo<l,.

However, the conservation law | I' (k) dk = constant implies @ > 1, so that the
Batchelor Hl.':-llin,u[ c =] follows.

432 The power sSpectrum: a fragmentation model. The
spectral properties of a convected scalar can also be derived in the context of
a fragmentation model, similar to the f-model, introduced in three-dimensional
turbulence for the description of the energy  cascade in the inertial ran-
ge [ BPPVS4]. An advantage of this approach is the possibility of determining,
m a simple way, the limit of validity of the £~ ' law. Moreover. in
two-dimensional turbulence. this power law is valid even in the inertial range.
On the contrary, in three-dimensional fluids the extension of the range of
validity of the £ ' law is determined by the details of the (Eulerian) turbu-
lence.

The convection term in (4.2) is the cause of the growth of the @ gradients.
It can be regarded as the term which induces a transter among different
Fourier components of @, in such a way to generate a cascade of the quantity
@° in the @ Fourier space towards the large wave number harmonies. up to the
wave numbers corresponding to the dissipation length (4.12). where the dissi-
pation of the scalar fluctuations mainly occurs. This transfer mechanism is
quite similar to that observed for the energy in Richardson’s scenario of fully
developed turbulence [R22]. In fact. one may consider @° as a quantity which
s transferred across the @ Fourier spectrum, and conserved while being
transferred, according to (4.2). This means that when a Fourier component
O (k) is changed by the interactions between passive scalar and veloeity field,
at the same time other Fourier components are adjustd so that the total
variation of @2 is zero. If one is eager to consider a stationary state, one needs
an external steady forcing on the right-hand side of (+.2), that injects ©* at
a constant rate y. to balance the rate of destruction of the scalar fluctuations
by molecular dissipation.
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where x is the

(4.20)

with 0 < n < 2, then

(4.21) ((80,) > = kI (k) .

and the power spectrum IS
(LT

I (k) oc &

and I' (k) also holds for n = 0, beey
, Ud 1l se

This dimensional relation between Sy (1)
k)dk = constant.
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7, is the typical time needed to transfer (860.) from the scale [, to the successiv

(4.23) I(@ — { @ ))*dx = constant.

The estimate of 7, is related t 111 ! '
: o the stability properties ot the L: |
. o ) - sagrangian
d:gt:trlll:jslon. In fact_: the transfﬁfr of (80,)* to the scale [, is urigirmhﬁ Iwgthe
i ll;?cﬁ ing mechanism of the iso-@ surfaces, acting on the previous scale |
causes the distance between two 1s0-@ surfaces, ad described subsee’:i

4’1, to decrease from [, to [,,, in a time 1, such that

[
exp[yt,] = ——=f"".
n+1
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As there are no space fluctuations of B in this
not fluctuate. This corresponds to assume th
tency. in the sense used in the conte
y = 4,. the Lagrangian Lyapunov e
the mean logarithmic rate of

T, = — In (ﬂ)fﬂ.l

model, the decreasing of [, does
e absence of temporal intermit-
xt of dynamical systems. Thus one has that
xponent of the inverse flow (4.7), that gives
contraction in the convecting flow. Since
I8 independent of ». from (4.22), (4.20) and (4.21), one gets

(4.24) =0, Ik ~p-t
A

Y . N a s)s) < = " . 1
Notice t}hlt (4.22) 1s not just a phenomenological assumption, because it also
follows from the exponential growth of the @ gradient. Denoting t, as the time
mterval needed by two neighbouring iso-@ surfaces in order to decrease their

distance from [, to [, ,. and assuming no temporal intermittency in this
process, from (4.10) one has

F 0o " 60, \?
(4.25) ( = l) =( ") exp [2457.].
zn+l !

n

Equation (4.25) is equivalent to (4.22) with T, = constant.

4'3.3. Numerical results. In this section numerical simulations of

passive scalar fields in volume-preserving maps are reported. The maps, acting
on a domain M C R* with periodic boundary conditions, are used to describe
the motion of particles in time-periodic velocity fields u(x, t + 7') = u(x. t).

The numerical simulations were done using the so-called «water-bagy
method, which is largely used in hydrodynamics and plasma physics [BR70].
Because of (4.4), the time evolution of the passive scalar field @ (x, 1) can be
readily obtained from the flow of N > 1 «particlesy. trasported by the veocity
field w.

At the mitial time @ (x) is fixed, the N particles are distributed uniformly
in the domain M and the value @ = @, (x(0)) is associated to the i-th
particle (¢t = 1, ... N), initially in the position x (0). The particles then evolve
according to a volume-preserving map. In order to calculate the spectrum I (k).
one needs to know the value of @ (x, n) on a regular lattice on M for times n.
measured in units of the period 7'. This is achieved by partitioning the domain
M into L? cells, with L = 27 as required by the standard Fat Fourier Trans-
form (FE'T) algorithms. The value of @ at the centre of each cell is obtained by
a suitable interpolation of the @ associated with the particles which are in the
cell at a given time. The spectrum I (k) at time =n is calculated via

k<ik'|<k+1

where @ (k, n) is the FFT of the @ field.
Here results for the following two maps are presented: the standard map
(2.17) (d = 2) and the ABC map (2.13) (d = 3). In the present case map (2.13)
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Fig. 13. — Power spectrum I (k) versus k at different times for the standacd map (2.17) with
K = 0.99. The initial condition is @, (z. y) = 1 + 0.2 cos x sin (xr + y). L = 256 and the averag
number of particles per lattice cell is nine; the times n = 2 a). 4 b), 25 ¢) are <hown. The line with
slope — 1 is drawn for comparison.
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Fig. 14. — The same as fig. 13 for the ABC map (2.13) with 4 = 0.5, B=0.08 and (' = 0.16. The

mitial condition s Oz, ¥, 2) =14+ 0.1 cos (* +2)+02sin(xr 4+ y). L =64, and the average

number of particles per lattice cell is four; the times shown are n=23 (a)). 15 (b)). 45 (¢)).

concentrated in a region of small k. As time
grows and I' (k) develops a k!
shifts forward to large &. This
ncreasing of (7 (f), see (4.10).

goes on, G(t) = |VO (x, t)]|*>
shape. As there is no forcing, the spectrum
1s due to the conservation law (4.23) and the

4 4. Some remarks. — 1) To obtain the result (4.24) one has to linearize the

stability equation which rules the separation between two fluid particles: and
this separation has to increase at an exponential rate so as to produce a true
Lagrangian chaos. These are sutficient conditions for the existence of the B
power law regime.

This implies that for turbulence in three dimensions the £~ ! law holds only
In the viscous convective subrange, where the velocity field is smoothed by the
viscosity. i.e. |u(x + r) — u(x)| ~ r. This is not the case in the inertial range,
where the velocity field is highly irregular and the typical velocity difference is
not linear in r, ie. |u(x+r)— ux)| ~" with h<1 (h = 1/3 in the Kol-
mogorov theory).

By the above approach, one sees that the relevance of the Eulerian
turbulence is limited to determine the position of the viscous cut-off kg, or the
Kolmogorov length I, ~ kg!' This is a nontrivial task. In the Kolmogorov
theory, one has ky oc Re* but the intermittency of energy dissipation changes
this power law. For instance. using homogeneous fractal models for fully
developed turbulence (absolute curdling or ff model), one has kg oc Re¥/(1 +Dr)
where D ~ 2.8 +~ 2.9 is the fractal dimension of the set containing most of the
energy dissipation, In the more complex multifractal approach [PV87h] one
obtains kg oc Re'/!! thmin) \Wheare Pin 18 the minimum value assumed by the
exponent h for the power law of the velocity differences. A rather sensible
estimate is A_. = 0 which allows good fit of the experimental structure func-
tions for the velocity [BPPV84].

In two dimensions we are faced with a quite different scenario. It is known
that in this case there exists an inertial range where the enstrophy (the integral
of the square of the vorticity) cascades from larger to smaller scales. However,
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show that this can happen only in extreme cases.
result [K74], but the constant 1n front of this scaling law may be sensitive t,

the details of the Lagrangian mntipn. e e |
I11) The scaling law (4.18) admits an Illflll'[l.\'l' interpretation i terms of
he iso-@ surfaces. The fractal dimension Dy of these

the fractal structure ot t Sraptal
surfaces and the exponent 7 are related by [M75. P84}

"
Dg=d—7

lue of the constant in front of £, In fact th
. s y @

Bﬂtl'h{lllﬂ' lil“' IS llllllllill‘ll “”I\' If th
* - - (

a set of (active) boxes cover;

space
boxes, can only modify

value of the scaling exponen

The &~! law corresponds to surfaces (lines if d = 2) invading the whole space
as Dy =d. that 1s the most chaotic situation. We have described a :..;'.,.nm.i‘;
where the Lagrangian chaos 1s the fundamental ingredient. This idea is illus-
trated in fig. 15 which shows one iso-@ line in a two-dimensional fluid, with
a time periodic velocity field obtained by a five-mode truncation of the
Navier-Stokes equations, whose Lagrangian behaviours have been studied i
subsect. 6°5. It is impressive the similarity with the 1s0-@ line computed by
numerical calculations of two-dimensional fully developed turbulent flows with

~ 10* modes (see fig. 4b of [BBLSST7]).
IV) We saw, in subsect. 42, that the multifractal nature of V& 1s revealed

on scales of length [ > [, ~ [;eXp[— Vpmax |- For wave numbers corresponding to
these scales, the scaling index of the structure function 5 (r), and lhusﬁthv
exponent of the power spectrum I (k). is dictated by the (multifroctal) behav-
iour of the measure dji = | VO |*dx. However, the onset of the £ regime for
I (k) occurs at length scales [ > I, ~ [yexp[— 4], on which a good mixing has
taken place and dji, when coarse grained with such resolutions most Ekt‘h‘
reached the uniform state. Therefore one expects the following diticrent regions

of scales:
a)_l::»ll, where multifractality has been lost. because «cood mixing
properties» allows the system to forget the details of the dynanies:
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Fig. 15. — The shape of the line (x — 3.20)* + (y — 3.10)* = (3.05)%, convected by the velocity
field obtained as the 5-mode truncation of the 2d Navier-Stokes equations of seet. 3. with }
Re = 26.06 (periodic regime). after ~ 8 characteristic times (defined as ¢ (Vu)* )~ /%) i

h) [, <l <1l,. where multifractality is at work:

¢) I <, where multifractality has not vet arrived at:

with the corresponding regimes for the power spectrum:
g) Fkyoc k" for k<, ~I0"

b) a nontrivial power law, related with the multifractal properties of the
dynamical system (4.5), for k, <k <k, ~15":

¢) an exponential decay for k > k,.

Let us stress that without a steady source, regime @) becomes limited also
from below, since, as time goes on. the power spectrum shifts toward the large
k region and the low wave numbers loose their strength.

As a matter of fact, Ott and Antonsen [OA90] find for I' (k. t) the following
eXPression:

1 1
(4.26) Ik, t) WEP(?IH(L'H{B). f).

where P (7, t) is the probability density to get an effective Lyapunov exponent
y in a time interval t. P(y, t) can be written in terms of the function S (y),
related via a Legendre transformation to the L(g) of the dynamical system
(4.7), as

(4.27) Py, t) ~exp[— S (y)].

The reader can find in subsect. 63 that for y >~ 4, in a typical dynamical
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system:

() (y — A1)
(4.28) ; (J ) N 2(;:

ation. one has that in the range
s .

Then. from a simple comput
with 2, < 1 and z2; > 1

.

ke [x koexplA ] v koexp[A4t]].

Lif (1/t) In(max [y, 1w 1) is small, e
| _

(4.26) is of order g

ino t of s o4 '
the leading term 26) gives a small modification of the }

shows that, for large ¢, (4.

erv large range of & values. ‘ : |
. 1hI'(:;‘:;‘:ﬂrf:'()v%r H{Jﬁta et al [ HHIMYO] recently found numerical evidence that .

typical two-dimensional maps show

lﬂ \W |n

g strong intermittency. one has

S(T) = () tor V<Y< A .

behaviour for b < kjexp(i

In this cases (4.26) gives exactly the £
ather difficult to observe i

The multifractal regime of I' (k) thus seems 1 |
real experiments. if one does not use al]illl‘n]:['l:lh' Il'il1l'l‘h. since the tll[fl_lr-:iun
coefficient introduces a natural cut-off k; ~ 5~ o 7o *'% which is much smalley
than k, for reasonable times.

4'5. The growth of vector fields: interm mfur'y and i u/f‘{fmrfu! ;'(_q (e magnelie
dynamos. — The behaviour of a magnetic field Bi(x. ) 1n u-Iq-lrtr-n-;ullix- condue-
ting fluids is of great physical relevance both In astrophysics and geophys.
ics[W85, ZR86]. In principle, one should consider the whole set of mag-
netohydrodynamic equations for the velocity field u(x. ) and the magnetic
field B (x, t). However, a simpler manner to attack the problem is to assume
a prescribed velocity field as known input. unattected by the electromagnetic
field. This is the so-called kinematic dynamo problem. described by the
equations

3B+ (u-V)B= (B V)u+ y,V’B.
(4.29) {, (u-V)B=(B-V)u+

V-B=0,

obtained from. the Maxwell equations and the Ohm law for incompressible
fluids, xz is here the magnetic-diffusivity coefficient of the fluid. inversely
proportional to the conduectivity. In this problem, the basic question is whether
the motion can enhance a very small initial magnetic field. in the absence of
external electromotive forces.

If we put 7, =0, by taking into account that V- u = 0 (4.29) reduces to
(4.3) Wfth F = B: then we may anticipate there will be an increase of B all over
the ﬂu!d. However, because the limit zg— 0 is singular, the interchange of the
large time limit and the small scale limit is not ;nisﬁil';lv. The effect of a small
but nonzero magnetic diffusivity is highly nontrivial. At the end of the section
we briefly discuss this delicate point.

In the following, the statistical properties of the magnetic field on small
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scales, for a fluid with high conductivity, will be characterized by exploiting
the connection of the kinematic dynamo equations with the dynamical system

(4.9), which describes the Lagrangian motion of marker particles in that fluid.
Consider (4.29) for Xg =0

(4.30) OB+ (u-VYB=(B-V)u.

wind the equation which rules the evolution of the distance between two fluid
particles, say R =x% —x™  where x™ and x® are the positions of the
particles whose time behaviour is given by (4.5). In the limit R—0. for the
interparticle distance one obtains the linear equation for the tangent vector z

= d
(4.31) dz, Ouy

2;.
di o, 0%

Equation (4.31) is formally identical to (4.30). since d/dt =0, + (u - V). By

mm_:ir.lt_é*ring the flow of a fluid particle. x(f) = T'x(0), one can write for the
evolution of the magnetic field

d
Bi(x, t)= ) A;(x, t)- B(T 'x, 0)

J=4

with

Ox;

(2 )= .
i (% ) 8T =)

The behaviour of the magnetic field is thus determined by two factors: 1) the
evolution of the fluid particles and 2) the rate of growth of the tangent vector,
t.¢. the separation of particles pairs. |

The equivalence of (4.31) and (4.30) permits to use standard methods of
dynamical systems. A magnetic field, convected by a fluid which exhibits
Lagrangian chaos, will be exponentially amplified and the spatial variations in
the magnetic-tield amplification can be described by the generalized Lyapunov
exponents L (g), introduced in subsect. 4'2: see also subsect. 6 3. The generaliz-
ed Lyapunov exponents characterize the fluctuations around 4, of the effective
Lyapunov exponents y(x, t) = (1/t)In|z(t)]. obtained by a measure over long
but finite times. In the present context this set of exponents may be defined by
the spatial averages for the B-moments:

(4.32) (|B(x, t)|*) ~exp|[L(gq)t] for t— 0.

This definition i1s equivalent to the standard defimition in terms of time
averages for ergordic systems. Besides (4.32) is more appropriate for practical
purposes.

We remark that an idea of generalized Lyapunov exponents has been
introduced in the context of the magnetic dynamo, although limited to random
velocity field, in [MR584] and [ZMRS84].
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Fig. 16. — (1/g) In {|B(x,
: 2 B =008 (=016 ¢g=20.10 (a)).

with parameters . = (.5.
1.50 (¢)).

d out in the case discussed In subsect. 4'2, a nonlinear L (q)

As was pointe o |
ability measure given by

involves the multifractality of the prob

| B (X, t)|d%
%) i ||B(x, t)] d’z

where the normalization integral is over the space domain covered by the fluid.
The multifractal structure of the magnetic field is quite similar to the one of
the passive scalar gradients. Multifractality and fluctuations in time of the
degree of chaos are two aspects of the same problem. The relation between the
spatial multifractality (i.e. nonconstant d ) and temporal intermittency (e
nonlinear L (g)) is not simple: a detailed discussion for some chaotic systems
may be found in[OA89]. However, it is easy to realize that a nonlinear L (q)
corresponds to a highly irregular spatial distribution for B (x, t). Indeed, the
volume of the regions where B(x, t)~exp[pt]. if y#4,. anishes as
exp[— S (y)t], although they give the leading contribution to (| B (x. 1) 1%, for
g # 0. Therefore, the multifractal structure of the measure (4.33) can be
observed only on very small scale, which decreases exponentially m time.
A very peculiar situation arises near the onset of Lagrangian chaos in
incompressible fluids. Consider, for example, a two-dimensional system. where
the Lagrangian chaos firstly appears around tiny regions of the fluids (separat-
rices of the stream function, see subsect. 6'2), embedded into large regions with
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regular Lagrangian behaviour. In such a case the exponential amplification of
the magnetic field is limited to the tiny chaotic regions. while one has
a polynomial growth in the regular regions. As an example, the phase portrait
of the most chaotic zones of the standard map (2.17) for K = 0.5 is shown in
fig. 17. They contain the unstable fixed points of the map and those of its
second iteration. The magnetic field appears to be strongly localized in these
zones, as shown in fig. 18a) and 18b). As there are regular and chaotic regions
which are fully disconnected, one has L(gq) =0 for ¢ <0, since the leading

0 9 i 6

Fig. 17. — Phase portrait of the most chaotic zones of the standard map (2.17) for the parameter
value K = 0.5,

Fig. 18. — a) The intensity of the magnetic field vs. y. in the section x = 0. evolved by the
standard map with parameter K = 0.5. o it appears after 2 steps (dot). 4 steps (dash-dot),
8 steps (full). The initial intensity is 10~ ® (horizontal full line). &) The intensity of the magnetie
field vs. x. in the section y = 7. evolved by the standard map with parameter K = 0.5, as it
appears after 2 steps (dash-dot), 8 steps (full). The initial intensity is 107 % (horizontal full line).
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function L (g) due to the fluctu

y inside the chaotic
Summing up, one

ations of the effective Lyapunov eXPonent

ZONeS.

has that

i) the magnetic field has a multifractal structure as a consequence of g,

I j | owth:

| 2 < in its exponential growth:
spatial fluctuations in its exj g

o situation of weak Lagr

i) in | ‘
trates in tiny regions of the fluid.

angian chaos the magnetic field e

of fluids with zero magnetic diffusivity
- Pl e K q | +.
coefficient. We expect that for times larger tlmin. { (1/4,) In (xp5) the magnetie
diffusivity cannot be neglﬂ-tvd. since 1ts eftect hecomes ':"I"‘s'illll on sojes
hul (\i)l wetl xé‘"‘z For istance. 1t 18 well known that in two dimensjone
W are ‘X1 i | ~ : ' : et .
the magnetic field cannot increase for yg # 0257 . |
We conclude with a brief discussion on the yp # 0 case. In this case (4.33)

becomes [MRS84 |

This scenario 18 quite pt-'vu]mr

B(x. t)=M_[Ax. y. 1)B((. 0)].

where M. denotes the mean value over the Wiener paths starting from y 4
x £l L - . s
time 0 and ending in X at time f, i.e. the solutions of

p is a (aussian process of zero mean and correlation

<'7i(f)'?j(f) - 2XB5;'_;‘ ot —1');

and
Ax, y t)= t*X])[thlTﬂ[Z(T)_]J
with
Ou,
a;; = gnad = z0)=y, zZz(t)=2x.
a.rj

In the case of a three-dimensional velocity field which is rencwed after
a finite time, and for which there exists a time t such that the velocity field at
time [ + 7 is completely uncorrelated from that at time ¢ it is possible to
show [MRS84] that L(q, yz)— L(q. 0) for rg— 0. Moreover L (g, 0) is a non-
linear function of ¢, indicating that, in this extreme case, the intcrmittency
does not disappear for finite magnetic diffusivity coefficient. Figure 19 shows
the expected behaviour of L(q, xg) as a function of -
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L (q,x5)/q

Fig. 19. - Expected behaviour of L (9. xg)/q as a tunction of yg: alphabetic ordering of the curves

corresponds to an ordering in mnereasing power of g.

Note that in two dimensions the antidynamo  theorem [Z57] implies

L(q. xp) =0 for all ¥, # 0. In terms of probability theory this is due to the fact
that in two dimensions the Wiener trajectories are reflective whereas in three
dimensions they are not [MRNS4 .

On the other hand, some

. g , results | FOY90| ofr three-dimensional regular veloc-
ity fields indicate that for

small yp and ¢ > t* L(q. yz) = wq. where @ is the
exponential growth rate of the magnetic flux, @ = 0 in two dimensions. Let us |
stress that in general the limit of @ for rp— ) does not coincide with the :
Lyapunov exponent 4y of eq. (4.5). where /g = 0. In a special class of flows |
(Asonov dinamical systems) it can be proved [('89] that

lim @ = L (1).
tp—0

which can differ from 4.

The reflex of the zero-diffusivity properties is relevant for the multifractal-
ity ot the measure (4.33) on scales larger than =~ yg'°.

The temporal intermittency of the degree of chaos in conservative dynami-
cal systems is important for the fast dynamo problem. The above arguments
seem to be interesting even for small but nonzero magnetic diffusivity y,. In
fact. intermittency implies a highly irregular structure on a wide range of
length scales although it can be observed only on small times.

4'6. The onsel of the quantum reqime. — In the recent literature a great
attention has been devoted to the behaviour of a quantum system whose
classical limit exhibits chaotic features. such as a sensible dependence on initial
conditions. This new field of research is called quantum chaos (or quantum
chaology) and we refer the reader to some extensive reviews on the sub-
ject [Z81, B83, 190, Y01

In this subsection, we want to show that the ideas developed in the context
of passive scalars can be useful to get some insight in quantum chaos. Indeed.
like the diffusive equation of a scalar field, the Schridinger equation 1s linear,
so that an initial uncertainty on the wave function cannot grow exponentially
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Schridinger equation for a partic

] be™ I )’Il V::'
(4.34a) 0o T ;(VM oS om A
V‘S' _ - b,
B 2 . — =0 with = A5=1T"1.
(4.34b) 0p +V (P = )

When the initial wave function ¥, (x) =¥ (x. O) i:-.;. such  that
(VS)*/m + V > (h2/2n3)|V2;1 | /A, we ma}*-neglevt_ the I'Ight‘hfn‘nl side of (4.34q)
and we are left with the Hamilton-Jacobi equation. where S is the action anc
VS the momentum of the particle. Intmdm;ing the particle velocity fielc
ux, t)=VS/m and neglecting the term O (h°) In (+.54a). the semi-classiea
limit of the above equations takes the form

s :
(4.35) (‘-;IS + —?'(WN)2 Reai=1,
I

(4.36) op+u-Vp=—pV-u.

Equation (4.35) gives the evolution of the uncoupled velocity field (in
analogy with the Navier-Stokes equation). while (4.36) is very similar to (4.30)
for the passive transport of B in the magnetic kinematic dynamos.

Denoting. as usual, by T the formal evolution operator of the equation

]
(4.37) E=wix. t)=—Yd(x, L),
i

i.e. x(t) = T'x(0), the solution of (4.36) may be written as
(4.38) p(x, t)=po(T 'x)exp[— |oV - u(T" " 'x, T —t)d1].

The form of (4.38) allows us to repeat the arguments for the growth ot Vo
(or B) so that, if (4.37) 1s a chaotic system,

|Vp (x, t)| ~exp[ty(x, 1)].

where 7 (x, t) is related to the effective Lyapunov exponent of the flow time
reversed of (4.37). For the sake of simplicity, we consider only the case
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y(X. t) = A, Vx, t, although it is not difficult to take into account the fluctu-
ations in the degree of chaos. The relevance of the term on the right hand of
(4.54a) grows exponentially in time, so that the semi-classical approximation
holds only for times ¢ < t*. with t* given by the relation

2 2 2 2 SPTE
(4.30) Py h® |V°A4 | 3 h” exp |24t ]‘
2m A 2m I;
i.e.

s l . ((EmEﬁ)l’z!o)
/. h |

where [, and E, are the typical length and energy ot the imitial distribution.

For times ¢ 2 t* it is necessary to consider the full equations (4.34). When
t < t*. the chaotic nature of the probability flow reveals itself in the fact that.
In spite of the linearity of the Schrodinger equation. one has

pixX, t)—p(x, t) ~exp[ty(x, t)] with x=z=x'.

On the contrary. because of the linearity of the Schridinger equation. there is
no sensible dependence of p (x. 1) upon a change of the initial condition p, (x).
If we consider another initial condition Do (X). close to p,(x). and we denote
with p(x. f) its evolution. we have that p(x. t)—p(x. t) does not grow
exponentially .

In the case of classical regular motion. Vp grows only polynomially with ¢,
so that from (4.39) one gets

2mE )21\
i¥ & L*Ullﬁt( O) 2 .
h

with o depending on the details of the system.

To summarize, for t > t* there is no trivial relation between the chaotic (or
regular) behaviour of the classical system and the features of the corresponding
quantum counterpart. However, as shown, the type of behaviour plays a cen-
tral role in setting the temporal range of validity of the semi-classical AppProxi-
mation.

It 1s an open problem to understand whether a Lagrangian chaos can arise
beyond the semi-classical approximation, i.e. in eq. (4.34) when the term
proportional to A* is taken into account. In this case. the equations are similar
to those of a scalar field which is not passive, as for instance in the Ray-
leigh-Bénard convection. A theory of Lagrangian turbulence could thus become
a useful tool in quantum chaos.

5. — Diffusion properties and Lagrangian chaos.

This section addresses the problem of diffusive transport in the presence of
flows with Lagrangian chaos and/or molecular diffusion. The understanding of
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count the molecular diffusion. the motion of a fluid element

following Langevin equation:

flow-assisted diffusion

simple lami
Taking into ac
can be described by the

dx
= = H{¥, () +n(l).
(5.1) 1/
where u (x. 1) is the Eulerian flow velocity field at the position X at time /. ap
N is a (1aussian white noise with zero mean and
(n:(t)m; (1)) = 2x0;0 (t — 1) -
molecular diffusion coefficient. 1t is then cleg,
es are affected by the presence of Lagran.
£ a fluid element described by the deter.

(5.2)
The coefficient y is the (bare) ‘
that transport and diffusion propert)
gian chaos, i.e. the chaotic motion 0
ministic equation

dx
— = h(x, t).

i5:9) di
a fluid therefore 1s the result of two

The dispersion of a contaminant m | 1t
and, 1in general. it is much

different effects: advection and molecular diffusion,
faster than expected by considering only the latter.

Real fluids always have a certain degree ot Lagrangian chaos, e.qg.. in
two-dimensional flows one just needs that the stream function is time depend-
ent. The understanding of the diffusion process Is therefore a hard task. since it
may depend in a complicated way on the detailed structure ot the Eulerian
velocity field. Two nontrivial limit cases can, nevertheless, be immediately

distinguished:

i) fully developed turbulence, where the molecular effects can be ignored
on a large range of scales.

ii) fluid velocity fields where (5.3) is integrable or quasi-integrable and
the degree of Lagrangian chaos is very small.
Due to the interplay of advection and molecular diffusion also the latter can be

highly nontrivial.

The physics of passive diffusive transport can be characterized in simple
terms by introducing an effective diffusion coefficient which contamns the
cumulative effects of advection and molecular diffusion. Let @ (x. /) be the

concentration of tracers evolving in time according to the Langevin equation
(5.1), then we have

(5.4) 0,0 +u- Ve = Ve,



| Pa CL 6B T S e s R, - p P TINR " T
"l;’ c}i*‘ T"?ﬂk ii 4._+.# m.‘l_ﬁj 3 ; ...tl-.a

LAGRANGIAN CHAOS: TRANSPORT. MIXING AND DIFFUSION IN FLUIDS 45

which is nothing but the Fokker-Planck equation related to (5.1). In deriving
(9.4) we have used the mcompressibility condition V- u = 0. The diffusion
process takes place on time scales much longer than the characteristic micro-
scopic time. On this time scales the evolution of @ (x. 1) 1s dominated by weak
long-wave disturbances. The equation for these slow modes can be derived by
the usual multiple scale or «hydrodynamic» analysis[M90]. It has the form

ne ~ 0°

(5.5) O =1

¥ .
; ¥ ar,.a.a_;

|

O+ 0((V*O)*). i j o

—

where @ is the concentration field averaged locally over a volume of linear
dimension much larger than the typical lenght [ of the velocity field. Equation
(9.0) 15 a weak gradient expansion valid when |V@|/@ « I !. Tf we neglect the
high-order term, (5.5) is the diffusion equation with an effective diffusion
(tensor) “.‘j-

From (5.5) it follows that “u measures the spreading on a very long times
ot a spot of tracers evolving according to (5.1). Therefore a way of computing
D;j 1s directly form the covariance tensor of the Lagrangian motion

- . . l
5.6) Dy = lim_ (2,(£) — (2, )) (2 18) =<2 D) Dt =0

=+ o 2f

o

o

Here x (1) is the position of a tracer at time
initial position or. equivalently

Note that from (5.5) and (
at least on |

[, and the average is taken over the
over an ensemble of test particles.

2.6) tollows that the diffusion process is (raussian,
arge time and space scales. This is the typical situation, even if
there exist cases where anomalous  diffusion is  observed. i.e.
C(a; (1) — Ly (t) ) ~ t* with f#1[PSS. WKS89. O(9] |. These cases will not
be considered here.

The study of D;; for different velocity fields @ is the main object of this
section. We shall consider simple problems dealing with diffusion of an impur-
ity 1n a specitied flow of a continuous media. without considering the origin of
this tield. Such a simplification of the problem is a necessary step towards the
solution ot the much more complex self-consistent problem and reveals, already
at this idealized level, a number of nontrivial effects.

A largely used model system for a comprehensive vestigation of transport
1s the Rayleigh-Bérnard convection, because convective flows can be created
ranging from time-independent spatially periodic flows on the one hand. to
turbulent flows on the other. As a result, the transport rates vary over a wide
range. On one side, when the fluid is motionless. the transport is due entirely to
molecular ditfusion (D;; ~ y). On the other extreme case, i.e. turbulent flows.
transport is due to advection by the flow and is often described phenom-
enologically as enhanced diffusion.

Between these two extrema there are two important laminar regimes:
time-dependent and time-independent regime. In the time-dependent regime.
the trasport i1s dominated by advection of tracer particles across roll boundaries
and the particle trajectories may be chaotic, thus D, # 0 even if y = 0. In the
time-independent regime, large-scale transport is generally due to molecular
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diffusion (5.3) has the form
iz O QY Ql_l/_

o

(5-7) dt Oy d!

, gystem, the stream function blay-

esents a Hamiltonial

which formally repr . _
Hamiltonian.

ing the role of the
h me-fmgirm chaos. — If the stream funection o

time dependent, the system (9.7) 1S n.tmautnnmf!:'}ur@ll)u-rinl-v. i|” .;_uinvmil. nonin-
tegrable and chaotic particle t-l‘a]t*(“f-t'_l}‘lt‘:*i may l‘h'hf- ‘ll"« 0 { ,H, t 1aotic trajec.
tories, particles may undergo a diffusion process t‘\tl{‘lhllnr\.l_‘l_‘\ Simple, e.g.
time-periodic laminar, Eulerian flows without the help of any type of moleculay

diffusion.
To illustrate t

SGS8b:

5'1. Diffusion in flows

his point consider the following stream function|SGSK,.

4 _ .
(5.8) Uiz, y, t)= 2 sin {k[x + B sin wot]} Wy) .

ocity of the flow. k& the wave number 2n/4 and
es rigid boundary conditions on the surfaces
ction describes single-mode. two-dimensional

where A is the maximum y-vel
W (y) is a function that satisti

y = 0 and y = a. This stream fun |
convection between two rigid boundaries which can be realized in time-periodic

Rayleigh-Bénard convection. The direction y 1s identified with the vertica
direction and the two surfaces y = 0 and y = a are top and bottom surfaces of
the convection cell. The term B sin w! represents lateral oscillations of the rol
pattern of amplitude B and frequency that is mainly caused by the even
oscillatory instability.

Due to the roll oscillations, one may expect that the trajectory of a particle
near the roll separatrices could be chaotic. The numerical computation of the
largest Lyapunov exponent of the Lagrangian motion confirms the presence of
an extreme sensitivity on initial conditions. If we follow the evolution ot a line
of tracers initially located along a separatrix, see fig. 20, we may ob-crve that
it is stretched and folded, while spreading among the rolls, in a fashion typical
of many chaotic dynamical systems. |

It is clear that in this scenario a particle will diffuse in the » lirection.
A numerical computation of the effective diffusion coefficient 1) long the
ch_annel shows a linear dependence on B for small values of 2B/4, i.e. with the
:ﬂWldthﬂ- qf the_ chaotic layer near the separatrices [S(:88a. H(;Ht&h']. [t 15 interest-
ing that in spite of the simplicity of the model, the agreement of the 1merical
results with the experimental ones is quite good.
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Fig. 20. — A line of 6000 particles, at the initial time (panel a)) uniformally distributed on the

line x = 0 between y =0 and y = n, is transported according to egs. (5.7), (5.8) with 4 = 0.2,

5=04, =05 4=2rand W(y)=sin y. Panels b), ¢), d) show the spreading after, respective-
lv. 2, 4 and 6 periods of the convecting field.

Simple models, as the one just described for the Rayleigh-Bénard convec-
tion, can also be applied to the study of charged-particle transport in magne-
tic-contfinement devices. There is, indeed. an exact analogy between the de-
seription ot the Lagrangian motion of passive tracers in two-dimensional
incompressible Eulerian flows and that of charged particles in an electrostatic
field with a strong magnetic field. The latter is described by

d{z c — 0. D (x. y. t
(0.9) = = — J{X !)XB=:— gl
di \ y I3 B 0,P(x, y, t)
where @ (x, t) is the electrostatic potential, E = — V& the electric field. B = B>

the magnetic field and ¢ the light speed. Equation (5.9) is obtained in the limit
of electric field varying on frequencies much smaller than the electron and ion
gyrofrequencies and in the presence of a strong magnetic field B, so that the
fast component of charged-particle motion — the Larmor gyration —— can be
averaged in the so-called guiding-centre approximation [T89]. All these condi-
tions are usually well satisfied in tokamaks. We are then left with a two-
degrees-ot-freedom Hamiltonian system with — (¢/B) @ playing the role of the
Hamiltonian. Note that (5.9) can also be regarded as the equation of motion of
a fluid particle in a two-dimensional Eulerian velocity field given by the stream
function — (¢/B) ®.

Observed particle losses in magnetic confinement devices are much stronger
than those expected on the basis of pure Coulomb collisions. The origin of such
phenomena can reasonably be attributed to a «haotic advections of the
charged particles driven by the electric field. Lagrangian diffusion of charged
particles across a magnetic field has been experimentally detected by laser-
stimulated fluorescence of ions in @-machines [MOS7].

Low-frequency electrostatic fluctuations produced by local plasma pressure
gradients provide a possible mechanism of enhanced charged-particle transport.
Such fluctuations move the particles across magnetie-field lines via the E x B
drift. The effect of a given spectrum of electrostatic fluctuations can be again
measured by an effective diffusion coefficient [PVMDOBSS].

It 1s possible to treat the problem with the Galerkin approach, discussed in
subsect. 3’1 and 6'5. Basically one has to develop @ in a Fourier series whose
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fluctuations can be modelled by the electrostatic potential

(5.10) P (X, f)=Z¢’k sin [k'x-l-(ﬁk—u)(k)!\.
). k

v o (k) the dispersion relation tor electrostatic
the experimental spectrum S (k. )
ational point of view. so that one iq
istant. This could be the case for
e this is just a simple approxi-

one should use fc

In principle.
tly reproduce

driftwaves in order to correc
However. this 1s pmhihitive from a comput
led to the drastic choice @ (k)= wy. a €Ol
Langmuir waves, but for drift-wave tur:bulem; S 18
mation necessary to make numerical :~.mnu£a?mns feasible. |
Finally the wave number spectrum |<§>k| is chosen to have a simple power
law depeﬁden(*e on k to reproduce the k™~ subrange energy spectrum which has
been observed in drift-wave turbulence [TFR84]. The ¢, are quenched random

phases.

A possible form which satisfies the above requirements Is

D =
(l Al : |
(5-1 l) ¢(x. Y. t) = - Z (”2 4 _”32) 3/2 S1 l:_[“‘(ﬁ.r -+ H?y) + ¢J"m — (.r)”{
=Ty mes % i

where L is the potential periodicity length in the x and y directions, ¢
random phases uniformly distributed in the interval [0, 27) and .7 the domain

of integration.

The results are better expressed in terms of dimensionless {llu:;mtitiw:-;_ For
/2

this reason we introduce the electric-field strength £ = ( E*) where
] L L
(5.12) (E*) - de | dyE*(x, y. t).
0 0

which can be used as units of electric and magnetic field. By mtroducing
b= B/B and e = E/E, the equation of motion reads

d/ax _2mt'Ee ! s [ ;
dt\y) Lw,B PUNEE R =wRiY, 't XD,

(5.13)

where now (, z, y. e and b are dimensionless. The parameter ./ can be viewed
as the ratio of the turbulent drift velocity v, = ¢£/B to the maximal phase
velocity vy = w,L/2n.

_Numerical simulations [PVMDOBS8] show that the effective diffusion coef-
ficient D =2(D,, + D,,) scales whith o/ as, see fig. 21,

o if of <1,

(9.14) D~
A, f of >1,
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Fig. 21. — Effective diffusion coefficient »s. turbulence amplitude parameter /. Full circles refer

to model 1. in which only the modes with n. m =1, ... N and n? + m* < N? are taken into

account. Full squares refer to model 2. in which n=—-N. ... N, m=0. .., N and
= 3 . L 3 * ¥
No<n-+m~- <N~

which are identified with the quasi-linear and Bohm diffusion regime, respect-
ively [ K84 |. This result does not depend on the form of .#. so that the system
exhibits a quite good «tructural stability».

The power law (5.14) can be obtained with a simple analytical approach by
using some ideas of the closure approximation of turbulence [L73]. Under the
hypothesis that the position of a test charged particle is a Gaussian process
statistically independent of the electric field, it is possible to write a close
equation for {(x(t) — {x(t)>)). The solution of this equation shows the
power law (5.14). The reader can find the details in[PVMDOBSS].

The power law (5.14) can also be obtained with a naive dimensional
analysis. For any fixed time t we can draw the equipotential curves of the
electric field. For time-independent potential the charged particles will move
according to the equipotential curves. However, the latter are oscillating n
time with a frequency . As a consequence, a particle which 18 moving
according to a given equipotential curve has a finite probability of being
«trapped» in a finite time by another equipotential curve. Assuming that the
motion in the two equipotential curves is uncorrelated, reasonable assumption
due to the chaotic nature of the motion, the effective diffusion coetficient can
be obtained as D ~ »3jt, since », is the typical particle velocity on an equi-
potential curve, and t is the typical «permanence» time on an equipotential
curve. Without loosing in generality we can assume v, >~ 1, so that v, = o/. For
the typical time we are left with two possible choices, 7, = 2n/®, and 74 ~ 1/4.
Thus we have DD ~ »3min (14, t4) which yields to D ~ o* for of <1 (19 <T1y)
and D ~ of for o > 1(15 > 1y).

The above result, and the subsequent dimensional analysis, may lead to the
wrong conclusion that things are simple. In fact, here the basic ingredient that
makes the «statisticaly approach meaningful is that there are many k. The
situation is similar to that of fully developed turbulence where there are
excitations on a wide range of scales. However, we know that near the
transition to turbulence, where the number of excited k is small, things are
quite different. In fact if we take few wavesin (5.10) relation (5.14) ceases to be
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law dependence of D on s

ywer
correct and, 1n general, no clear P«

pears [KDB'-]:] h o ortance of the "“mhpp 11‘{- I.II_I‘I‘HHII II]H:]{_.H fill‘
A clear example of t Pr()aih s given by the study of diffusion Propertios
a meaningful s_tatlst.wa.l T,)plell{‘f‘ 1 two-dimensional fluid. In this regime th{'..
near the transion to t.mml;. odes is small, thus the Eulerian field cap be
number tﬂg E}:P;iii{;?:g Nm.iﬂ._m“kps equations. As example we consider the
pepresented Dy U
5'510(188 S‘}Fﬁ:"tem S,tucflh?r(li ;E:Ettfzrg;'e diffusion coetficient i”_ the range ¢ > 8.,
i F lnt-E‘-I‘?ht"f‘- field .in anisotropic, see fig. H‘_ Vi detine two *“ﬁ'usiﬁ;
Sm;:.f? 'tgftSE(lilfllindaizgonal elements of the effective diffusion tensor D)) D a4
coeftici he .

DJ, as
- 1 -
D =lim—(z(t+7)— )
5 =0 &1
(5.15) :
l 2
D =lim—(@yt+1)—y()".
: T— 2T
() over a very long time.

' rerage
where (...) is a temporal a j B ”
Naive arguments could be used to I.Pldt( D, , to the maximum Ly dpunoy
exponents 4. of the Lagrangian motion. By assuming for chaotic motijon
L : ; . . ave I) ik TR
a finite uncorrelation time 7, ~ 1/4,, we have D, y [Tys U.€.

(5.16) X, ¥
assuming that L — the typical distance the particle runs i a time 7, — does
not depend on Re.

A different appraoch makes use of the Kubo formula

(5:17) D.= I:d‘r v (t + T)v; (L) ~ !‘Z‘Ed ~ f‘z,"iL. =&Y,

where we have made the likely choice 74 ~ /4, for the typical correlation
decay time. | i
Numerical computations of D, . however, show that simple relation like
(5.16) or (5.17) between D, , and 4 does not exist. Indeed when & Increases !)I
first decreases and then increases. On the contrary D always mcreases with
¢[FV89], see fig. 22. The above-mentioned statistical arguments. which give
good results for the diffusion of charged particles in a turbulent plasma, are
inadequate in the present situation even on a qualitative level . The origin of
this failure is the fact that when & ~ O (1) the autocorrelation function of # = »,
decays on times much larger than 1/4,. The motion is chaotic. but with
a well-defined structure. The horizontal diffusion for & =2 ¢_ is ruled by the
intervals of regular motion. There is no similarity with the standard diffusion
in the Brownian motion. This case resembles a random walk with « probability
distribution of pausing times between successive steps in the walk [MSS4]
Roughly speaking, here we have the following scenario: regular ballistic nmtmil
in the z-direction for a certain time interval — which diverges as é—¢&
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motion but not necessarily in the same sense of the preceding one, fig. 23. This

implies a strong correlation of v, Which decays on times much larger than 1/4
and hence a large value of D, for &~z

motion, and then ballistic

L:
(see (5.17)].
20: =3 | P S
Ot_ e x
: %
20} B0 4
| “a
—405" 3¢ 3 T oK
: B S L8 et ;
-60 = % 4 2 %—&ﬁi :"“.. I.:t =
; ol 1,..3;__&’::' - e 1
__30.;. =
|

el e N T - R
-500 0 500 1000

Fig. 23. — 5000 positions of a particle driven by the equations of the 5-modes model with
Re — Re; = 1.3, taken every unit of natural time.

5°2. Diffusion in steady velocity fields. — In the above examples the diffu-
sion of impurities was entirely due to Lagrangian chaos. The molecular diffu-
sion played no role. Real fluids, however, always have a (small) degree of
molecular diffusion. For this reason it is interesting to study the opposite
extreme case, i.e. the effect of a small molecular diffusion on simple integrable
Eulerian velocity fields. In the case of two-dimensional velocity fields this
corresponds to time-independent stream funetions. This problem is of interest
in both fluids and plasmas where two-dimensional laminar flow patterns are
encountered as stationary states of driven systems. (lassical examples are the
two-dimensional rolls of the Rayleigh-Bénard problem and the Taylor vortices
in the Couette flow and heat flow in a conveeting fluid.

<o g
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In all these problems each passively convected quantity has itg Sk
molecular diffusion coefficient y in the rest ﬁ‘am(f “f. the tluid. ']]!(1 relevan;
| the relative importance of advectioy,

dimensionless parameter \tx'hlch
over molecular diffusion is the

measures
Peclet num ber

p VL
e = ..
(5.18) y

where V is the typical velocity of the flow. L the typical length of the
‘ the vortex cell, and y the molecular diffusjoy

convective flow, e.g. the size of
coefficient of the medium. The Peclet number can also I’f understood as the
ratio of the convection time L/V over the diffusion time L~/y across a distance

L.

The physical interesting case is when the convective transport exceeds
substantially the diffusion transport, i.e. for large Peclet numbers. In thic
context we shall analyse a widely studied two-dimensional convective velocity
field given by the projection of the ABC flow with €' =0 on the (x, y)-plane

(5.19) u=(Bcosy, Asnux),
Y = A cos x + B siny.
A| = | B| models the Rayleigh-Bénard con-
1 h}' lines (Separatrices)

whose stream function reads

The qualitative behaviour for
vection, as the phase consists of square cells separatec
where the rotation time diverges, see fig. 24a). It 1s clear that dispersion of
a passive impurity on large scale is impossible without the molecular diffusion
that allows the jumping among different rolls. For a large Peclet number the
effective diffusion coefficient has been found — theoretically [P85, S87.

RBDHS87] and experimentally [SG88b] — to scale as

1/2

(5.20) D..~ ;Jnge-”2 ~

v

0 50 100, 0O 50 100 _

Fig. 24. - Structure of the separatrices of eq. (5.3), for th gy e
L] - ' s l . " ‘. : ‘.- ‘-'Il .H -
B=1; case b) with 4 =—13, B=1. R SR, S omse . 4) W with 4

l
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D;; is thus much larger than x for
is the following. In the v
component of the
mechanism of tra
Therefore the onl

r—0. A simple way of understanding (5.20)
icinity of the separatrix between two rolls the
flow perpendicular to the separatrix vanishes, and the only
nsport from one roll to another is by molecular diffusion.
y particles which can leave the roll, and hence contribute to
transport, are those ot too far from the boundary. All the others have not
enough time to diffuse through the separatrix. As a consequence, the

s entirely due to particles in a layer of width & near
scenario allows us

transport

the separatrix. This
to estimate D by simply noting that the particles close to the
separatrices perform a random walk with diffusion coefficient ~ L*/t. where

Tt = L/V. The fraction of particles in the «ctives layer is ~ é/L. so that the
effective diffusion coefficient is ) ~ (6/L) (L*/t). The width & depends on the
molecular ditfusion, and is roughly given by 6% ~ yt. This immediately leads to
the conclusion that the effective diffusion coefficient scales as ) ~ yPe'’?. This
result can be obtained in a more rigorous way, the interested reader is referred
to reterences.

When | 4| # | B|, narrow channels arise among the convective cells. in
a direction which depends on the relative magnitude of | 4| and | B|. see
fig. 24b). The motion of test particles inside a channel appears to be ballistie
and this enormously enhances the transport along the channel direction. The
process is strongly anisotropic and can be regarded as due to long runs in the
channel interrupted by trapping periods inside the rolls. It is useful to intro-
duce two effective diffusion coetficients, D, along the channels direction and

D, along the direction transversal to the channels. In the limit of small
molecular diffusion one has[(!S89. CFPV90a

L %=1 r -1
pIAI=1BIPZ™"  and D o V14| - |B]|" g

(5.21) D-.l oC

As In the case | 4| =|B], (

2.21) can be derived by simple arguments. Without
losing 1n generality,

by a suitable choice of length and time units. we have
L=0(1) and VV=0(1) so that we can set B=1 and 4 = — (1 +9). In the
following our dimensional arguments neglect multiplicative factors O (1), such
as L and V. The stream function becomes Y = sin y — (1 + d)cos x. which for
0 = 0 describes convection cells of width 2r, where in the absence of a noise
term the motion of a test particle is always periodic. The separatrices are the
lines where the stream function is zero (for d =0) and they cross at the
unstable hyperbolic fixed points of the flow. When 6 > 0 the border lines
between cells do not coincide and there appear channels along the y-direction.
see fig. 24. By simple perturbative calculations one finds that for small & the
width ot a channel is ~ §, although the maximum distance between the
separatrices increases up to ~ 3'* near the unstable fixed points. Note that
0 < 0 corresponds to channels along the x-axis. The motion of a particle inside
the channels, neglecting molecular diffusion. is ballistic and the velocity field
changes sign between neighbour channels. For small y, a test particle can jump
into a channel, because of molecular diffusion. Then, one has a ballistic motion
inside the channel with velocity V_~ O(1) either in the up or in the down
y-direction stopped by a capture from a cell after a time T_ ~ */%. and so on.
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[d’llﬂ consider the case for which
<] T::/Tr» 1.

~ VIL~ 0(1). This dimensional estimate of tj,

. : te the effective diffusivis..
diffusi imes in the channels allows to compu o Xauy
mr?:hti:eh in these coordinates is diagonal }wth D, =D and D = D,,
The typical length of a run along a channel 18

(5.22) A Ve~ 6%/

The probability p to find a particle in a channel is proportional to its widt}
~ &, and thus we obtain

e L 5

since the circulation time T,

& A’

-——m__

Dfl""prp ¥

(5.23)

On the other hand, the transport in the r-direction can _I)e described as
a random walk where the time step is 7' and the length step is the cell width

~ 27n. This leads to

(5.24)

so that

Dy ~5.

(5.25)

These argument-s are valid Oﬂly in the limit of large Tc/Tr* B\ this we mean
that the time spent in the channels should be large with respect to the
circulation time 7', ie. y <« 0*. When T /T, becomes smaller than unity,
a particle has not enough time to perform a significant run along a channel
between two successive trappings. Practically the transport process can be
described as if there were no channels. In this limit, y—0, 6 — 0. with
T /T, ~ 1, the anisotropy disappears and one recovers the | 4| = |/ scaling
(5.20)
(5.26)

~ The agreement with the numerical data is very good for D, but onlv fair
for D, see fig. 25 and 26. This because the above scaling argument- o not
- consider the additional linear term in ¥ due to the bare molecular diffu-in. We
- stress that in spite of the apparently @nomalous» diffusion process — 1o runs
LR ed by trappings — the kurtosis tends to the Gaussian value 5 -0 that
ik e atwailand 2 Gaussion.

D, ~ D, «c (VL)'24' 12
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ok 13% m . A g h“ e 18 similar to the one discussed for the truncated
ST e conlin e e b e mﬂﬂ}. IThene the qjumping» was due to the Lagrangian

wr diffusion. However, the physical mechanisms
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symbols refer to d = |4| —|B| =030 (+). 0.15 (%), 0.075 (U). The numerical errors bars are
comparable with the symbols size.

which rule the diffusion is the same. The tracer is trapped for long times in
a small limited region of space and then escapes along ballistic channels until
a subsequent trap. Indeed, the qualitative behaviour of the effective diffusion
coefficient is found to be the same as the one given by the Langevin equation:
the longitudinal diffusion coefficient diverges approaching ¢_, as Dyoc(e—2e) %
while the transversal diffusion coefficient vanishes as D 1 (& —¢)", with
ax1/2. In a rough way, eq. (5.1) with an integrable velocity field can be
regarded as a crude approximation of a Lagrangian chaotic system deseribed
by eq. (5.3). In this sense, the perturbation strength (e — ¢_)* plays the role of
the noise variance y. |

The above analysis was performed for two-dimensional systems, however it
is easy to realize that similar behaviours may be also found in three-dimen-
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dimensional steady space-periodic flows with Lagrangian chaos. ‘Iil‘nﬂdneﬁ
the regular trajectories along ballistic directions which appear in generic three-
dimensional chaotic flows. For instance, fig. 27 shows the positions of 1000

particles, which are initially uniformly distributed in the cube (0.21) x (0;21:} & |

x (0.2m), after a time { = 10000 for the full three-dimensional ABC flow with
parameters 4 = 1.15, B=1, €' = 0.1. One sees that some particles (spots very
far from the origin) have run ballistic trajectories. This provides evidence that,
for every initial condition, Lagrangian chaos without molecular diffusion is not
sufficient to disperse a contaminant in three-dimensional steady velocity fields,
such as those describing convection roll structures. On the contrary, without
a molecular diffusion mechanism. the dispersion of contaminants is obtained

for all initial conditions only when veloeity fields are time dependent, both in
two and thre dimensions, :
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Fig. 27. — The positions in the (z. y)-plane of 1000 particles. initially in a cube of side 2n at the

origin of the axes, after they evolved for 10000 units of time according to the 3d ABC flow. with

parameters A =115, B=10 and C =0.1.

8'3. Diffusion of particles denser than the flurd. — In the cases studied up to
now the particles have the same density of the fluid, i.e. they are «luid
particles». We conclude this section by considering the diffusion properties of
particles whose density differs from the fluid density [CFPrV90]. The interest-
ing result is that in this case chaotic behaviour and standard diffusion proper-
ties may be observed also for velocity fields for which the «fluid particless
follow regular orbits, without undergoing any diffusion process, i.c. for regular
~ solution of (5.3). Since this behaviour is generated by the density difference
. between the passive test particles and the fluid particles, this type of diffusion
~ has been called «nertial diffusions. There exist few studies of the chaotic =~
~ behaviour of these systems[YGO90, WBS90. WBS911], which however domot oo

~ consider the diffusion properties. s

Wl

.~ The starting point for the study of chaotic advection was (5.3). h%
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