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STATISTICAL	  MECHANICS	  OF	  FRICTIONAL	  
ATHERMAL	  SYSTEMS	  ?	  	  

Edwards	  	  
All	  packings	  where	  grains	  occupy	  the	  

same	  volume	  are	  equiprobable	  	  
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Z
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Fric%onal	  grains:	  change	  of	  configura%ons	  
due	  to	  ‘’extensive	  opera%ons’’	  
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TEST	  OF	  EDWARDS	  ASSUMPTION	  

Energy	  injec%on	  through	  ver%cal	  
vibra%on	  of	  the	  box	  (tapping)	  
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Edwards’ Measures for Powders and Glasses
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Can one construct a thermodynamics for compact, slowly moving powders and grains? A few years
ago, Edwards proposed a possible step in this direction, raising the fascinating perspective that such
systems have a statistical mechanics of their own, different from that of Maxwell, Boltzmann, and Gibbs,
allowing us to have some information while still ignoring dynamic details. Recent developments in the
theory of glasses have come to confirm these ideas within mean field. In order to go beyond, we explicitly
generate Edwards’ measure in a 3D model. Comparison of the results with the irreversible compaction
data shows very good agreement. The present framework immediately suggests new experimental checks.

PACS numbers: 05.70.Ln, 05.20.–y, 45.70.Cc, 64.70.Pf

The classical way to go from the microscopic dynam-
ics to statistical mechanics proceeds in two steps: one first
identifies a distribution that is left invariant by the dynam-
ics (e.g., the microcanonical ensemble), and then assumes
that this distribution will be reached by the system, under
suitable conditions of “ergodicity.” For granular systems
this approach seems doomed from the outset: because en-
ergy is lost through internal friction, and gained by a non-
thermal source such as tapping or shearing, the dynamical
equations do not leave the microcanonical or any other
known ensemble invariant. Moreover, the compaction dy-
namics is extremely slow and does not approach any sta-
tionary state on experimental time scales. This raises the
question of characterizing the typical configurations or the
region of phase space visited dynamically.

The proposal of Edwards and collaborators [1–3] is to
use an alternative distribution for very gently vibrated or
sheared granular systems, with the static situation as a lim-
iting case. It may be summarized as follows: given a cer-
tain situation attained dynamically, physical observables
are obtained by averaging over the usual equilibrium dis-
tribution at the corresponding volume, energy, etc., but re-
stricting the sum to the “blocked” configurations defined
as those in which every grain is unable to move. This
definition leads immediately to an entropy (in the glass
literature a “complexity”) Sedw, given by the logarithm of
the number of blocked configurations of given volume, en-
ergy, etc., and its corresponding density sedw ! Sedw"N .
Associated with this entropy are the state variables such
as “compactivity” X21

edw ! ≠
≠V Sedw#V $ and “temperature”

T21
edw ! ≠

≠E Sedw#E$.
That configurations with low mobility should be relevant

in a jammed situation is rather obvious; the strong assump-
tion here is that, apart from the usual statistical weights,
all blocked configurations are treated as equivalent—any
extra weight of dynamical origin that might distinguish
them is disregarded. The purpose of this Letter is to argue

that this “flatness” assumption characterizing Edwards’
distributions is neither capricious (it leads to correct pre-
dictions for the compaction dynamics of a given class of
systems) nor obvious (it does not apply to other classes
of systems). To do this we devise a method to count the
blocked configurations and compute averages over them.

Let us briefly summarize the state of the art. A first clue
comes from exploiting the analogy between the settling
of grains and powders, as when we gently tap a jar with
flour to make space for more, and the aging of glassy
systems [4–6]: in both cases, the system remains out of
equilibrium on all accessible time scales, and displays very
slow relaxations.

In the late 1980s, Kirkpatrick et al. [7,8] recognized
that a class of mean-field models contains, although in
a rather schematic way, the essentials of glassy phe-
nomena. When the aging dynamics of these systems
was solved analytically, a feature that emerged was the
existence of a temperature Tdyn for all the slow modes
(corresponding to structural rearrangements) [9,10]. For
our purposes here, Tdyn can be defined by comparing the
random diffusion and the mobility between two widely
separated times t and tw of any particle or tracer in the
aging glass. Surprisingly, one finds in all cases an Einstein
relation %###r#t$ 2 r#tw$$$$2& ! Tdyn

d%r#t$2r#tw $&
df , where r is

the position of the particle and f is a constant perturbing
field. While in an equilibrium system the fluctuation-
dissipation theorem guarantees that the role of Tdyn is
played by the thermodynamic temperature, the appearance
of such a quantity out of equilibrium is by no means
obvious. Tdyn is different from the external temperature,
but it can be shown to have all other properties defining a
true temperature [10].

As it turned out, despite its very different origin, this
temperature matches exactly Edwards’ ideas: Tedw and
Tdyn happen to coincide for mean-field glass models aging
in contact with an almost zero temperature bath [11–15].
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Possible Test of the Thermodynamic Approach to Granular Media
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We study the steady state distribution of the energy of the Sherrington-Kirkpatrick model driven by a
tapping mechanism which mimics the mechanically driven dynamics of granular media. The dynamics
consists of two phases: a zero temperature relaxation phase which leads the system to a metastable state,
then a tapping which excites the system thus reactivating the relaxational dynamics. Numerically, we
investigate whether the distribution of the energies of the blocked states obtained agrees with a simple
canonical form of the Edwards measure. It is found that this canonical measure is in good agreement
with the dynamically measured energy distribution. A possible experimental test of the Edwards
measure based on the study here is proposed.

DOI: 10.1103/PhysRevLett.90.198301 PACS numbers: 81.05.Rm, 05.20.–y, 75.10.Nr

Complex systems such as granular media possess a
large number of metastable or blocked configurations.
When a granular medium is shaken, it quickly relaxes
into a blocked configuration, a subsequent shake or tap
will lead it to another blocked or jammed state, and so on.
If the driving mechanism is held constant, one expects
the system to enter into a quasiequilibrium stationary
state. Various driving mechanisms can be investigated
experimentally, such as vertical tapping [1] and horizon-
tal shaking [2]. In granular media and other complex
systems such as spin glasses, the entropy of these blocked
states is extensive in the system size. Hence, it has been
proposed that one may use a thermodynamic measure
over blocked states to describe this steady state. The
simplest proposition is that the system is characterized
by a number of quantities which are fixed on average, and
then the measure on the steady state is obtained from the
maximum entropy state (on blocked states) with the
relevant macroscopic quantities fixed [3]. This simple
idea has recently been investigated in a wide range of
systems and has been shown to be relatively successful.
Various tests of the applicability of these thermodynamic
ideas have been carried out and, although some confir-
mation has been made in more realistic sheared granular
systems [4], most work has been carried out on simpler
model systems which one hopes capture the basic physics
of granular media. The Edwards flat measure has been
shown to be of predictive value in some simple one-
dimensional lattice models [5,6], but there are clearly
examples where the approach fails [7]. However, recently
it was shown that more sophisticated versions of the
Edwards measure introducing ensembles with several
quantities fixed on average can remedy the deficiencies
of the basic measure in these cases [8]. Other toy models
that have been analyzed are lattice based models with
kinetic constraints in higher dimensions [9,10] and also
spin glass models [11] where nonthermal driving is used
to move the system between blocked states.

Even if it is not expected to be exact, many systems
may be described to a good engineering level by these
measures. Given the difficulty of the analysis of the
highly nonlocal dynamics in these systems, this is an
important step toward understanding their steady state
regimes. There is no clear ergodicity in these systems and
no detailed balance as in usual statistical mechanics.
Edwards argued that a system might conceivably explore
blocked configurations in a flat manner if the driving
involved extensive manipulations, meaning the displace-
ment of a macroscopic number of particles, for example,
shaking, stirring, or pouring granular media. An inter-
esting consequence of the applicability of thermody-
namic ideas is that one may describe phase transitions
in these driven systems [12]. However, even considering
the success of the Edwards measure in describing various
simple models, evidence in realistic granular media is
still lacking. In this Letter, we investigate whether, at a
fixed tapping rate (to be defined later), the states explored
dynamically obey a form of Boltzmann distribution. The
results presented here are quite striking; despite a lack of
detailed balance we shall see that a Boltzmann distribu-
tion excellently describes the histogram of the energies of
the blocked states visited during the tapping. Motivated
by these results, we propose a generic and simple experi-
mental test of the Edwards measure, which should be
feasible in a wide range of driven granular systems.

As mentioned above, a good theoretical and numerical
testing ground for this thermodynamic approach to
granular media are spin glasses. The definition of a
blocked state in a spin glass simulated on a computer
depends, of course, on the local dynamics. Under single
spin flip dynamics, a metastable state is one where flip-
ping any single spin increases the energy; it is thus a
blocked state under any single spin flip Monte Carlo
dynamics. Various spin glass models have been studied
to explore the accuracy of the Edwards measure as a
function of the relaxational dynamics and the tapping
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Abstract

We consider a Statistical Mechanics approach to granular systems by following the original
ideas developed by Edwards. We use the concept of “inherent states”, de!ned as the stable
con!gurations in the potential energy landscape, introduced in the context of glasses. Under
simplifying assumptions, the equilibrium inherent states can be characterized by a con!gura-
tional temperature, 1=!. We link ! to Edwards’ compactivity and address the problem of its
experimental measure. We also discuss the possibility to describe the time dependent distribu-
tion probability in the inherent states with an appropriate master equation. c© 2001 Published
by Elsevier Science B.V.

1. Introduction

The possibility to describe general features in the physics of granular media with
the concepts of Statistical Mechanics was suggested few years ago by Edwards [1–
3]. As much as systems of standard Statistical Mechanics, each macroscopic state of
a granular medium corresponds to a huge number of microstates. Furthermore, these
systems show very general reproducible macroscopic behaviors characterized by a few
control parameters [4,5]. In granular media, however, in the absence of some external
driving, the microstates are “frozen”, i.e., they do not evolve in time as thermal energy
is negligible compared to gravitational energy. Therefore, the external thermal bath can
be considered at zero temperature. Thermal motion of grains can be replaced, instead,
by agitation induced by shaking or another form of driving, which may generate dy-
namics among “frozen” microstates. In fact, granular systems are just one example of a
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Number	  of	  blocked	  structures	  in	  fric%onal	  
granular	  assemblies	  at	  given	  Volume	  

Number	  of	  energy	  minima	  in	  
models	  of	  glasses	  at	  given	  Energy	  

log[Nminima(E)] ⇠ N
log[N

blocked

(V )] ⇠ N

AMORPHOUS	  PACKINGS	  &	  GLASSES	  



TEST	  OF	  EDWARDS	  IN	  ISING	  MODEL	  

2)	  Quench	  at	  T=0:	  only	  spin	  flips	  which	  lower	  the	  
energy	  are	  allowed	  

1)	  Hea%ng:	  all	  spins	  are	  flipped	  with	  probability	  	  

Hea%ng	   Quench	  T=0	   Hea%ng	   Quench	  T=0	  

E1 E2

TAPPING	  DYNAMICS	  

p

p 2 [0, 1/2[

Average	  over	  states	  
colled	  via	  tapping	  

dynamics	  

‘’BLOCKED	  CONFIGURATIONS’’	   Energy	  cannot	  be	  lowered	  with	  a	  single	  spin	  flip	  
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X

i

O(Ci) �(E � Ei))
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A.	  Lefèvre	  &	  D.	  Dean,	  J.	  Phys.	  A:	  Math.	  Gen.	  34	  (2001)	  	  



TEST	  OF	  EDWARDS	  IN	  ISING	  MODEL	  
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2)	  Quench	  at	  T=0:	  only	  spin	  flips	  which	  lower	  the	  
energy	  are	  allowed	  

1)	  Hea%ng:	  all	  spins	  are	  flipped	  with	  probability	  	  

TAPPING	  DYNAMICS	  

p

p 2 [0, 1/2[

‘’BLOCKED	  CONFIGURATIONS’’	   Energy	  cannot	  be	  lowered	  with	  a	  single	  spin	  flip	  
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TEST	  OF	  EDWARDS	  IN	  ISING	  MODEL	  

Hea%ng	   Quench	  T=0	   Hea%ng	   Quench	  T=0	  
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2)	  Quench	  at	  T=0:	  only	  spin	  flips	  which	  lower	  the	  
energy	  are	  allowed	  

1)	  Hea%ng:	  all	  spins	  are	  flipped	  with	  probability	  	  

TAPPING	  DYNAMICS	  
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A.	  Lefèvre	  &	  D.	  Dean,	  J.	  Phys.	  A:	  Math.	  Gen.	  34	  (2001)	  	  
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-‐	  Same	  test	  on	  a	  different	  1D	  spin	  model	  (Friedrickson-‐Andersen)	  

-‐	  Disagreement	  between	  dynamical	  averages	  and	  Edwards	  effec8ve	  theory	  



HARMONIC	  CHAIN	  WITH	  DRY	  FRICTION	  

-‐	  DEFINITION	  OF	  THE	  MODEL	  

-‐	  TAPPING	  DYNAMICS	  

-‐	  BLOCKED	  CONFIGURATIONS	  

-‐	  RELEVANT	  OBSERVABLES	  

-‐	  DEFINITION	  OF	  THE	  EFFECTIVE	  THEORY	  

-‐	  PREDICTIONS	  EFFECTIVE	  THEORY	  

-‐	  COMPARISON	  BETWEEN	  	  EFFECTIVE	  THEORY	  AND	  
DRIVEN	  ATHERMAL	  DYNAMICS	  

True 
Dynamics 

Effective 
Thermodynamics 



HARMONIC	  CHAIN	  WITH	  DRY	  (Coulomb)	  FRICTION	  

-‐Equa%ons	  of	  mo%on	  (dynamic	  fric%on)	  

|(xi+1 + xi�1 � 2xi + F (t))| > µ mg

-‐Condi%on	  to	  start	  moving	  (sta%c	  fric%on)	  

Dynamic	  fric%on:	  energy	  dissipa8on	   External	  Force:	  energy	  gain	  

m ẍi = �mgµd sgn(ẋi) + (xi+1 + xi�1 � 2xi) + Fi(t)

ẋi

mgµd

dynamic	  fric%on	  coefficient	  
sta%c	  fric%on	  coefficient	   Harmonic	  springs	  

µd = 0.5
µ = 0.6

ẋi = 0



TAPPING	  DYNAMICS	  

1)	  External	  force	  switched	  on	  for	  a	  fixed	  dura%on	  τ:	  energy	  injec%on	  

m ẍi = �mgµd sgn(ẋi) + (xi+1 + xi�1 � 2xi) + F ni

2)	  External	  force	  switched	  off:	  relaxa%on	  to	  mechanically	  stable	  (blocked)	  
configura%on,	  all	  par%cles	  are	  at	  rest	  

m ẍi = �mgµd sgn(ẋi) + (xi+1 + xi�1 � 2xi)

⇠i = xi � xi�1 � `0

p(ni) = (1� ⇢) �(ni) + ⇢ �(1� ni)

e =
1

N

NX

i=1

⇠2i
2

Annealed	  disorder:	  for	  each	  ‘’tap’’	  the	  par%cles	  pulled	  are	  different	  

Energy	  of	  the	  mechanically	  
stable	  configura%ons	  

Spring	  elonga%on	  
|xi+1 + xi�1 � 2xi| < µmg

Dynamics	  is	  arrested	  

ẋi = 0 8i



Hea%ng	   Quench	   Hea%ng	   Quench	  

HARMONIC	  CHAIN	  WITH	  DRY	  (Coulomb)	  FRICTION	  

Amer	  few	  cycles	  the	  energy	  of	  blocked	  configura%ons	  
fluctuates	  around	  a	  sta%onary	  value	  

F > 0 F = 0

Blocked	  configura%on	   Blocked	  configura%on	  
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SPRING-‐SPRING	  CORRELATION	  	  
(IN	  MECHANICALLY	  STABLE	  CONFIGURATIONS)	  

h⇠m⇠niemp,F Spring-‐spring	  correla%on	  	  
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Extent	  of	  correla%on	  between	  springs	  grows	  
as	  the	  energy	  stored	  by	  the	  springs	  
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⇢ = 1.0 Linear	  increase	  of	  correla%on	  length	  for	  all	  
the	  ‘’tapping’’	  dynamics	  we	  used	  

h⇠m⇠ni ⇠ C(|n�m|/`(e))

`(e) ⇠ e

 0

 5

 10

 15

 20

 25

 30

 0.04  0.1  0.16  0.22

h

e

`

e



‘’Given	  a	  certain	  situa%on	  akained	  dynamically,	  physical	  observables	  are	  obtained	  by	  
averaging	  over	  the	  usual	  equilibrium	  distribu.on	  at	  the	  corresponding	  volume,	  energy,	  
etc.	  but	  restric%ng	  the	  sum	  to	  ‘blocked’	  configura%ons.’’	  	  	  

EFFECTIVE	  THERMODYNAMICS	  ‘’Á	  LA	  EDWARDS’’	  	  

E[⇠] =
NX

i=1

⇠2i
2

Z =

Z
D⇠ e��EdE[⇠] �[F(⇠)� 1]

�Ed =


@S

@E

�

F(⇠)=1

Mechanical	  stability	  

Otherwise	  

F(⇠) = 1

F(⇠) = 0

⇠ = {⇠1, . . . , ⇠N} Springs	  elonga%ons	  

(Barrat,	  Kurchan,	  Loreto,	  Selliko)	  



EFFECTIVE	  THERMODYNAMICS	  ‘’Á	  LA	  EDWARDS’’	  	  
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‘’THERMODYNAMIC’’	  POTENTIALS	  	  
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‘’THERMODYNAMIC’’	  POTENTIALS	  	  

T (x, y) 2 L

2
(X x Y )

Z = Tr[T N ]

Hilbert-‐Schmidt	  integral	  operator	  	  
maximum	  isolated	  eigenvalue	  
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‘’THERMODYNAMIC’’	  POTENTIALS	  	  
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The	  operator	  (real,	  symmetric	  kernel)	  has	  an	  orthonormal	  basis	  
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SPRING-‐SPRING	  CORRELATION	  FUNCTION	  
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The	  operator	  (real,	  symmetric	  kernel)	  has	  an	  orthonormal	  basis	  
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CORRELATION	  FUNCTION	  
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DRIVEN	  ATHERMAL	  
DYNAMICS	  

EFFECTIVE	  
THERMODYNAMICS	  
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Hea%ng	   Quench	   Hea%ng	   Quench	  

Blocked	  configura%on	   Blocked	  configura%on	  

EDWARDS	  PARAMETER	  =	  DISSIPATED	  ENERGY	  

Driving	  Cycle	  =	  D.C.	  
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EFFECTIVE	  
THERMODYNAMICS	  
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CONCLUSIONS	  

-‐	  We	  presented	  a	  1D	  model	  where	  the	  effec%ve	  thermodynamics	  ‘’	  à	  la’’	  
Edwards	  works	  preky	  well	  

-‐	  The	  model	  is	  simple	  and	  realis%c:	  	  1)‘’blocked’’	  configura%ons	  are	  truly	  
mechanically	  stable	  configura%ons;	  2)	  Dry	  fric%on;	  3)	  Dynamics	  is	  realis%c	  

-‐	  The	  effec%ve	  theory	  can	  be	  solved	  exactly	  by	  transfer	  operators	  

-‐	  The	  Edwards	  parameter	  TEd	  	  has	  a	  clear	  physical	  interpreta%on:	  
the	  energy	  dissipated	  in	  a	  driving	  cycle	  	  

-‐	  What	  happens	  in	  D=2?	  	  

PERSPECTIVES	  

-‐  Diagonaliza%on	  of	  (ML	  x	  ML)	  matrices:	  GPU	  	  
-‐  M	  >>	  1,	  discre%za%on	  of	  con%nuous	  variable	  


