Microscopic theory for negative differential mobility in crowded environments

Alessandro Sarracino

in collaboration with O. Bénichou, P. Illien, G. Oshanin, R. Voituriez

Phys. Rev. Lett. 113, 268002 (2014)

Outline of the talk

Introduction on negative differential mobility (NDM)

The model: driven tracer in a lattice gas (ASEP in a sea of SEPs)

Physical argument for NDM at low density

➢General expression for the force-velocity relation

Analytical solution and the decoupling approximation

Criterion for NDM in the parameter space

▶ Transition rates out of equilibrium

NDM and fluctuation-dissipation relations

Conclusions and perspectives

Passive and active microrheology

Rheological properties in soft matter from the microscopic motion of colloidal tracers

Puertas & Voigtmann (2014), Squires & Mason (2010)

Passive: probes freely diffusing in the host medium due to thermal fluctuations Stokes-Einstein relation $D = \frac{k_B T}{6\pi na}$ Extension to the case where the probe size is comparable to the interaction length scales relevant for the host Active: tracer particle (TP) driven by an C ext external force F (pulling with a constant force, or dragging at constant velocity) Linear response connects active and passive microrheology ► Extensions to the non-linear response regime $F \gg \frac{k_B T}{a} \approx pN$

Passive and active microrheology

Rheological properties in soft matter from the microscopic motion of colloidal tracers

Puertas & Voigtmann (2014), Squires & Mason (2010)

Passive: probes freely diffusing in the host medium due to thermal fluctuations Stokes-Einstein relation $D = \frac{k_B T}{6\pi na}$ Extension to the case where the probe size is comparable to the interaction length scales relevant for the host Active: tracer particle (TP) driven by an external force F (pulling with a constant force, or dragging at constant velocity) Linear response connects active and passive microrheology ► Extensions to the non-linear response regime $F \gg \frac{k_B T}{a} \approx pN$

Applications: complex fluids, gels, glasses, living cells, granular systems,... Experimental techniques: optical and magnetic tweezers, Janus particles, etc...

Negative differential mobility

Tracer particle (TP) driven by an external force F in a host medium

The differential mobility $\mu(F) = \left. \frac{\delta V}{\delta F} \right|_F$ measures how the

velocity increases with changing $F \to F + dF$

Negative differential mobility

Tracer particle (TP) driven by an external force F in a host medium

The differential mobility $\mu(F) = \left. \frac{\delta V}{\delta F} \right|_F$ measures how the

velocity increases with changing $F \to F + dF$

At equilibrium, Einstein relation

$$\mu(F=0) = \beta D(F=0)$$

Negative differential mobility

Tracer particle (TP) driven by an external force F in a host medium

The differential mobility $\mu(F) = \left. \frac{\delta V}{\delta F} \right|_F$ measures how the

velocity increases with changing $F \to F + dF$

At equilibrium, Einstein relation

$$\mu(F=0) = \beta D(F=0)$$

Nonlinear response regime: increasing the applied force can reduce the probe's drift velocity in the force direction $\mu(F) \leq 0$

"Getting more from pushing less"

(Zia et al. Am. J. Phys. 2002)

Driven tracer in a hard-core lattice gas

General many-particle interacting system, analytically tractable

(N-1) hard-core particles, symmetric exclusion process, average waiting time τ^* Tracer driven by a force Fasymmetric exclusion process, average waiting time τ

Driven tracer in a hard-core lattice gas

General many-particle interacting system, analytically tractable

(N-1) hard-core particles, symmetric exclusion process, average waiting time τ^* Tracer driven by a force Fasymmetric exclusion process, average waiting time τ

 p_{ν}

Tracer jump probabilities

$$= \frac{e^{(\beta/2)\boldsymbol{F}\cdot\boldsymbol{e}_{\nu}}}{\sum_{\mu} e^{(\beta/2)\boldsymbol{F}\cdot\boldsymbol{e}_{\mu}}}$$

$$\nu = \pm 1, \dots, \pm d$$
 $F = F e_1$

Local detailed balance

$$\frac{p_1}{p_{-1}} = e^{\beta F}$$

LDB does not determine univocally the transition rates

Force-velocity relation in a hard-core lattice gas

- Study of the force-velocity relation V(F) and NDM phenomenon
- Previous results in specific cases:
- Fixed obstacles (Lorentz gas)

 $\tau^*/\tau = \infty$ analytic results at low density Leitmann & Franosch PRL 2013

Mobile obstacles

 $\tau^*/\tau < \infty, \rho = 0.2$

numerical analysis Basu & Maes J. Phys. A 2014

Force-velocity relation in a hard-core lattice gas

- Study of the force-velocity relation V(F) and NDM phenomenon
- Previous results in specific cases:
- Fixed obstacles (Lorentz gas)

 $\tau^*/\tau = \infty$ analytic results at low density Leitmann & Franosch PRL 2013

Mobile obstacles

 $\tau^*/\tau < \infty, \rho = 0.2$

numerical analysis Basu & Maes J. Phys. A 2014

General description in all regimes?

Role of density and time scales ratio? Physical mechanism?

Strong external force $\epsilon = 2e^{-\beta F/2} \ll 1$

Bénichou et al. PRL 2014

$$p_1 = 1 - \epsilon$$
 $p_{-1} = O(\epsilon^2)$ $p_{\mu \neq \pm 1} = \frac{\epsilon}{2d - 2}$

Force-velocity relation: $V(F) = \frac{\text{mean distance}}{\text{mean time of free flight} + \text{mean trapping time}}$

Bénichou et al. PRL 2014

Strong external force $\epsilon = 2e^{-\beta F/2} \ll 1$ $p_1 = 1 - \epsilon$ $p_{-1} = O(\epsilon^2)$ $p_{\mu \neq \pm 1} = \frac{\epsilon}{2d - 2}$

Force-velocity relation: $V(F) = \frac{\text{mean distance}}{\text{mean time of free flight} + \text{mean trapping time}}$

Mean distance between two obstacles $1/\rho$

Mean duration of free flight $\tau/[
ho(1-\epsilon)]$

Strong external force $\epsilon = 2e^{-\beta F/2} \ll 1$

Bénichou et al. PRL 2014

$$p_1 = 1 - \epsilon$$
 $p_{-1} = O(\epsilon^2)$ $p_{\mu \neq \pm 1} = \frac{\epsilon}{2d - 2}$

Force-velocity relation: $V(F) = \frac{\text{mean distance}}{\text{mean time of free flight} + \text{mean trapping time}}$

Mean distance between two obstacles $1/\rho$

Mean duration of free flight $\tau/|\rho(1-\epsilon)|$

$$1/\tau_{\rm trap} = 3/(4\tau^*) + \epsilon/\tau$$

away

obstacle steps tracer steps in a transverse direction

$$V(F) = \frac{1-\epsilon}{\tau + 4\rho(1-\epsilon)\frac{\tau^*}{3+4\epsilon\tau^*/\tau}}$$

Criterion for NDM $\tau^* \gtrsim \tau/\sqrt{\rho}$

0.9

0.6

0.5

V(F)

increases the escape time from traps created by surrounding obstacles

NDM

 $\tau^*=1$

For τ^* large enough ("slow" obstacles), traps are sufficiently long lived to slow down the TP when F is increased

Master equation of the driven lattice gas

Master Equation for $P(\mathbf{R}_{TP}, \eta; t)$ \mathbf{R}_{TP} tracer position η obstacle configuration

$$\partial_{t} P(\mathbf{R}_{TP}, \eta; t) = \frac{1}{2d\tau^{*}} \sum_{\mu=1}^{T} \sum_{\mathbf{r} \neq \mathbf{R}_{TP} - \mathbf{e}_{\mu}, \mathbf{R}_{TP}} [P(\mathbf{R}_{TP}, \eta^{\mathbf{r}, \mu}; t) - P(\mathbf{R}_{TP}, \eta; t)] \\ + \frac{1}{\tau} \sum_{\mu=1}^{d} p_{\mu} \{ [1 - \eta(\mathbf{R}_{TP})] P(\mathbf{R}_{TP} - \mathbf{e}_{\mu}, \eta; t) \\ - [1 - \eta(\mathbf{R}_{TP} + \mathbf{e}_{\mu})] P(\mathbf{R}_{TP}, \eta; t) \}$$

Master equation of the driven lattice gas

Master Equation for $P(\boldsymbol{R}_{TP},\eta;t)$ \boldsymbol{R}_{TP} tracer position η obstacle configuration

$$\partial_{t} P(\mathbf{R}_{TP}, \eta; t) = \frac{1}{2d\tau^{*}} \sum_{\mu=1} \sum_{\mathbf{r} \neq \mathbf{R}_{TP} - \mathbf{e}_{\mu}, \mathbf{R}_{TP}} [P(\mathbf{R}_{TP}, \eta^{\mathbf{r}, \mu}; t) - P(\mathbf{R}_{TP}, \eta; t)] \\ + \frac{1}{\tau} \sum_{\mu=1}^{d} p_{\mu} \{ [1 - \eta(\mathbf{R}_{TP})] P(\mathbf{R}_{TP} - \mathbf{e}_{\mu}, \eta; t) \\ - [1 - \eta(\mathbf{R}_{TP} + \mathbf{e}_{\mu})] P(\mathbf{R}_{TP}, \eta; t) \}$$

Tracer velocity
$$V(F) \equiv \frac{d\langle \mathbf{R}_{TP} \cdot \mathbf{e}_1 \rangle}{dt} = \frac{1}{2d\tau^*} (A_1 - A_{-1})$$

$$A_{\nu} \equiv 1 + \frac{2d\tau^*}{\tau} p_{\nu} (1 - k(\mathbf{e}_{\nu}))$$

Density profile around the tracer

$$k(\lambda;t) = \sum_{\mathbf{R}_{TP},\eta} \eta(\mathbf{R}_{TP} + \lambda) P(\mathbf{R}_{TP},\eta;t)$$

occupation variable

Equation of motion for the density profile

$$2d\tau^*\partial_t k(\lambda;t) = \sum_{\mu} \left(\nabla_{\mu} - \delta_{\lambda,\mathbf{e}_{\mu}} \nabla_{-\mu} \right) k(\lambda;t) \\ + \frac{2d\tau^*}{\tau} \sum_{\nu} p_{\nu} \langle [1 - \eta(\mathbf{R}_{TP} + \mathbf{e}_{\nu})] \nabla_{\nu} \eta(\mathbf{R}_{TP} + \lambda) \rangle$$

higher order correlations are involved

Density profile $k(\lambda; t) = \sum_{\mathbf{R}_{TP}, \eta} \eta(\mathbf{R}_{TP})$ around the tracer $k(\lambda; t) = \sum_{\mathbf{R}_{TP}, \eta} \eta(\mathbf{R}_{TP})$

$$t) = \sum_{\mathbf{R}_{TP}, \eta} \eta(\mathbf{R}_{TP} + \lambda) P(\mathbf{R}_{TP}, \eta; t)$$

$$\land \mathbf{coccupation variable}$$

Equation of motion for the density profile

$$2d\tau^*\partial_t k(\lambda;t) = \sum_{\mu} \left(\nabla_{\mu} - \delta_{\lambda,\mathbf{e}_{\mu}} \nabla_{-\mu} \right) k(\lambda;t) \\ + \frac{2d\tau^*}{\tau} \sum_{\nu} p_{\nu} \langle [1 - \eta(\mathbf{R}_{TP} + \mathbf{e}_{\nu})] \nabla_{\nu} \eta(\mathbf{R}_{TP} + \lambda) \rangle$$

higher order correlations are involved

Decoupling approximation

$$\langle \eta(\mathbf{R}_{TP} + \boldsymbol{\lambda})\eta(\mathbf{R}_{TP} + \boldsymbol{e}_{\nu}) \rangle \approx \langle \eta(\mathbf{R}_{TP} + \boldsymbol{\lambda}) \rangle \langle \eta(\mathbf{R}_{TP} + \boldsymbol{e}_{\nu}) \rangle$$

for $\boldsymbol{\lambda} \neq \boldsymbol{e}_{\nu}$

Tracer velocity
$$V(F) \equiv \frac{d\langle \mathbf{R}_{TP} \cdot \mathbf{e}_1 \rangle}{dt} = \frac{1}{2d\tau^*} (A_1 - A_{-1})$$

The decoupling approximation allows us to obtain a closed nonlinear system of equations

$$A_{\nu} = 1 + \frac{2d\tau^*}{\tau} p_{\nu} \left[1 - \rho - \rho (A_1 - A_{-1}) \frac{\det C_{\nu}}{\det C} \right]$$

$$C \equiv (A_{\mu} \nabla_{-\mu} \mathcal{F}_{\boldsymbol{e}_{\nu}} - \alpha \delta_{\mu,\nu})_{\mu,\nu} \qquad \alpha = \sum_{\mu} A_{\mu}$$
$$C_{\nu} = C \rightarrow ((\nabla_{1} - \nabla_{-1}) \mathcal{F}_{\boldsymbol{e}_{\nu}})_{\nu}$$

$$\mathcal{F}_{\boldsymbol{n}} = \left(\frac{A_{-1}}{A_1}\right)^{n_1/2} \int_0^\infty e^{-t} \mathbf{I}_{n_1}(2\alpha^{-1}\sqrt{A_1A_{-1}}t) \prod_{i=2}^d \mathbf{I}_{n_i}(2\alpha^{-1}A_2t)dt$$

Tracer velocity
$$V(F) \equiv \frac{d\langle \mathbf{R}_{TP} \cdot \mathbf{e}_1 \rangle}{dt} = \frac{1}{2d\tau^*} (A_1 - A_{-1})$$

The decoupling approximation allows us to obtain a closed nonlinear system of equations

$$A_{\nu} = 1 + \frac{2d\tau^{*}}{\tau} p_{\nu} \left[1 - \rho - \rho (A_{1} - A_{-1}) \frac{\det C_{\nu}}{\det C} \right]$$

$$C \equiv (A_{\mu} \nabla_{-\mu} \mathcal{F}_{\boldsymbol{e}_{\nu}} - \alpha \delta_{\mu,\nu})_{\mu,\nu} \qquad \alpha = \sum_{\mu} A_{\mu}$$

$$C_{\nu} = C \to ((\nabla_1 - \nabla_{-1})\mathcal{F}_{\boldsymbol{e}_{\nu}})_{\nu}$$

$$\mathcal{F}_{\boldsymbol{n}} = \left(\frac{A_{-1}}{A_1}\right)^{n_1/2} \int_0^\infty e^{-t} \mathbf{I}_{n_1}(2\alpha^{-1}\sqrt{A_1A_{-1}}t) \prod_{i=2}^d \mathbf{I}_{n_i}(2\alpha^{-1}A_2t)dt$$

Solution for V(F) for arbitrary values of the parameters

Bénichou et al. PRL 2014

Low density limit $\rho \to 0$ Auxiliary variable $k(\boldsymbol{e}_{\nu}) = \rho(1 + v_{\boldsymbol{e}_{\nu}})$

$$V = \frac{1}{\tau}(p_1 - p_{-1}) - \frac{\rho}{\tau}(p_1 - p_{-1} + p_1v_1 - p_{-1}v_{-1})$$

Low density limit $\rho \to 0$ Auxiliary variable $k(e_{\nu}) = \rho(1 + v_{e_{\nu}})$

$$V = \frac{1}{\tau}(p_1 - p_{-1}) - \frac{\rho}{\tau}(p_1 - p_{-1} + p_1v_1 - p_{-1}v_{-1})$$

Linear system of equations

$$2d(1+\frac{\tau^{*}}{\tau})v_{n} = \sum_{\nu=\pm 1,2} [1+2d\frac{\tau^{*}}{\tau}p_{\nu}]v_{e_{\nu}}\nabla_{-\nu}\mathcal{F}_{n}$$
$$- 2d\frac{\tau^{*}}{\tau}(p_{1}-p_{-1})(\nabla_{1}-\nabla_{-1})\mathcal{F}_{n}$$

Low density limit $\rho \to 0$ Auxiliary variable $k(e_{\nu}) = \rho(1 + v_{e_{\nu}})$

$$V = \frac{1}{\tau}(p_1 - p_{-1}) - \frac{\rho}{\tau}(p_1 - p_{-1} + p_1v_1 - p_{-1}v_{-1})$$

Linear system of equations

$$2d(1 + \frac{\tau^{*}}{\tau})v_{\boldsymbol{n}} = \sum_{\nu=\pm 1,2} [1 + 2d\frac{\tau^{*}}{\tau}p_{\nu}]v_{\boldsymbol{e}_{\nu}}\nabla_{-\nu}\mathcal{F}_{\boldsymbol{n}}$$
$$- 2d\frac{\tau^{*}}{\tau}(p_{1} - p_{-1})(\nabla_{1} - \nabla_{-1})\mathcal{F}_{\boldsymbol{n}}$$

For $\tau^* = \infty$ we recover the solution

of the Lorentz lattice gas

Leitmann & Franosch PRL 2013

Low density limit $\rho \to 0$ Auxiliary variable $k(e_{\nu}) = \rho(1 + v_{e_{\nu}})$

$$V = \frac{1}{\tau}(p_1 - p_{-1}) - \frac{\rho}{\tau}(p_1 - p_{-1} + p_1v_1 - p_{-1}v_{-1})$$

Linear system of equations

$$2d(1 + \frac{\tau^{*}}{\tau})v_{n} = \sum_{\nu=\pm 1,2} [1 + 2d\frac{\tau^{*}}{\tau}p_{\nu}]v_{e_{\nu}}\nabla_{-\nu}\mathcal{F}_{n}$$

-
$$2d\frac{\tau^{*}}{\tau}(p_{1} - p_{-1})(\nabla_{1} - \nabla_{-1})\mathcal{F}_{n}$$

For $\tau^{*} = \infty$ we recover the solution of the Lorentz lattice gas
Leitmann & Franosch PRL 2013

Explicit criterion for NDM in the parameter space

Explicit criterion for NDM in the parameter space

Strong force $p_1 = 1 - \epsilon$ $p_{-1} = O(\epsilon^2)$ $p_{\mu \neq \pm 1} = \frac{\epsilon}{2d - 2}$ $V\left(\frac{\tau^*}{\tau}\right) = V^{(0)}\left(\frac{\tau^*}{\tau}\right) + \epsilon V^{(1)}\left(\frac{\tau^*}{\tau}\right)$ The sign of $V^{(1)}\left(\frac{\tau^*}{\tau}\right)$ determines the region of NDM

Explicit criterion for NDM in the parameter space

Strong force $p_1 = 1 - \epsilon$ $p_{-1} = O(\epsilon^2)$ $p_{\mu \neq \pm 1} = \frac{\epsilon}{2d - 2}$ $V\left(\frac{\tau^*}{\tau}\right) = V^{(0)}\left(\frac{\tau^*}{\tau}\right) + \epsilon V^{(1)}\left(\frac{\tau^*}{\tau}\right)$ The sign of $V^{(1)}\left(\frac{\tau^*}{\tau}\right)$ determines the region of NDM Exact asymptotic result $\rho \sim \frac{1}{\frac{\tau^*}{\tau} \to \infty} \frac{4\left(\frac{\tau^*}{\tau}\right)^2}{4\left(\frac{\tau^*}{\tau}\right)^2}$ NDM region τ*/τ 0.01 0.001

ρ

High density limit
$$\rho \to 1$$
 $A_{\nu} = 1 + \frac{4\tau^*}{\tau} p_{\nu} [1 - \rho(2 + k_{\nu})]$

High density limit $\rho \to 1$ $A_{\nu} = 1 + \frac{4\tau^*}{\tau} p_{\nu} [1 - \rho(2 + k_{\nu})]$ Tracer velocity

$$V(\rho \to 1) = \frac{1}{\tau} (p_1 - p_{-1})(1 - \rho) \frac{1}{1 + \frac{4\tau^*}{\tau} \frac{(p_1 + p_{-1})(4 - 8/\pi)}{8/\pi}}$$

Exact
$$V(F) = \frac{1}{\tau} (1-\rho) \frac{\sinh(\beta F/2)}{1 + \cosh(\beta F/2) [1 + \frac{2\tau^*}{\tau} (\pi - 2)]}$$

High density limit $\rho \to 1$ $A_{\nu} = 1 + \frac{4\tau^*}{\tau} p_{\nu} [1 - \rho(2 + k_{\nu})]$ Tracer velocity

$$V(\rho \to 1) = \frac{1}{\tau} (p_1 - p_{-1})(1 - \rho) \frac{1}{1 + \frac{4\tau^*}{\tau} \frac{(p_1 + p_{-1})(4 - 8/\pi)}{8/\pi}}$$

Exact
$$V(F) = \frac{1}{\tau} (1 - \rho) \frac{\sinh(\beta F/2)}{1 + \cosh(\beta F/2) [1 + \frac{2\tau^*}{\tau} (\pi - 2)]}$$

For equal time scales $\tau^* = \tau$ Bénichou & Oshanin PRE (2002)

High density limit
$$\rho \to 1$$
 $A_{\nu} = 1 + \frac{4\tau^*}{\tau} p_{\nu} [1 - \rho(2 + k_{\nu})]$
Tracer velocity

$$V(\rho \to 1) = \frac{1}{\tau} (p_1 - p_{-1})(1 - \rho) \frac{1}{1 + \frac{4\tau^*}{\tau} \frac{(p_1 + p_{-1})(4 - 8/\pi)}{8/\pi}}$$

Exact
$$V(F) = \frac{1}{\tau} (1-\rho) \frac{\sinh(\beta F/2)}{1 + \cosh(\beta F/2) [1 + \frac{2\tau^*}{\tau} (\pi - 2)]}$$

For equal time scales $\tau^* = \tau$ Bénichou & Oshanin PRE (2002)

Comparison with Monte Carlo numerical simulations

Criterion for negative differential mobility

The analytical solution allows us to obtain a complete description

Phase chart in the parameter space:

time scales τ^*/τ • complete solution 18 --- (4p and density 15 10 NDM 12 τ* τ **NDM** 0.01 0.001 0.1 ρ 3 0 0.2 0.4 0.8 0.6 0

Physical mechanism: coupling between density and time scales ratio

Decoupling approximation *General* solution

Tracer velocity
$$V(F) \equiv \frac{d\langle \mathbf{R}_{TP} \cdot \mathbf{e}_1 \rangle}{dt} = \frac{1}{2d\tau^*} (A_1 - A_{-1})$$

$$A_{\nu} = 1 + \frac{2d\tau^{*}}{\tau} \left[1 - \rho - \rho(A_{1} - A_{-1}) \frac{\det C_{\nu}}{\det C} \right]$$

Significant dependence on the choice of transition probabilities?

General form of transition rates $k(\boldsymbol{x}, \boldsymbol{y}) = \psi(\boldsymbol{x}, \boldsymbol{y})e^{S(\boldsymbol{x}, \boldsymbol{y})/2}\delta(K.C.)$

$$\quad \longrightarrow \quad \psi(\boldsymbol{x},\boldsymbol{y}) = \psi(\boldsymbol{y},\boldsymbol{x}) \geq 0$$

Symmetric (kinetic) part

 $\implies S(\boldsymbol{x}, \boldsymbol{y}) = -S(\boldsymbol{y}, \boldsymbol{x})$

Antisymmetric part

General form of transition rates $k(\boldsymbol{x}, \boldsymbol{y}) = \psi(\boldsymbol{x}, \boldsymbol{y})e^{S(\boldsymbol{x}, \boldsymbol{y})/2}\delta(K.C.)$

$$\psi(\boldsymbol{x}, \boldsymbol{y}) = \psi(\boldsymbol{y}, \boldsymbol{x}) \ge 0$$
 Symmetric (kinetic) part

 $\implies S(\boldsymbol{x}, \boldsymbol{y}) = -S(\boldsymbol{y}, \boldsymbol{x}) \qquad \text{Antisymmetric part}$

Local detailed balance imposes a constraint on the antisymmetric part $S(\boldsymbol{x}, \boldsymbol{y}) \propto \text{entropy flux} \implies S(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{e}_{\nu}) = \beta \boldsymbol{F} \cdot \boldsymbol{e}_{\nu}$

General form of transition rates $k(\boldsymbol{x}, \boldsymbol{y}) = \psi(\boldsymbol{x}, \boldsymbol{y})e^{S(\boldsymbol{x}, \boldsymbol{y})/2}\delta(K.C.)$

$$\psi(\boldsymbol{x}, \boldsymbol{y}) = \psi(\boldsymbol{y}, \boldsymbol{x}) \ge 0$$
 Symmetric (kinetic) part

 $\implies S(\boldsymbol{x}, \boldsymbol{y}) = -S(\boldsymbol{y}, \boldsymbol{x}) \qquad \text{Antisymmetric part}$

Local detailed balance imposes a constraint on the antisymmetric part $S(\boldsymbol{x}, \boldsymbol{y}) \propto \text{entropy flux} \implies S(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{e}_{\nu}) = \beta \boldsymbol{F} \cdot \boldsymbol{e}_{\nu}$

Arbitrary choice for the symmetric part

Leitmann & Franosch, Bénichou et al. $\psi(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{e}_{\nu}) = 1/\tau [e^{\beta F/2} + e^{-\beta F/2} + 2]$

Basu & Maes

$$\begin{cases} \psi(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{e}_{\nu}) = 1/2\tau [e^{\beta F/2} + e^{-\beta F/2}] & \text{for } \nu = \pm 1\\ \psi(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{e}_{\nu}) = 1/4\tau & \text{for } \nu = \pm 2 \end{cases}$$

independent of F in the transverse direction

Role of the transition probabilities

$$p_{\nu} = \frac{e^{(\beta/2)\boldsymbol{F}\cdot\boldsymbol{e}_{\nu}}}{\sum_{\mu} e^{(\beta/2)\boldsymbol{F}\cdot\boldsymbol{e}_{\mu}}}$$

(Leitmann & Franoch, Bénichou et al.)

One obstacle can create a long lived trap

 $p_{\uparrow} = p_{\downarrow} = \frac{1}{4}$ independent of F (Basu & Maes)

No trapping effect at linear order in the density

Role of the transition probabilities

$$p_{\nu} = \frac{e^{(\beta/2)\boldsymbol{F}\cdot\boldsymbol{e}_{\nu}}}{\sum_{\mu} e^{(\beta/2)\boldsymbol{F}\cdot\boldsymbol{e}_{\mu}}}$$

(Leitmann & Franoch, Bénichou et al.)

One obstacle can create a long lived trap

 $p_{\uparrow} = p_{\downarrow} = \frac{1}{4}$ independent of F (Basu & Maes)

No trapping effect at linear order in the density

Different choices *significant macroscopic differences*

Problem: how to define microscopic transition rates **out of equilibrium**? (e.g. molecular motors with external load)

Fluctuation-Dissipation Relation

Linear response around nonequilibrium

Trajectory $\omega \equiv \{x_s\}_{s=0}^{s=t}$ characterized by discrete jumps at S_i and by exponentially distributed waiting times $s_{i+1} - s_i$

Entropy flux
$$\Sigma(\omega) = \sum_{i} S(\boldsymbol{x}_{s_{i}}, \boldsymbol{x}_{s_{i+1}})$$

Dynamical
activity $D(\omega) = \int_{0}^{t} ds \left(\sum_{\boldsymbol{y}} k(\boldsymbol{x}_{s}, \boldsymbol{y})\right) - \sum_{i} \log \psi(\boldsymbol{x}_{s_{i}}, \boldsymbol{x}_{s_{i+1}})$
("frenesy")
Nonequilibrium
FDR $\xrightarrow{d\langle O \rangle_{F}} \frac{d\langle O \rangle_{F}}{dF} = \frac{1}{2} \left\langle O \frac{d\Sigma}{dF} \right\rangle_{F} - \left\langle O \frac{dD}{dF} \right\rangle_{F}$

(Baiesi, Maes, Wynants PRL 2009)

Fluctuation-Dissipation Relation

bur case: jumps on the right jumps on the left $\Sigma(\omega) = \beta F(N_{\rightarrow} - N_{\leftarrow})$ In our case: $D(\omega) = \int_{0}^{t} ds \Big\{ p_{1}[1 - \eta(\boldsymbol{x}_{s} + \boldsymbol{e}_{1})] + p_{-1}[1 - \eta(\boldsymbol{x}_{s} + \boldsymbol{e}_{-1})] \Big\}$ + $p_2[1 - \eta(\boldsymbol{x}_s + \boldsymbol{e}_2)] + p_{-2}[1 - \eta(\boldsymbol{x}_s + \boldsymbol{e}_{-2})]$ - $N \log[1/(e^{\beta F/2} + e^{-\beta F/2} + 2)]$ total number of jumps

Fluctuation-Dissipation Relation

bur case: jumps on the right jumps on the left $\Sigma(\omega) = \beta F(N_{\rightarrow} - N_{\leftarrow})$ In our case: $D(\omega) = \int_0^t ds \Big\{ p_1 [1 - \eta (\boldsymbol{x}_s + \boldsymbol{e}_1)] + p_{-1} [1 - \eta (\boldsymbol{x}_s + \boldsymbol{e}_{-1})] \Big\}$ + $p_2[1 - \eta(\boldsymbol{x}_s + \boldsymbol{e}_2)] + p_{-2}[1 - \eta(\boldsymbol{x}_s + \boldsymbol{e}_{-2})]$ - $N \log[1/(e^{\beta F/2} + e^{-\beta F/2} + 2)]$ total number of jumps Consider $O \equiv V$ in $\frac{d\langle O \rangle_F}{dF} = \frac{1}{2} \left\langle O \frac{d\Sigma}{dF} \right\rangle_- - \left\langle O \frac{dD}{dF} \right\rangle_-$

Differential mobility, linear response around nonequilibrium

$$\stackrel{}{\longrightarrow} \frac{d\langle V \rangle_F}{dF} = \frac{\beta}{2} \langle V^2 \rangle_{F,c} - p'_1 \langle V \cdot (t - t_{\rightarrow}) \rangle_{F,c} - p'_{-1} \langle V \cdot (t - t_{\leftarrow}) \rangle_{F,c} - 2p'_2 \langle V \cdot (t - t_{\uparrow}) \rangle_{F,c} - h' \langle V \cdot N \rangle_{F,c}$$

Conclusions

• Microscopic theory for NDM in a driven lattice gas model:

Decoupling approximation
General expression for the force-velocity relation
Exact at low and high density
Unification of recent results

- Criterion for NDM in the parameter space:
 Coupling between density and diffusion time scales
- Role of transition rates out of equilibrium

Significant macroscopic effects

Perspectives

- » Analytical expression of velocity fluctuations and higher order moments How to infer the applied force from a velocity measurement?
- » Nonequilibrium fluctuation-dissipation relations

Linear FDR around nonequilibrium

Analytical expressions for the terms responsible for NDM

Perspectives

- » Analytical expression of velocity fluctuations and higher order moments
 #How to infer the applied force from a velocity measurement?
- » Nonequilibrium fluctuation-dissipation relations

Linear FDR around nonequilibrium

Analytical expressions for the terms responsible for NDM

» Is it possible to observe NDM in off-lattice systems?

Recent studies show a monotonic behavior

- To explore a wider range of parameters (for tracer and obstacles)
- » Experiments and simulations in driven granular systems?
- » Role of the kinetic part of transition rates out of equilibrium
 To measure "effective" transition rates from molecular dynamics

Negative differential mobility in different systems

• Nonequilibrium steady states

(Zia et al. Am. J. Phys. 2002)

• Models of Brownian motors

(Cecchi & Magnasco PRL 1996, $\langle v \rangle$ Kostur et al. Physica A 2006)

Reduced force f

• Kinetically constraint models for glassy dynamics

(Jack et al. PRE 2008, Sellitto PRL 2008)