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Preface

Statistical Mechanics has been founded during the XIX-th century by the seminal

work of Maxwell, Boltzmann and Gibbs, with the main aim to explain the properties

of macroscopic systems from the atomistic point of view. Accordingly, from the

very beginning, starting from the Boltzmann’s ergodic hypothesis, a basic question

was the connection between the dynamics and the statistical properties. This is a

rather difficult task and, in spite of the mathematical progress, by Birkhoff and von

Neumann, basically ergodic theory had a marginal relevance in the development

of the statistical mechanics (at least in the physics community). Partially this was

due to a misinterpretation of a result of Fermi1 and a widely spreaded opinion

(based also on the belief of influential scientists as Landau) on the key role of the

many degrees of freedom and the practical irrelevance of ergodicity. This point of

view found a mathematical support on some results by Khinchin who was able to

show that, in systems with a huge number of particles, statistical mechanics works

(independently of the ergodicity) just because, on the constant energy surface, the

most meaningful physical observables are nearly constant, apart from regions of

very small measure,

On the other hand the discovery of the deterministic chaos (from the anticipating

work of Poincaré to the contributions, in the second half of the XX-th century,

by Chirikov, Hénon, Lorenz and Ruelle, to cite just the most famous) beyond its

undoubted relevance for many natural phenomena, showed how the typical statis-

tical features observed in systems with many degrees of freedom, can be generated

also by the presence of deterministic chaos in simple systems. For example low

dimensional models can emulate spatially extended dynamics modelling transport

and conduction processes.

1 A theorem about non integrable Hamiltonian systems with N degrees of freedom assures the non existence of
smooth invariant surfaces of dimension 2N − 2; from this result Fermi (erroneously) concluded that generic
Hamiltonian systems are ergodic.
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viii Preface

Surely the rediscovery of deterministic chaos has revitalized investigations on

the foundation of Statistical Mechanics forcing the scientists to reconsider the

connection between statistical properties and dynamics. However, even after many

years, there is not a consensus on the basic conditions which should ensure the

validity of the statistical mechanics. Roughly speaking the two extreme positions are

the “traditional” one, for which the main ingredient is the presence of many degrees

of freedom and the “innovative” one which considers chaos a crucial requirement

to develop a statistical approach.

It is unnecessary to stress the role of simplified models and numerical simulation.

Because of technical difficulties in the treatment of any realistic system, the nu-

merical study of simple models is essential. One of the first numerical experiments

was the celebrated paper Studies of non-linear problems by Fermi, Pasta and Ulam,

that showed that the ergodic problem was still far from being solved; and pointed

out the necessity of using numerical simulation as a research tool complementary

to analytical studies.

The main aim of this book is to show how, for understanding the conceptual

aspects of the statistical mechanics, one has to combine concepts and techniques

developed in the context of the dynamical systems with statistical approaches able

to describe systems with many degrees of freedom. We discuss with particular

emphasis the relevance of non asymptotic quantities, e.g ε-entropy, and the role of

pseudochaotic systems, i.e. non chaotic systems with a non trivial behaviour.

We do not pretend to write a treatise on dynamical systems or statistical mechan-

ics, however we tried to make the book as self-contained as possible.

The book is divided into three parts:

Part I : Deterministic chaos and complexity (Chapters 1, 2 and 3)

Part II : Foundation of equilibrium and non equilibrium statistical mechanics

(Chapters 4, 5 and 6)

Part III : Effective equations, multiscale and renormalization group (Chapters 7 and 8)

In the first part we start introducing the basic concepts and ideas on chaotic

dynamics. There exist well established ways to define the complexity of a temporal

evolution, in terms of either Lyapunov exponents (LE) or Kolmogorov-Sinai (KS)

entropy. This approach has been rather successful in deterministic low dimensional

systems. On the other hand in high dimensional systems, as well as in low dimen-

sional cases without a unique characteristic time some interesting features cannot

be captured by LE or KS entropy. The basic reason of this weakness is that these

quantities are properly defined only in specific asymptotic limits, that are: very

long times and arbitrary accuracy. On the contrary in realistic situations one has

to deal with finite accuracy and finite time, so it is important to take into account

these limitations. For instance relaxing the limit of arbitrary high accuracy, one can
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introduce suitable tools, such as the Finite Size Lyapunov Exponent (FSLE) and

the ε-entropy.

An analysis in terms of FSLE and ε-entropy allows for the characterization

of non trivial systems in situations far from asymptotic (i.e. finite time and finite

observational resolution). In particular we discuss the utility of ε-entropy and FSLE

for a pragmatic classification of signals, and the use of chaotic systems in the

generation of sequences of (pseudo) random numbers.

The second part discusses the role of ergodicity and chaos for the validity of statis-

tical laws. Detailed numerical studies show in a clear way that for high dimensional

Hamiltonian systems chaos is not a fundamental ingredient for the validity of the

equilibrium statistical mechanics. Therefore the point of view that good statistical

properties need chaos is unnecessarily demanding: even in the absence of chaos,

one can have (according to Khichin ideas) a good agreement between the time

averages and the predictions by the equilibrium statistical mechanics.

About the problem of the irreversibility of macroscopic processes it seems to us

that Boltzmann was basically able to understand the essence of mechanism of the

Second Law. The possible presence of chaos plays a minor role while the relevant

aspects are the large number of degrees of freedom, and the selection of “good”

initial conditions in such a way that the molecular chaos hypothesis is satisfied.

With such assumptions one can eliminate the fluctuations in the time behaviour

of H(t) vs t and therefore the classical objections by Loschmidt and Zermelo are

overcome. Exact mathematical results have shown that the original intuitions of

Boltzmann were correct.

Usually one deals with the behaviour of single macroscopic systems, and in-

deed thermodynamics, as a physical theory, has been developed to describe the

properties of single systems, made of many microscopic, interacting parts. Thus

it seems to us that it is quite fair to conclude that statistical ensembles are just

useful mathematical tools. The study of a system made of many weakly coupled

subsystems evidences the objective nature of the growing in time of the Boltzmann

entropy, i.e. its independence from the coarse graining resolution, as far as it is small

enough.

There is a rather strong evidence that chaos (in the technical sense of the existence

of a positive Lyapunov exponent) is not a necessary ingredient for the validity of

the statistical mechanics laws as diffusion and conduction. Numerical results show

that the basic elements are: an instability mechanism, able to induce a particle

dispersion at small scales, and the suppression of periodic orbits, to allow for a

diffusion at large scale. In chaotic systems the instability mechanism is nothing but

the sensitivity to the initial condition; however also in systems with zero maximal

Lyapunov exponent finite-size instability mechanisms can exist.
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The last part is devoted to the treatment of problems characterized by the presence

of more than one significant scale, i.e. with a variety of degrees of freedom with

different time scales. For this class of systems it is necessary, both practically

and conceptually, to treat the “slow dynamics” in terms of effective equations.

These equations are able to catch some general features and to evidence dominant

ingredients which can remain hidden in the detailed description.

We discuss some general aspects of the multiple-scale method and its connection

with other important issues as the renormalization group. We see at work, in some

simple cases,the basic tools necessary for the study of phenomena as diffusion

and mesoscopic description of non-equilibrium statistical mechanics. In multiscale

analysis one replaces the original evolution equation with an effective one which is

valid at very large time (or at large spatial distance). As an example we can mention

the asymptotic behaviour of the transport problem as described by a Fick’s equation

containing the eddy diffusion coefficients to take into account the inhomogeneity

due to the advection field in the original problem.

This book is not an updated text of the most recent progresses in all the fields

of statistical physics (in particular those regarding non equilibrium stationary

states). Since we want to limit the treatment to some basic aspects, we do

not discuss those results like fluctuations theorems which, for the technical as-

pects would almost deserve another and different book. Of course the selection

of issues in this book reflects our scientific interest during the last years. We

would like to express our thanks for inspiration, collaboration and correspon-

dence to E. Aurell, L. Biferale, G. Boffetta, F. Cecconi, A. Celani, M. Cencini,

E. Charpentier, P. Collet, A. Crisanti, D. del-Castillo-Negrete, P. Grassberger,

C. Gruber, S. Isola, M.H. Jensen, K. Kaneko, H. Kantz, G. Lacorata, M. Laguës,

R. Livi, V. Loreto, G. Mantica, U. Marini Bettolo Marconi, A. Mazzino, P. Muratore

Ginanneschi, E. Olbrich, G. Parisi, L. Palatella, S. Pigolotti, A. Politi, A. Puglisi,

L. Rondoni, S. Ruffo, M. Serva, A.Torcini, M. Vergassola and D. Vergni.

A special thank to G. Benettin for having provided us with figures 4.1, 4.2 and 4.3.

Finally we thank F. Cecconi, M. Cencini, R. Livi, P. Muratore Ginanneschi,

A. Ponno, A. Puglisi and L. Rondoni for valuable comments on some parts of the

manuscript.


