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Abstract The Russian mathematician Andrey Andreye-

vich Markov (1856–1922) produced many very famous

results, such as the law of large numbers and central limit

theorem, and Markov chains. He was also known for his

irascible nature. This article provides a brief overview of

his life, and mathematical details of some of his results.

Keywords Andrey Andreyevich Markov Á Markov

chains Á law of large numbers Á central limit theorem Á
Monte Carlo method

1 (Restless) life and works

As a young man, Andrey Andreyevich Markov

(1856–1922) was not the usual brilliant student: he got

mediocre grades in all subjects (with mathematics as the

unique exception) and had a rough and stubborn person-

ality. As a boy, he was nicknamed Andrey reistovy (the

Furious); later, he would become the militant academician

when, as a respected scientist, he was committed against

the Tsar’s autocracy, the institutions’ subservience, and the

conservativeness of the Orthodox Church.

In 1874 he enrolled in Saint Petersburg University,

where he studied mathematics under great teachers, such as

Korkin and Zolotarev, and especially the most important

Russian mathematician of the time, Pafnuty Lvovich

Chebyshev (1821–1894), who was to be his mentor. Mar-

kov’s career was very quick: in 1877, while still a student,

he was awarded a gold medal for his research on the use of

continued fractions to solve differential equations; in 1880

he defended his thesis and in 1884 he got his doctorate. At

thirty he already was a professor at Saint Petersburg

University; a few years later he was elected a fellow of the

august Academy of Sciences.

Markov, with his unyielding character, had quite a few

troubles; luckily, in his youthful years, he was protected by

Chebyshev, who had realised his merit.

Here is a short list of Markov’s antiauthoritarian activities.

In 1902 he protested against the cowardly behaviour of

the Academy of Sciences which, under pressures from the

Tsar, did not ratify the election of writer Maksim Gorky as

an honorary fellow, while welcoming as new members

some aristocrats completely devoid of cultural merits.

When the Minister of the Interior ordered that university

professors were to be considered police officers, hence

being obliged to report any anti-government activities by

the students, Markov replied that he was a professor of

probability theory, not a cop, that he did not approve of

these decisions anyway, and that he could not change his

views by orders from his superiors.

In 1905 he attacked the rules of Saint Petersburg

University that fixed quotas on Jewish students.

After the decision by the synod of the Orthodox Church

to excommunicate Tolstoy, Markov asked formally to be

excommunicated too, since he shared the great writer’s

opinions. His request was accepted, but only partially,

since its formulation was not correct. The formal answer of

the synod wasMarkov has seceded from God’s Church and

we expunged him from the lists of Orthodox believers.

What is more interesting is that Markov’s radicalism

was not just a private fact of his life, but was important in

his scientific activity and in the history of probability the-

ory too.
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Since his birth, Markov was afflicted by impairments at

his legs, underwent several operations and often had to use

crutches. The last years of his life were saddened by the

suicide of his colleague and friend Aleksandr Mikhailovich

Lyapunov (1857–1918) and by health issues. Markov died

in 1922 due to the consequences of an operation on his

legs.

Markov was also an international level chess player. In

1892 he played four games against Mikhail Chigorin (the

Russian champion, challenger of the world champion);

Markov won one and tied another one. One of Markov’s

children, Andrey Andreyevich junior (1903–1979), fol-

lowed in his father’s footsteps and was a great mathe-

matician; his contributions to algebra and logic are

especially important.

Markov’s mathematical activity (especially in proba-

bility theory) in Saint Petersburg fits in a well-established

tradition that began in 1724, when Peter the Great founded

the Academy of Sciences. Among the members of the

Academy were such mathematicians as Euler and Daniel

Bernoulli. The latter introduced probability theory in

Russia in 1738, with a paper about risks. Since then,

probability was one of Russian mathematicians’ favourite

branches. Chebyshev, Markov’s guide, was the person

who, around 1850, began giving full mathematical status to

probability theory.

Let us recall, among Markov’s contributions to proba-

bility theory, the way he improved Chebyshev’s proof of

the central limit theorem (CLT). The first general proof of

the CLT for independent variables was given by another

famous pupil of Chebyshev, A.M. Lyapunov, who used

moments and characteristic functions.

After the Revolution of 1917, Markov’s undisputed

scientific prestige and his liberal opinions were instru-

mental in the new government’s decision to strengthen the

mathematical school of Saint Petersburg to the detriment of

that of Moscow, which included several conservative

mathematicians. Needless to say, Andrey the Furious found

a way to clash with the new regime too.

Markov was an enthusiastic teacher, strongly convinced

that the only way to learn was by solving problems; he was

always available for his students, even for unofficial lec-

tures during the holidays. He was beloved by his students;

many of them, after passing their exam, followed again the

lectures given by Markov.

In 1913, the Tsar ordered a one-year celebration for

some anniversary of the Romanov dynasty. Markov, not

quite interested in the event, tried to oppose the celebra-

tions and organised a great international conference for the

second centennial of the publication of Ars Conjectandi by

Jacob Bernoulli, where the first proof of the law of large

numbers appeared.

At the beginning of the twentieth century, Markov was

involved in a lively debate with Moscow mathematician

Nekrasov, who held political and religious opinions opposite

to his own. The object of the controversy was the statistical

regularity of social behaviours (see Appendix B). In Mar-

kov’s opinion, this regularity was just a consequence of the

law of large numbers and had nothing to do with such factors

as the free will or political and religious beliefs. Nekrasov

observed that the law of large numbers could not suffice to

explain statistical regularities, since it only held under the

hypothesis that the events are independent on each other.

The remark by Nekrasov was somehow reasonable; indeed,

at that time the only law of large numbers that had been

proved was that by Jacob Bernoulli for independent events.

In order to counter this objection, Markov had to create a

theory for non-independent processes.

A letter to a friend shows how he was glad to have given

his Moscow colleague a hard time:

The unique role of P.A. Nekrasov was, in my opinion, to

have brought up the matter ... I have now constructed a

system with properties so general as P.A. Nekrasov cannot

even dream about. I have studied variables linked in a

simple chain, hence the idea of the possibility of extending

the limit theorems to these chains too.

This is the birth certificate of those stochastic processes

now known as Markov chains (MC), which have since

been used in a large class of problems in physics, chem-

istry, biology, economy and even in Google search engine.

In order to get an idea of Markov chains and of how it

can be possible to have a law of large numbers even for

non-independent events, let’s consider the following game.

We have three circles, numbered with 1, 2, and 3; within

each circle there is a kind of roulette, each with different

properties. A traveller starts from circle 1, where the

roulette is divided into two sectors, labelled with the

number 1 (in a sector 120 degrees wide) and 2 (in a sector

240° wide). The traveller spins the roulette; if the result is 1
he stays in the circle, while if the result is 2 the traveller

jumps into circle 2. Hence, he stays in 1 with probability

1/3, or jumps into 2 with probability 2/3. Then the game

repeats: so the jumping rules are defined by the roulettes or,

in mathematical terms, by the probabilities Pi!j of jumping

from circle i to circle j. The positions occupied succes-

sively are not independent. For instance, in the case shown

in Fig. 1 we have that, from 1, 2 is more likely than 1,

while 3 is impossible; from 2, 3 is more probable than 2,

while 1 cannot be reached and so on.

By exploiting the symmetry of this problem, it is pos-

sible to show that the law of large numbers holds here:

even though the events are not independent, if the game

lasts long enough, the traveller spends one third of the time

in each circle.
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At first, Markov considered just the case with two-val-

ued variables; later on, he covered the more general situ-

ation with a finite number of states, proving that the law of

large numbers holds, under suitable conditions (see

Appendix C), for non-independent variables too.

Few years later, Markov used MCs to perform a statis-

tical analysis of some texts by Pushkin; from a linguistic

viewpoint, his approach was rather elementary, since it

considered the text as just a sequence of vowels and con-

sonants. However, this work has been the starting point for

the use of probabilistic techniques in linguistics: MCs are

used still today to find the author of a text.

Markov chains describing stochastic processes that only

assume discrete states and evolve in a discrete time are the

simplest non-trivial case of a stochastic process. The

development of this field was strongly motivated and dri-

ven by physics, and in particular by the study of Brownian

motion at the beginning of the twentieth century by Ein-

stein, Smoluchowski, and Langevin.

In the 1930s, Kolmogorov started formalising Markov

stochastic processes. By this, we mean, besides the MCs

with a finite number of states, the MCs with countably many

states and moreover the processes with discrete states and

continuous time (described by so-called master equations)

and those with continuous states and continuous time

(governed by Fokker-Planck equations). Now stochastic

processes are applied in a number of different fields: in

physics, chemistry, biology, as well as economy and finance.

2 Appendix A: The law of large numbers
and the central limit theorem

Probability theory came out of the trifling (and quite lim-

ited) scope of card and dice games, where it was born in the

seventeenth century, with Ars Conjectandi by Jacob Ber-

noulli (1654–1705), published posthumously in 1713. In

this book the Law of large numbers was proved: given an

event that happens with probability p, the frequency f(N)

with which this event occurs in N independent trials, in the

limit for large N, ‘‘tends’’ to p (Fig. 2):

f ðNÞ ! p:

In more precise terms, for every �[ 0 the probability

that f(N) differs by more than � from p becomes arbitrarily

small as N increases:

lim
N!1

Prob
f ðNÞ
N

À p

����
����[ �

� �
¼ 0: ð1Þ

Analogously, we have that, given a sequence of indepen-

dent variables x1, x2, ..., xN having average value m and a

finite variance, in the limit for large N the probability that

the ‘‘empirical average’’ ðx1 þ x2 þ Á Á Á þ xNÞ=N differs by

more than � from m tends to zero when N approaches

infinity:

lim
N!1

Prob
1

N

XN

j¼1
xj À m

�����

�����[ �

 !
¼ 0: ð2Þ

Result (1) suggests a possible way to connect the notion of

probability to the real world: we may interpret the proba-

bility of an event as its frequency in the limit of a large

number of trials. This is the essence of the frequentist

interpretation which is usually accepted by physicists, but

often not considered appropriate within the scope of social

and economic sciences. This is not the right place to dis-

cuss the interpretations of probability, an interesting and

delicate question which, however, belongs more to the

philosophy of science than to the mathematics.

In 1716, in his book The Doctrine of Changes, Abraham

De Moivre (1667–1754) gave a proof of the first case of the

central limit theorem: consider N independent events, each

occurring with probability p, and denote by NÃðNÞ the

Fig. 1 Graph describing a 3-state Markov chain; each arrow is

labelled with the transition probability Fig. 2 A balanced coin is thrown N times. The graph shows the

course of frequency f(N)= N*/N, where N* is the number of times

head comes up
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number of times the event occurs. For large values of N we

have

Prob a NÃðNÞ À pNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1À pÞN

p  b

 !
’ 1ffiffiffiffiffiffi

2p
p

Z b

a

eÀx
2=2dx:

This result is an improvement on the law of large numbers;

indeed, we may not only state that NÃðNÞ=N is close to p,

but also have the probability of a given deviation from the

average value.

As remarked by Kac and Ulam, to some purist’s eye the

result by De Moivre would not look especially important,

since it could be seen as a quite simple application of

elementary combinatorial formulas and of Stirling

approximation n! ’
ffiffiffiffiffiffiffiffi
2pn

p
nneÀn.

The result by De Moivre was extended by Laplace to the

case of independent and identically distributed discrete

variables fxig with mean m and variance r2: in the limit for

large N, we have

Prob a 
PN

j¼1ðxj À mÞ
r

ffiffiffiffi
N

p  b

 !
’ 1ffiffiffiffiffiffi

2p
p

Z b

a

eÀx
2=2dx:

ðA:1Þ
The first rigorous treatment of CLT for identically dis-

tributed variables, not necessarily discrete and having a

finite variance, is due to Chebyshev, Markov and Lyapunov

who, by using the method of characteristic functions and

moments, proved (A.1) under very general hypotheses. The

most general proof of the central limit theorem for inde-

pendent variables was given by Swedish mathematician

Lindeberg in the 1920s.

For non-independent variables, if the fxngs are ‘‘weakly

dependent’’, we may expect the CLT to keep holding if the

variance r2 is substitutedwith an ‘‘effective variance’’r2eff that
takes the correlations into account. In the case of stationary

processes, it can be shown that, if the correlation function

cðkÞ ¼ hðxt À mÞðxtþk À mÞi

decays to zero quickly enough when k increases (that is,

more quickly than 1 / k), then the CLT holds by replacing

r2 in (A.1) with the effective variance r2eff :

r2eff ¼ r2 þ 2
X1

k¼1
cðkÞ:

3 Appendix B: The strange birth of Markov
chains

The story of how Markov chains were born is not well

known. They were not introduced for technical reasons

regarding probability theory, nor even to be put to some

concrete use in science or technology, but within a debate

about a philosophical topic: free will.

All began with a lively quarrel between Markov and

Nekrasov, a Moscow mathematician, a conservative and a

reactionary. The disagreement was about the interpretation

of the statistical regularity of social behaviours.

Due to Quetelet’s work, one of the fathers of modern

statistics, in the predominant positivistic culture of the

nineteenth century, the so-called social physics emerged. It

interpreted the patterns observed on a large scale in the

social phenomena as something analogous to the laws of

physics: If we bother to examine and collect accurate and

sufficiently many observations, we shall find that what we

believed to be an effect of chance is subject to

stable principles ... Everything is predicted, everything is

law: only our ignorance leads us to suppose it all to be due

to the whims of chance. Some reservation notwithstanding

– for instance, Quetelet was accused by some of fatalism

and of an attempt to apply uncritically Laplace’s deter-

minism to social phenomena—in the second half of the

nineteenth century social physics had a great importance in

sociology and philosophy, influencing people such as Marx

and Durkheim.

Nekrasov regarded social physics as the first step

towards materialism and, even worse, atheism and Marx-

ism; he did not attribute to the statistical regularities of

social phenomena the status of actual laws, since, in

accordance with the tradition of Orthodox religion, human

behaviour was supposed to be a consequence of free will.

Markov, on the other hand, claimed that such patterns

are essentially an effect of the law of large numbers.

Nekrasov remarked that the LLN could not suffice to

explain statistical regularity, since it only held under the

hypothesis of independent events. Nekrasov provided even

a (modest) technical contribution: he showed that for the

LLN the pairwise independence of the variables fxig is

sufficient, a condition weaker than actual independence.

However, he concluded that the pairwise independence was

a necessary condition too. From this mistaken conclusion

he deduced that the presence of statistical regularities in

social phenomena would prove the existence of the free

will.

In his obscure connections between religion, philoso-

phy, and mathematics, Nekrasov even tried to avail himself

of the authority of late Chebyshev: for Andrey the Furious

this was too much. Not only did a mediocre mathematician

ranted about probability, but he dared even implicate his

great master. In order to completely annihilate his oppo-

nent, Markov created a theory of non-independent pro-

cesses, introducing what are now called Markov chains and

proving that a LLN can be had even without independence.

The friction between Markov and Nekrasov was due

only in part to their personal disagreement; it was part of a
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more general academic (and political in the wider sense)

confrontation between the Moscow mathematical school

and Saint Petersburg one, the former being religious and

close to the government, the latter progressive and

materialist.

Nekrasov did not leave a great mathematical legacy: in

fact, his single really important contribution was having

provoked Markov into creating his chains. Surprisingly,

Nekrasov had a quite easy life after October Revolution

and managed to find a compromise with the new govern-

ment. When he died in 1924 the official newspaper Izvestia

even published a laudatory obituary which exalted his

contribution as a scientist in the proletariat’s service. Only

a few years later, in 1933, in the middle of the Stalin’s

great purges, he was branded as a reactionary scientist

serving the bourgeoisie and the conservative Orthodox

Church.

4 Appendix C: Markov chains in two words

A stochastic process xt that at the discrete time t may

assume one of M possible states (which we may label with

integer numbers 1, 2,..., M) is a Markov chain if the future

state only depends on the present one. In formulas:

Probðxt ¼ itjxtÀ1 ¼ itÀ1; . . .; xtÀn ¼ itÀnÞ
¼ Probðxt ¼ itjxtÀ1 ¼ itÀ1Þ;

where it can be 1,..., M. The essential property of MCs is

that the transition to state xt ¼ j under the condition that

xtÀ1 ¼ i, xtÀ2 ¼ k,..., occurs with probability

Probðxt ¼ jjxtÀ1 ¼ iÞ ¼ Pi!j ¼ Wji;

independently on the state at time t À 2, the state at time

t À 3 and so on.

One could wonder why we do not study even more

general cases, in which the future at time t depends on the

states at time t À 1, at time t À 2, up to time t À r. A

moment’s thought persuades us that this type of processes

can be treated as one in which r ¼ 1: it suffices to consider

a new chain where state yt is the vector

ðxt; xtÀ1; . . .; xtÀrþ1Þ.
The simplest case is that of the time-homogeneous

chains, where the transition probabilities do not depend on

time. The matrix elements Wji cannot be completely arbi-

trary and have to satisfy the following relations:

Wij ! 0;
XM

i¼1
Wij ¼ 1:

The transition matrix fWijg is, in manner of speaking, the

DNA of Markov chain, since it determines all its proper-

ties. For instance, for the evolution in time of the vector

PðtÞ ¼ ðP1ðtÞ;P2ðtÞ; . . .;PMðtÞÞ, where PiðtÞ is the proba-

bility of being in state i at time t, we can immediately write

Pjðt þ 1Þ ¼
XM

i¼1
WjiPiðtÞ ðC:1Þ

and so

PðtÞ ¼ ŴtPð0Þ:

It is natural to ask whether, when t increases, PðtÞ con-

verges to a limit vector P ¼ ðP1;P2; . . .;PMÞ; if this

happens, then

Pj ¼
XM

i¼1
WjiPi; ðC:2Þ

and fPig are called invariant (or stationary) probabilities.

The following fundamental theorem holds:

If there is an integer n such that for each pair (i, j) there

is a non-zero probability of going from j to i in n steps,

that is,

½Wn�ji [ 0;

then there is a unique invariant probability P and the

convergence is exponential:

PðtÞ ¼ ŴtPð0Þ ¼ Pþ OðeÀt=scÞ ! P:

The characteristic time sc is

sc ¼
1

j lnðja2jÞj
;

where a2 is the second eigenvalue of the matrix Ŵ . In this

kind of matrix, by a theorem in linear algebra due to Perron

and Frobenius, the first eigenvalue is never degenerate:

a1 ¼ 1[ ja2j, hence ja2j\1 and sc is finite.
Such MCs are ergodic, that is, the time average along a

random walk obtained with transition probabilities fPi!jg
is asymptotically equal to the average with the probabilities

fPig.

5 Appendix D: Two applications of Markov chains

Markov chains play a fundamental role in many applica-

tions in physics, astrophysics, chemistry, biomathematics,

genetics, geophysics, engineering and communications; we

shell discuss briefly two very important examples of the

use of MCs.

5.1 Monte Carlo method

Consider the following problem: compute the average
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hQi ¼ 1

M

XM

j¼1
QjPj; ðD:1Þ

where Pj is the probability of event j; if M is very large,

then the computation may well be unfeasible. For instance,

in statistical mechanics the value of M is huge even in

small systems. To give an idea, consider the Ising model on

a lattice (a very simplified description of magnetism) in

which we have two possible values for each site; even with

as few as 100 sites the number of admitted states is enor-

mous: M ¼ 2100 ’ 1030. The idea behind Monte Carlo

method is to exploit ergodicity, and hence to substitute

(D.1) with a time average obtained by following a ‘‘trav-

eller’’ who jumps among the states following the rules of a

Markov chain with invariant probabilities fPjg, and to

compute the time average:

1

T

XT

t¼1
Qjt

where j1, j2, ..., jT are the successive locations of the

travellers. In the case when the Markov chain is ergodic (a

condition that can be ascertained by considering the tran-

sition probabilities fPi!jg), for large T we have that the

time average ‘‘tends’’ to hQi (in the sense of Eq. 2).

Note that in Monte Carlo method there is a large arbi-

trariness: there are no specific constraints in the choice of

the transition probabilities, as long as the Markov chain has

as its invariant probabilities fPjg and is ergodic. Monte

Carlo method turns out to be hugely powerful and useful.

For instance, it allows us to determine the thermodynamic

properties of non-trivial systems (such as liquids) only

knowing their macroscopic interactions (the potential

between pairs of molecules).

Of course, when the number of possible states is very

large (as almost always happens in problems in statistical

mechanics), the trajectory cannot possibly be long enough

to visit all of them. So we might wonder about the secret of

the efficacy of this method. In few words, we may say that

its strength lies in the fact that we typically compute

averages of ‘‘not too strange’’ quantities and, moreover, the

traveller does not waste time venturing out in states with

too low a probability.

5.2 Google and Markov chains

Every time we use Google (or another web-based search

engine), we use Markov chains without being aware of it.

When we type some words in Google (‘‘Markov chains

applications’’, say), the search engine, by using an algo-

rithm based on Markov chains, returns a list, ordered by

relevance, of the web pages containing those words.

Here is a sketch of the procedure used to order the

pages:

1. the N pages containing the words are singled out; each

page is labelled with a number 1, 2,..., N;

2. the link number Lk is determined, that is, the number of

pages linking to the kth page;

3. starting from N and from the link numbers fLjg,
following certain rules, the matrix of transition prob-

abilities fPi!jg is constructed, in a way giving an

ergodic Markov chain;

4. the invariant probabilities P1, P2, ..., PN are

computed;

5. the ranking is created: the first page is the one with the

highest probability and so on.

The transition matrix is determined as follows: if there is a

link from page i to page j, we have

Pj!i ¼
a
Lj
þ ð1À aÞ

N
;

otherwise

Pj!i ¼
ð1À aÞ

N
;

where a has a value between 0 and 1 (a typical value is

a ¼ 0:85).

This choice for the matrix can be easily and intuitively

interpreted: for a fraction 1À a of the time an (hypotheti-

cal) web wanderer, starting from page j, picks a random

website from the N possible ones, or he jumps, with

probability a, to website i following the links. The tech-

nical reason to use a value a 6¼ 0 is that, because of this, the

MC is sure to be ergodic.

The invariant probabilities are determined by a system

of linear equations:

Pi ¼
XN

j¼1
PjPj!i i ¼ 1; 2; . . .;N ;

of course, if N is very large it is not possible to find the

exact solution and generally an iterative method is fol-

lowed. Starting, for instance, from Pið0Þ ¼ 1=N, we use

repeatedly (C.1):

Piðnþ 1Þ ¼
XN

j¼1
PjðnÞPj!i ;

since the MC is ergodic, when n increases we have a

(exponentially fast) convergence to the invariant proba-

bilities. Alternatively, we may use Monte Carlo method:

for each i, the frequency fiðTÞ of visiting state i during a

long time interval [0, T] will be close to Pi.

In conclusion, we must point out that the method dis-

cussed here is the ‘‘pure’’, basic one; in practice, Google
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use a customised algorithm, with differences for each

users, which takes into account the pages and websites

already visited.

Translated from the Italian by Daniele A. Gewurz.
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