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lousov (1959); Zhabotinsky (1991)], that constitute two milestones of nonlinear
dynamics theory.

Mathematical biology is a branch of applied mathematics which studies the
changes in the composition of populations. Historically its origins can be traced
back to the demographic analysis by Malthus and Verlhust (Sec. 3.1), but, dur-
ing the years, the development of mathematical biology has greatly expanded till
embodying ecology, genetics and immunology. In population biology, we are gener-
ally interested in the time variation of the number of individuals of certain species.
Species compete, evolve and disperse to seek resources for sustaining their struggle
for the existence. Depending on the specific environment and settings, often the
interplay among individuals involves a sort of loss-win mechanisms that can be ex-
emplified to the form of predator-prey interactions. In this context, the role of chaos
is still a controversial issue, and the common wisdom suggests that a chaotic behav-
ior is the exceptional event rather than a rule. The typical “incorrect” argument
raised is the stability of systems that would make chaos improbable. Accordingly,
populations are expected to undergo cyclical fluctuations mostly triggered by liv-
ing cycles, seasonal or climate changes. On the other hand, the alternative line
of reasoning recognizes in the extreme variability and in the poor long-term pre-
dictability of several complex biological phenomena a fingerprint of nonlinear laws
characterized by sensitive dependence on initial conditions.

In Chemistry, where the rate equations have the same structure of those of
population dynamics, we have a similar phenomenology with the concentration of
reagents involved in chemical reactions in place of the individuals. Rate equations,
written on the basis of the elementary chemical rules, can generate very complex
behaviors in spite of their simplicity as shown in the sequel with the example of the
Belousov-Zhabotinsky reaction [Zhabotinsky (1991)]. We stress that in all of the
examples discussed in this section we assume spatial homogeneity, this entails that
the phenomena we consider can be represented by ODE of the state variables, the
role of inhomogeneity will be postponed to the next Chapter.

11.3.1 Population biology: Lotka-Volterra systems

Species sharing the same ecosystem are typically in strong interaction. At a raw
level of details, the effects exerted by a species on another can be re-conducted to
three main possibilities: predation, competition or cooperation also termed mutual-
ism. In the former two cases, a species subtracts individuals or resources to another
one, whose population tends to decrease. In the latter, two or more species take
mutual benefit from the respective existence and the interaction promotes their
simultaneous growth. These simple principles define systems whose evolution in
general is supposed to reach stationary or periodic states. Lotka-Volterra equa-
tions, also known as predator-prey system, are historically one of the first attempt
to construct a mathematical theory of a simple biological phenomena. They consist
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in a pair of nonlinear ODE describing the interactions of two species, one acting as
predator and the other as prey. Possible realistic examples of predator-prey systems
are: resource-consumer, plant-herbivore, parasite-host, tumor cells (virus)-immune
system, susceptible-infectious interactions, etc. These equations were proposed in-
dependently by Lotka (1910) and Volterra (1926b,a)43

dx

dt
= r1x − γ1xy (11.22)

dy

dt
= −r2y + γ2xy (11.23)

where x is the number of some prey (say, rabbits); y is the number of predators
(wolves); r1, γ1, r2 and γ2 are positive parameters embodying the interaction be-
tween the two species. The assumptions of LV-model are the following. In the ab-
sence of predators, prey-population grows indefinitely at rate r1. Thus, in principle,
preys have infinite food resources at disposal and the only limitation to their incre-
ment stems from predation represented by the term −γ1xy. The fate of predators
in absence of preys is “extinction” at rate r2, condition prevented by the positive
term γ2xy, describing hunting.

The dynamics of the model is rather simple and can be discussed conveniently
by looking at the phase portrait. There are two fixed points P0 = (0, 0) and P1 =
(r2/γ2, r1/γ1), the first corresponds to extinction of both species while the second
refers to an equilibrium characterized by constant populations. Linear stability
matrices (Sec. 2.4) computed at the two points are

L0 =


r1 0

0 −r2


 and L1 =


 0 −r2

γ1
γ2

r1
γ2
γ1

0


 .

Therefore P0 admits eigenvalues λ1 = r1 and λ2 = −r2, hence is a saddle, while P1

has pure imaginary eigenvalues λ1,2 = ±√
r1r2. In the small oscillation approxima-

tion around the fixed point P1, one can easily check that the solutions of linearized
LV-equations (11.22)-(11.23) evolve with a period T = 2π/

√
r1r2. An important

property of LV-model is the existence of the integral of motion,

H(x, y) = r2 ln x + r1 ln y − γ2x − γ1y, (11.24)

as a consequence, the system exhibits periodic orbits coinciding with isolines of the
functions H(x, y) = H0 (Fig. 11.13a), where the value of H0 is fixed by the initial

43Volterra formulated the problem stimulated by the observation of his son in law, the Italian
biologist D’Ancona, who discovered a puzzling fact. During the first World War, the Adriatic sea
was a dangerous place, so that large-scale fishing effectively stopped. Upon studying the statistics
of the fish markets, D’Ancona noticed that the proportion of predators was higher during the war
than in the years before and after. The same equations were also derived independently by Lotka
(1910) some years before as a possible model for oscillating chemical reactions.
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conditions x(0) = x0 and y(0) = y0.44 Therefore, as shown in Fig. 11.13b, the time
evolution consists of cyclic fluctuations of the two populations, for which predator
population follows the variation of the preys with a certain dephasing, known as the
law of periodic fluctuations. The biological origin of oscillations is clear: abundance
of hunters implies large killing of preys, that, on the long term, means shortage of
food for predators thus their decline. This decrease, in turn, causes the increase of
preys and so on, in cyclical alternates.

Another interesting property of LV-model concerns the average over a cycle of
number of prey/predator populations that, independently of initial conditions, reads

�x� = r2/γ2 , �y� = r1/γ1 . (11.25)

This result, known as law of averages, can be derived writing, e.g., Eq. (11.22) in
logarithmic form and averaging it on a period T

d ln x

dt
= r1 − γ1y

1
T

� T

0

dt
d ln x

dt
= r1 − γ1 �y� .

The periodicity of x(t) makes the left hand side vanishing and thus �y� = r1/γ1.
The law of averages has the paradoxical consequence that, if the birth rate of preys
decreases r1 → r1 − �1 and, simultaneously, the predator extinction rate increases
r2 → r2+�2, the average populations vary as �x� → �x�+�2/γ2 and �y� → �y�−�1/γ1,
respectively (law of perturbations of the averages). This property, also referred to as
Volterra’s paradox, implies that a simultaneous changes of the rates, which causes
a partial extinction of both species, favors on average the preys. In other words,
if the individuals of the two species are removed from the system by an external
action, the average of preys tends to increase. Even though this model is usually
considered inadequate for representing realistic ecosystems because too qualitative,
it remains one of the simplest example of a pair of nonlinear ODE sustaining cyclical
fluctuations. For this reason, it is often taken as an elementary building block when
modeling more complex food-webs.

The main criticism that can be raised to LV-model is its structural instability due
to the presence of a conservation law H(x, y) = H0 conferring the system an Hamil-
tonian character. A generic perturbation, destroying the integral of motion where
orbits lie, changes dramatically LV-behavior. Several variants have been proposed
to generalize LV-model to realistic biological situations, and can be expressed as

dx

dt
= F (x, y)x

dy

dt
= G(x, y)y ,

(11.26)

44The existence of integral of motion H can be shown by writing the Eqs. (11.22,11.23) in a
Hamiltonian form through the change of variables ξ = ln x, η = ln y

dξ

dt
= r1 − γ1eη =

∂H
∂η

dη

dt
= −r2 + γ2eξ = −∂H

∂ξ
,

where the conserved Hamiltonian reads H(ξ, η) = r2ξ−γ2eξ +r1η−γ1eη , that in terms of original
variables x, y gives the constant H(x, y).
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Fig. 11.13 (a) Phase-space portrait of LV-system described by the isolines of H(x, y) (11.24). (b)
Oscillating behavior in prey-predator populations of LV-equation for r1 = 1.0, r2 = 3.0, γ1,2 = 1.0.

where G and F are the rates at which prey/predator populations change. Following
Verhulst, the first improvement can be introduced by considering a logistic growth
(Sec. 3.1) of preys in absence of hunting:

F (x, y) = r1

�
1 − x

K

�
− γ1y

where K represents the carrying capacity: the maximal number of individuals an
environment can support. More in general, the hunting rate, γ1, is supposed to con-
tain a saturation effect in predation term, with respect to the standard LV-model.
As typical choices of γ1(x), we can mention [Holling (1965)],

a

b + x
,

ax

b2 + x2
,

a[1 − exp(−bx)]
x

,

that when plugged into Eq. (11.26)) make the rate bounded. Also the rate G(x, y)
is certainly amenable to more realistic generalizations by preferring, e.g., a logistic
growth to the simple form of Eq. (11.23). In this context, it is worth mentioning
Kolmogorov’s predator-prey model. Kolmogorov (1936) argued that the term γ2xy

is too simplistic, as it implies that the growth rate of predators can increase indefi-
nitely with prey abundance, while it should saturate to the maximum reproductive
rate of predators. Accordingly, he suggested the modified model

dx

dt
= r(x)x − γ(x)y

dy

dt
= q(x)y

where r(x), γ(x) and q(x) are suitable functions of the prey abundance and preda-
tors are naturally “slaved” to preys. He made no specific hypothesis on the func-
tional form of r(x), γ(x) and q(x) requiring only that:

(a) In the absence of predators, the birth rate of preys r(x) decreases when the
population increases, becoming at a certain point negative. This means that a
sort of inter-specific competition among preys is taken into account.
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(b) The birth rate of predators q(x) increases with prey population, going from
negative (food shortage) to positive (food abundance).

(c) The function γ(x) is such that: γ(0) = 0 and γ(x) > 0 for x > 0.

With these three conditions, Kolmogorov obtained a complete phase diagram, show-
ing that a two-species predator-prey competition may lead to, extinction of preda-
tors, stable coexistence of preys and predators or, finally, oscillating cycles. He also
generalized the differential equation to more than two species,45 introducing most
of the classification nowadays used in population dynamics. Moreover, Kolmogorov
pointed to the strong character of the assumptions behind an approach based on
differential equations. In particular, he argued that populations are composed of
individuals and statistical fluctuations may not be negligible, especially for small
populations. In practice, there exists a fourth scenario: at the minimum of a large
oscillation, fluctuations can extinguish the prey population, thereby causing the ex-
tinction of predators too. In this remark Kolmogorov underscored the importance
of discreetness in population dynamics becoming the precursor of what nowadays
is termed “agent based formulation” of population biology, where individuals are
“particles” of the system interacting with other individuals via effective couplings.
An interesting discussion on this subject can be found in Durrett and Levin (1994).

11.3.2 Chaos in generalized Lotka-Volterra systems

According to Poincaré-Bendixon theorem (Sec. 2.3), the original Lotka-Volterra
model and its two-dimensional autonomous variants as well cannot sustain chaotic
behaviors. To observe chaos, it is necessary to increase the number of interacting
species to N ≥ 3. Searching for multispecies models generating complex behaviors
is a necessary step to take into account the wealth of phenomenology commonly
observed in Nature, which cannot be reduced to a simple 2-species context. How-
ever, the increase of N in LV-models does not necessarily imply chaos, therefore it is
natural to wonder “under which conditions do LV-models entail structurally stable
chaotic attractors?”. Answering such a question is a piece of rigorous mathematics
applied to population biology that we cannot fully detail in this book. We limit to
mention the contribution by Smale (1976), who formulated the following theorem
on a system with N competing populations xi

dxi

dt
= xiMi(x1, . . . , xN ) i = 1, . . . , N .

He proved that the above ODE, with N ≥ 5, can exhibit any asymptotic behavior,
including chaos, under the following conditions on the functions Mi(x): 1) Mi(x)
is infinitely differentiable; 2) for all pairs i and j, ∂Mi(x)/∂xj < 0, meaning that
only species with positive intrinsic rate Mi(0) can survive; 3) there exist a constant
C such that, for |x| > C then Mi(x) < 0 for all i. The latter constraint corresponds
45See for instance Murray (2002); the generalized version is sometimes referred to as Kolmogorov
model.


