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Abstract. Today, computer simulations belong to the most important and powerful
theoretical tools for the investigation of statistical mechanical systems particularly in the
field of condensed matter. Many simulation methods may directly, or indirectly, be traced
back to ideas of Ludwig Boltzmann or are used to carry on the program he had envisioned.
Using several illustrative examples, we discuss the role of computer simulation in modern
statistical mechanics and, in particular, its relation to Boltzmann’s legacy.

1 What if?

Figure 1. Boltzmann at work (Drawing by Bernhard Reischl, University of Vienna).

What would Boltzmann have done with a computer? Of course, any answer
to this question is highly speculative, but it is easy to imagine that Boltzmann



2 C. Dellago and H. A. Posch

would have realized what a wonderful tool for scientific research and discovery the
computer is, particularly in his field of statistical mechanics. Most likely, Boltz-
mann would have invented the molecular dynamics method and used it to test
and further develop the molecular models of matter he and his contemporaries
created. All he required he already knew, and his motivation is more than clear
from his work. With such simulations, Boltzmann literally could have watched how
a system relaxes towards equilibrium, and he could have performed a numerical
analysis of the validity of the assumption of molecular chaos, which is so central to
his kinetic equation. Certainly, he would have determined the equations of state of
dilute gases and of dense liquids and solids. One may further speculate that Boltz-
mann would have made creative use of modern visualization tools that, today, are
of such crucial importance in simulation studies and provide insight and guidance
not availiable otherwise. It is also amusing to think about what Boltzmann would
not have done, if he had had access to a computer. For instance, would Boltzmann
have bothered to write down the Boltzmann equation? Perhaps he would just have
run a molecular dynamics simulation for hard spheres with simple collision rules
to follow the dynamics of his model gas. From such a simulation he could have
calculated properties of dilute and dense gases in order to compare them with
experimental data. Then, the need to write down an approximate and compli-
cated integro-differential equation that cannot even be solved analytically except
for very simple cases would not have arisen. Or would Boltzmann have tried to
develop a virial expansion for the hard sphere gas if he could have determined the
equation of state with high precision from simulations? Nobody knows, but sta-
tistical mechanics might have unfolded in a completely different way, if computers
had been available at Boltzmann’s time. While it is not hard to imagine where
Boltzmann would have begun his computational investigation, it is impossible to
predict where insights gleaned from simulations would have taken a mind like his.

In this article we will take a more modest attitude and reflect on the signif-
icance of computer simulations in the research program initiated by Boltzmann
and his contemporaries. Since the advent of fast computing machines in the 1940s
and 1950s, computer simulations have played an increasingly important role in
statistical mechanics and have provided the field with an enormous boost. The
main reason for this success story is that complex correlations make most interest-
ing systems intractable with analytical tools. In equilibrium statistical mechanics,
for instance, only very few models have been solved analytically so far. Exam-
ples include the ideal gas, the harmonic solid, and, perhaps most famously, the
two-dimensional Ising model, which was solved by Onsager in a mathematical tour
de force. In essence, analytical solutions can be achieved only in the absence of
correlations either because the model does not exhibit any (such as the ideal gas or
the harmonic solid) or because approximations are used, in which correlations are
neglected to a certain degree as is done in mean field theories such as the molec-
ular field theory of magnetism and the van der Waals theory. When correlations
become important, however, these theories fail. There are, of course, exceptions
such as the 2d-Ising model, but in this case the exact analytical solution is possible
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only by very specific mathematical tricks which are not helpful for illuminating
the underlying physics. In non-equilibrium statistical mechanics the situation is
even worse and almost nothing is known analytically. In computer simulations,
on the other hand, correlations can be fully treated, and also non-equilibrium sys-
tems can be studied essentially without the need of uncontrolled approximations.
Therefore, it is not surprising that computer simulations have grown into one of
the most important and powerful theoretical tools in statistical mechanics and,
particularly, the physics of condensed matter. Interestingly, the rapid progress in
computer simulation is only partially due to the fast growth in raw computing
power, which, according to Moore’s law, doubles every 18 months. The more im-
portant factor turns out to be the development of better simulation algorithms.
For instance, it has been estimated that between 1970 and 1995 computing power
increased by a factor of 104, while the total computing speed in the simulation of
spin models grew by a factor of 1010 [1].

In the context of Boltzmann’s science and legacy, computer simulations play a
multifaceted role:

• Computer simulations are used to carry on Boltzmann’s program to establish
the properties of macroscopic matter from a knowledge of the microscopic
constituents. Today, statistical mechanical computer algorithms, such as
Monte Carlo and molecular dynamics simulations, are routinely used, often
with energies and forces obtained from first-principles electronic structure
calculations, to study the properties of complex molecular aggregates ranging
from materials to biological systems.

• Boltzmann’s ideas and results have been confirmed by computer simulations.
For instance, Boltzmanns H-theorem was numerically examined for a system
of hard disks and was found to hold except for small fluctuations during which
H(t) briefly increased evidencing the statistical character of the Second Law
of Thermodynamics [2].

• Computer simulations interact with analytical theory by testing the assump-
tions that are made in order to obtain mathematically treatable expressions.
For instance, the hypothesis of molecular chaos on which the Boltzmann
equation relies, can be directly tested using molecular dynamics simulations.
Such calculations may also guide the development of better approximations.

• Computer simulations have not only helped to solve equations that are too
complicated to be solved analytically such as Newton’s equations of motion,
but have also provided the impetus for the development of new theoreti-
cal approaches. In particular, the search for better simulation algorithms
has motivated, driven and guided the advancement of statistical mechanical
theories particularly in the field of non-equilibrium processes. For instance,
Jarzynski’s non-equilibrium work theorem discussed in Sec. 6 arose out of
efforts to develop efficient methods for the calculation of equilibrium free



4 C. Dellago and H. A. Posch

energies. These new fundamental developments are in turn used to derive
more efficient computational algorithms [3, 4, 5].

• Computer simulations promote physical understanding by illustrating fun-
damental concepts using simple models that can be thoroughly simulated
and visualized. As an example we mention the Lorentz gas, which in in Sec.
3 is used to illustrate mixing in phase space and in Sec. 7 to discuss systems
far from thermodynamic equilibrium.

• Boltzmann’s ideas and results provide the theoretical foundation for modern
computer simulation algorithms. For example, equilibrium statistical me-
chanics as developed by Boltzmann and Gibbs is the basis for Monte Carlo
simulations in various ensembles.

In the following sections we will discuss some of these points in more detail and
illustrate how computer simulations have helped to improve our understanding of
statistical mechanical systems in general, and of Boltzmann’s ideas in particular.
The choice of examples is, naturally, biased towards our own main scientific in-
terests which are in the fields of molecular simulation, non-linear dynamics and
non-equilbrium statistical mechanics.

It has been often remarked that no real understanding can be obtained from
computer simulations. Now, It is certainly true that a detailed molecular dy-
namics trajectory, stored in a computer file in the form of a time series of the
positions and momenta of all particles for consecutive time steps, by itself does
not generate understanding of the simulated system. But the same can be said for
analytical results. What, for instance, do we learn from a detailed wave function
available analytically for a large many particle system? Or what do we gain from
the partition functions of equilibrium statistical mechanics that are, in principle,
always available analytically, albeit as complicated integrals that can only rarely
be solved in a closed form? In all these cases, only further analysis yields useful in-
formation and helps to identify the variables that capture the relevant physics and
separate them from irrelevant degrees of freedom that may be treated as random
noise. Similarly, only further data analysis, carried out analytically or numerically,
helps to extract the meaningful information from simulations, which makes true
understanding possible.

2 Atoms exist

One of the main scientific objectives of Boltzmann and contemporaries such as
Clausius, Maxwell, and van der Waals was to prove that matter consists of atoms,
little particles interacting with each other and moving according to the rules of
Newtonian mechanics. The method they chose to carry out this ambitious program
was to postulate that atoms exist and to deduce empirically testable consequences
from this hypothesis. Since in Boltzmann’s days experimental techniques to probe
the microscopic properties of matter were not available, the only way to verify the
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atomic hypothesis was to derive macroscopic observables such as the equation of
state, the viscosity, or the heat conductivity of a gas from the postulated atomic
constituents of matter.

As emphasized by Laplace, a system of particles evolving in time according
to the laws of Newtonian mechanics is completely deterministic. So, in principle,
the properties of, say, a gas can be determined by solving the equations of motion
for all particles starting from suitably chosen initial conditions. Naturally, to
do so with the theoretical tools available to Boltzmann and his contemporaries
was out of the question. However, Clausius, Maxwell and Boltzmann realized
that no detailed information on the positions and velocities of all the particles
is required for predicting the macroscopic properties of many-particle systems.
Rather, it is sufficient to consider probability densities that describe the system
only in a statistical sense. This approach, referred to as kinetic theory, turned
out to be highly successful and provided the basis for the Boltzmann equation
and the statistical interpretation of irreversibility. But also in this probabilistic
framework, the computation of macroscopic properties remains highly non-trivial
in most circumstances. Essentially, the fundamental equations of kinetic theory
can be analytically solved only if correlations may be neglected to a certain degree,
as is the case for dilute gases. (For a historic overview of kinetic theory we refer
the reader to Ref. [6]).

This situation remained essentially unchanged until fast computing machines
became available and the molecular dynamics simulation method was invented
in the 1950s. In this computational approach, the basic idea is to follow the
time evolution of a particle system in full detail by solving Newtons equations
of motion in small time steps. By iterating this procedure many times, one may
obtain an approximation to the dynamical trajectory of the system in phase space
and extract structural as well as dynamical information such as time correlation
functions from it. A molecular dynamics simulation generates the full dynamical
information including complex correlations that are usually neglected in analytical
treatments. For a realistic description of real systems, an accurate calculation of
the forces acting between the particles is of course crucial. While early simulations
of liquids and solids used simple interaction potentials such as the Lennard-Jones
potential or the hard sphere potential, sophisticated empirical force fields now ex-
ist for a variety of systems ranging from simple and complex fluids to assorted
materials and biological macromolecules. Using these methods on modern com-
puters, one can simulate equilibrium as well as non-equilibrium systems consisting
of millions of atoms on the nanosecond time scale and determine their microscopic
and macroscopic properties. Methods are now also available to calculate from first
principles effective interatomic potentials mediated by electrons. Based mainly on
density functional theory and implemented in powerful software packages, these
methods permit efficient solutions of the electronic Schrödinger equation in the
Born-Oppenheimer approximation and the computation of forces and energies for
hundreds of atoms with thousands of electrons, which can then be used in molecu-
lar dynamics simulations [7, 8]. Currently, significant efforts are directed towards
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including excited electronic states and a consistent quantum mechanical descrip-
tion of the nuclear degrees of freedom into the simulations. Although far from
complete (one cannot throw a few electrons and nuclei into a box yet and see what
happens), these developments, initiated by Boltzmann and his contemporaries, are
an important step towards the ultimate goal of deducing structural and dynamical
properties of complex (and even living!) condensed matter from a mere knowledge
of the chemical composition.

Beside molecular dynamics, the other computational pillar in condensed matter
theory is Monte Carlo simulation [1], which has its roots in the ideas of Boltzmann
and, particularly, Gibbs. In a Monte Carlo simulation one does not follow the
real dynamics of the system in time, but rather samples random configurations
according to the underlying phase space distribution. As alluded to by the name
coined in the early 1950s by Metropolis and Ulam [9, 10], random numbers play
a crucial role in the method and are used to carry out a biased random walk
through phase space. As the Monte Carlo method is not limited by the natural
dynamics of the system, one can dream up completely unphysical moves that
dramatically increase the rate at which the configuration space is sampled as long
as one makes sure that the target ensemble is reproduced. This can be achieved
by enforcing detailed balance, but of course comes at the cost that a dynamical
interpretation of the simulation is no longer meaningful. Examples for such efficient
algorithms include cluster moves designed to prevent the sampling from slowing
down near criticality and configurational bias Monte Carlo schemes [11]. The
Monte Carlo method is, in principle, exact in the sense that for a given model
no approximations are involved. Provided one runs the Monte Carlo simulation
for a sufficiently long time, the correct phase space distribution is sampled and
the calculated ensemble averages converge towards the true values. In general,
the Monte Carlo method is limited to equilibrium states with known phase space
density. In contrast, molecular dynamics simulations can be easily carried out
in non-equilibrium situations for which the phase space distribution is usually
unknown.

While molecular dynamics simulation is used today to carry on Boltzmann’s
program, it does not directly depend or build on any of his results. In contrast,
the Monte Carlo method is based on the realization that time averages can be
replaced by ensemble averages and on the ensemble theory that grew out of this
insight. From a practical point of view, this represents a tremendous simplifica-
tion since the complicated dynamics of many-particle systems can be completely
ignored and the calculation of macroscopic properties be reduced to integrals over
rather simple distribution functions. It is exactly this simplification of equilibrium
statistical mechanics, which makes the Monte Carlo method one of the most pow-
erful tools in condensed matter theory. It is often stated that the idea of ensembles
in statistical mechanics goes back to Gibbs, but the basic concept of considering a
large number of independent system copies and their distribution in phase space
can be traced back to Boltzmann, as mentioned by Gibbs himself in the preface
to his celebrated book on the “Elementary Principles in Statistical Mechanics”
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[12]. As pointed out by Cercignani1 [15], in a paper from 1884 Boltzmann consid-
ers stationary statistical ensembles of many system and calls them “Monode”[13].
Ensembles consistent with macroscopic equilibrium thermodynamics, i.e., ensem-
bles for which δQ/T is an exact differential, he then calles “Orthode”. Boltzmann
carries on by showing that both what he calls a “Holode” (the canonical ensemble

in Gibbs’ terminology) and an “Ergode” (the microcanonical ensemble in Gibbs’
terminology) belong to this class of “Monodes” (i.e., ensembles). But while the
idea of statistical ensembles originated from Boltzmann (it is, however, quite pos-
sible that both Boltzmann and Gibbs came up with the idea independently, but
the respective evidence is sketchy), it was Gibbs who formulated equilibrium sta-
tistical mechanics in a clear, systematic and eminently practical way making its
application easy for later generations of researchers. (Incidentally, Gibbs also in-
vented the name “Statistical Mechanics”). For a detailed and insightful account
on the reception of the work of Boltzmann and Gibbs we refer the reader to the
Boltzmann biography of Cercignani [15] and the book of Hoover [16].

Early Monte Carlo simulations were carried out in the canonical ensemble,
or NV T -ensemble, which corresponds to a system with fixed particle number N ,
volume V and temperature T . Later, Monte Carlo simulations utilizing ensem-
bles more appropriate for particular experiments were developed and applied to a
wide variety of situations. Examples include simulations algorithms for the grand-
canonical ensemble (µV T -ensemble), which describes systems with fixed volume
V at temperature T in contact with a particle reservoir with chemical potential
µ, or the isobaric-isothermal ensemble (NpT -ensemble), which is appropriate for
systems with fixed particle number N at pressure p and temperature T . In some
cases, particularly for the calculation of free energies, it is even advantageous
to sample generalized ensembles that do not correspond to a particular physical
situation. Such sampling techniques, which include umbrella sampling [17] and
Wang Landau sampling [18], are collectively referred to as non-Boltzmann sam-
pling as opposed to the Boltzmann sampling of physical ensembles. Monte Carlo
methods are not limited, however, to ensembles in configuration or phase space.
Recently, Monte Carlo techniques have been developed to sample ensembles of
rare dynamical trajectories, which occur, for example, during the nucleation stage
of a first-order phase transition, of conformational changes of biomolecules, or of
chemical reactions between different species [19, 20, 21]. The success of Monte
Carlo simulations in different ensembles has also provided the motivation to de-
velop molecular dynamics methods capable of sampling other ensembles than the
microcanonical, in which particle number N , volume V , and total energy E are
conserved. Stochastic and deterministic “computer thermostats”, artificial modi-
fications of the equations of motion designed to reproduce a particular ensemble
[22, 23, 24], are now standard tools in the arsenal of the computer simulator. Such
thermostats also play a particularly important role in the molecular dynamics sim-

1Note that, here, Cercignani cites the wrong article. Boltzmann considers ensembles (and,
in particular, the microcanonical and canonical ensembles) in Ref. [13] and not in Ref. [14] as
asserted by Cercignani.
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ulation of non-equilibrium steady states, which are discussed in more detail in Sec.
7.

The field of molecular dynamics and Monte Carlo simulation, which by now
are universal techniques to tackle a great variety of problems, is still growing at a
fast pace. For an overview of current methodologies and applications we refer to
the proceedings of a recent summer school [25]. The introduction to this collection
of articles includes a very enlightening discussion of the significance of computer
simulations for the statistical mechanics of condensed matter.

3 Chaotic motion and mixing in phase space

The relaxation of non-equilibrium states towards equilibrium as described by the
Boltzmann equation requires mixing in phase space. For a classical Hamiltonian
system evolving at constant energy, say a system of purely repulsive spheres un-
dergoing elastic collisions, this implies that a set of initial conditions concentrated
in a small fraction of phase space will eventually spread evenly over the whole
energy shell. At first sight this requirement seems to be in contradiction with
Liouville’s theorem according to which phase space volume is conserved under the
action of the phase flow. However, as depicted schematically in the left panel of
Fig. 2, a small compact volume of initial conditions deforms into a complicated
shape as time evolves while keeping its volume constant. Let us follow Boltzmann
and imagine that the phase space is partitioned into little boxes. The evolving fila-
ments grow into more and more boxes and, eventually, spread all over the available
phase space in such a way that the fraction of the original points located in an
arbitrary box is proportional to the size of that box. If this happens, the system
is said to be mixing.

Figure 2. Left panel: Dispersion of a volume of initial conditions in phase space. Right
panel: The Lorentz gas consists of a moving point particle that is elastically reflected
when it collides with circular scatterers arranged on a regular triangular lattice. At the
collision points, the state of the moving particle is specified by the two angles α and β.
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For low dimensional systems this spreading in phase space can be easily vi-
sualized with a computer. Consider, for instance, the so-called Lorentz gas in
two dimensions, which consists of a point particle moving at constant speed in
an array of circular scatterers (see Fig. 2, right panel) [26]. The motion of the
particle consists of free flight segments on straight lines, interrupted by instanta-
neous collisions with the scatterers, when the particle is elastically reflected. At
the collision the velocity component orthogonal to the surface at the collision point
changes sign, the tangential component remains unchanged. Due to the convex
shape of the scatterers, trajectories starting from neighboring points separated by
δ0 in phase space diverge exponentially in time:

δt ≈ δ0 exp(λt). (1)

Here, δt is the separation in phase space at time t and λ is called a Lyapunov
exponent. This sensitivity to small perturbations of the initial conditions, which
corresponds to a positive λ, is the defining feature of deterministic chaotic motion
that is commonly observed in classical many-particle systems at sufficiently high
temperature.

We can now observe how the exponential growth of small perturbations in phase
space, also referred to as Lyapunov instability, causes spreading in phase space and
mixing. To do this for the Lorentz gas, we consider a lower dimensional section
of phase space which consists of the angles α and β which completely describe
the state of the moving particle at the collisions with the periodically replicated
scatterer. Each point in the two-dimensional phase space section spanned by
these variables corresponds to a collision occuring at a particular point and with
a particular velocity direction. The time evolution maps each collision point into
the next one. We now apply the map defined in this way to a set of many initial
conditions all located in a small region of phase space, the black square in the
top left panel of Fig. 3. The map distorts the original set, contracting it in some
directions but expanding it in others (center top panel). The area of this set,
however, is unchanged. The sets resulting after 2, 4, 6, and 10 collisions are shown
in subsequent panels of Fig. 3 and clearly demonstrate the spreading. Eventually,
it leads to a uniform distribution over all of the available phase space.

Since the phase space volume of the evolving set is conserved according to
Liouville’s theorem, it cannot be used to quantify the mixing process. Instead,
one has to introduce some kind of coarse graining, for instance by partitioning the
phase space into small boxes as depicted in the left panel of Fig. 2. Initial points
positioned in a single box will evolve and spread to more and more boxes, since the
phase flow expands in some directions. From the coarse grained point of view the
contraction simultaneously occurring in other directions is irrelevant. Eventually,
all boxes are uniformly filled. The spreading can be monitored with Boltzmann’s
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Figure 3. Spreading of initial conditions initially concentrated in a small part of phase
space. Shown are sections of the phase space at collisions of the moving particle with the
replicated scatterer, where the angle α is used on the x-axis and sin β on the y-axis. The
first plot in the upper left corner contains 100.000 points representing as many initial
conditions. Subsequent plots correspond to phase space sections after 1, 2, 4, 6, and 10
collisions. The density of the scatterers is 4/5 of the close-packed density.

H-function2.
H(t) =

∑

i

fi(t) ln fi(t) (2)

where fi(t) is the fraction of phase space points present at time t in box i. More
than 60 years ago, Krylov predicted that the number of boxes Nt visited at t grows
exponentially with a rate determined by the Kolmogorov-Sinai entropy hKS (which
turns out to be the sum of all positive Lyapunov exponents):

Nt ∼ exp(hKSt). (3)

This leads to an H-function which decays linearly with time [29], starting from its
initial value zero. The slope is given by hKS. Obviously, the linear decay comes
to an end when all available boxes are filled and H(t) becomes constant. It is

2Although there is some indirect evidence that the capital letter “H” in Boltzmann’s “H-
theorem” might have been intended to be a capital greek Eta, there is no definite proof for this
assertion [27, 28]
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worth pointing out that the function H(t) decreases only due to the coarse graining
introduced by the partitioning of the phase space into finite-sized boxes. If the sum
in Equ. (2) is replaced by a phase space integral, H(t) is constant in time for any
arbitrary initial distribution f , as can be easily proved using Liouville’s theorem.
Krylov’s hypothesis on the time behavior of the coarse grained H(t) was confirmed
by computer simulations of the two-dimensional periodic Lorentz gas [30], in which
case, due to the low dimension, the Kolmogorov-Sinai entropy is equal to the single
positive Lyapunov exponent for this model. It is the Kolmogorov-Sinai entropy
that really determines the rate of mixing in phase space and, hence, the approach
to equilibrium. Such a behaviour is expected to hold also for high-dimensional
systems. However, it is crucial in this case to consider the full many-particle
distribution function and not projections to lower dimensions such as the single-
particle distribution function in µ-space considered by Boltzmann. In contrast
to the case of the full phase space distribution, the characteristic time for the
relaxation of single particle distribution functions is the collision time, the average
time between successive collisions of a particle.

4 Ergodicity

Mixing in phase space is intimately related to the notion of ergodicity, another idea
central to Boltzmann’s work and to modern computer simulation. In an ergodic
system, every point in phase space consistent with the thermodynamic variables
describing the macroscopic state of the system is eventually visited. As a conse-
quence, time averages can be replaced with appropriate ensemble averages, which
often leads to great simplifications in analytical and numerical calculations. It
was soon realized that for the equality of time and ensemble average the quasi-
ergodic property is sufficient, which states that the system will come arbitrarily
close to any point in phase space rather than visiting every point exactly. (As
noted by Stephen G. Brush in his introduction to Boltzmann’s Lectures on Gas

Theory [31], however, Boltzmann did not clearly distinguish between ergodicity
and quasi-ergodicity.) It is quasi-ergodicity that permits us to calculate the prop-
erties of many-body systems via Monte Carlo simulation without the need to follow
the detailed dynamics. Some of the earliest simulations carried out on the elec-
tronic computing machines available after World War II were devoted to test this
hypothesis.

In 1953 Enrico Fermi, John R. Pasta und Stanislaw Ulam used MANIAC, von
Neumann’s computing machine installed in Los Alamos, to perform a numerical
integration of the equations of motion (a molecular dynamics simulation) of a one-
dimensional chain of particles with nearest neighbor interactions that were weakly
non-linear [32]. (An account of the history of the Fermi-Pasta-Ulam simulation is
given in Refs. [33] and [34].) The purpose of this calculation was to examine how
the system evolves towards equilibrium starting from an initial state in which only
one mode of the chain is excited, for instance a single sound mode. Fermi, Pasta
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and Ulam expected that due to the weak non-linear coupling between the parti-
cles the energy initially concentrated in one single mode would gradually spread to
all other modes eventually leading to a fully equilibrated state. Contrary to this
expectation, the scenario that Fermi, Pasta and Ulam observed to their great sur-
prise was very different: instead of continuously thermalizing towards equilibrium,
the system almost perfectly returned to its initial state after an initial spreading of
the energy to other modes. Later simulations showed that such recurrences occur
with even higher accuracy on longer time scales, and equilibrium is not achieved.
This astonishing finding, motivated also by Boltzmann’s ideas, led to many subse-
quent studies of non-linear dynamical systems, both theoretical and experimental,
and spawned soliton theory [35]. Fermi himself was modestly proud of this work
calling it a “minor discovery” [9].

From a computational point of view the pioneering work of Fermi, Pasta, and
Ulam was important in various ways. Their work constituted the first “computer
experiment” in which the role of the computer went beyond the mere calculation
of mathematical expressions unpractical for evaluation with pencil and paper. In-
stead, their studies established computer simulation as a powerful instrument to
explore new ideas and to obtain truly new physical insight. Also remarkable is
the fruitful interaction of simulation and theory that arose from these early simu-
lations and the impetus they gave to the development of the theory of non-linear
dynamics.

Ergodicity (or quasi-ergodicity) is also a recurrent issue in the application
of computer simulation to complex atomistic and molecular systems. For in-
stance, deterministic computer thermostats are often used to control tempera-
ture in molecular dynamics simulations of equilibrium and non-equilibrium states.
These thermostats replace large heat baths by one or a few degrees of freedom
that are appropriately coupled to the equations of motion of the system. This
will be discussed further in Sec. 7. However, deterministic thermostats are often
unable to equilibrate the dynamics of strong harmonic degrees of freedom [36, 37].
Particular techniques such as chains of coupled thermostats have been developed
to overcome this problem [37, 38]. Insufficient sampling, i.e. lack of ergodicity,
can also occur in Monte Carlo and molecular dynamics simulations, if high energy
barriers separate important regions of configuration space. Enhanced sampling
techniques such as multicanonical sampling [39] and parallel tempering [40] may
by used to overcome this limitation.

5 Hard spheres: entropy, freezing and long time tails

One of the fundamental tasks of equilibrium statistical mechanics is to deter-
mine the equation of state and the phase diagram of a given substance from a
knowledge of its microscopic constituents. The Second Law of Thermodynamics
together with Boltzmann’s statistical interpretation provides us with the tools to
do that either analytically or numerically. The first statistical mechanical theory
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that successfully mapped out a non-trivial phase diagram was the theory of van
der Waals, which correctly predicts the condensation of vapor into a liquid and
even yields a qualitative description of critical phenomena. In his “Lectures on
Gas Theory” [31], Boltzmann devotes several chapters to this topic and derives
the van der Waals equation using Clausius’ virial concept. Anticipating later sta-
tistical mechanical theories of the liquid state [41, 42], Boltzmann separates short
range hard-sphere repulsion from long range attractive interaction. For the hard
sphere contribution, he then proceeds by considering the “available space”, i.e.
the volume from which a specific particle is not excluded due to the presence of
all other remaining particles. In a very elegant way, Boltzmann writes a first or-
der approximation for this quantity that he than further refines by estimating the
overlap of the exclusion volume of different spheres. The resulting expression is a
virial expansion involving what we now call the third virial coefficient. Combining
this result with the virial calculated for the van der Waals cohesive interaction,
Boltzmann finally obtains the van der Waals equation. The next-order correction,
i.e. the fourth virial coefficient was calculated analytically by Boltzmann with
remarkable physical insight (see Ref. [43] for an interesting account of the history
of the fourth virial coeffcient, and Ref. [44] for a history of the development of
equations of state from kinetic theory). After Boltzmann, progress in the virial
expansion of the equation of state for hard sphere systems has been made only
numerically. Although systematic procedures such as the Mayer cluster expansion
for obtaining higher order virial coefficients are available, the expressions quickly
become so complicated that to date all virial coefficients beyond the fourth (and
at least up to the tenth) are known only from Monte Carlo integration [45]. Since
the hard sphere equation of state is known with high accuracy from the dilute gas
regime to close packing, the motivation to be further concerned with the series
expansion (and, in particular, with the analytical derivation of virial coefficients)
is rather limited.

The van der Waals equation of state and its refinements derived by Boltzmann
predict, when augmented with a Maxwell construction, a first order phase tran-
sition between a low density gas and a high density liquid. This transition does
not occur in the absence of the long range attractive forces postulated by van der
Waals. For purely repulsive hard sphere systems, however, a different question
arises. It is clear that at low densities hard spheres exist as a disordered gas. At
high densities near close packing, on the other hand, hard spheres must be arranged
on a regular lattice such as the face-centerd-cubic or the hexagonal-close-packed
lattices. Does this transition from a low density gas to a high density solid occur
continuously or discontinuously? In other words, is there a hard sphere freezing
transition to a crystalline solid with long range order as first predicted by Kirk-
wood in 1951 [46]? In the mid-1950s this was an important open question, but no
theoretical tools were available to derive the properties of phase transitions from
the first principles of statistical mechanics [47]. The virial expansion pioneered
by Boltzmann does not give any indication about the existence of such a transi-
tion. So it was no surprise that at a symposium on “The many-Body Problem”
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Figure 4. Pressure p as a function of the packing fraction φ for a system of hard spheres.
The gray area indicates the coexistence region and the dotted lines are the metastable
branches of the equations of state for the fluid and the solid phases.

held 1957 at the Stevens Instiute of Technology in Hoboken, New Jersey, during
a round table discussion lead by G. E. Uhlenbeck on general topics of statistical
mechanics a vote taken among prominent scientists (including several Nobel lau-
reates) about this question ended even [48]. The hesitation of half of the audience
is understandable, because it is indeed surprising that purely repulsive particles
can form a stable crystal. The question was finally settled in favor of the existence
of the fluid-solid transition on the basis of now famous molecular dynamics simu-
lations by Alder and Wainwright [49] and Monte Carlo simulations by Wood and
Jacobson [50].

These simulations and later ones by Hoover and Ree [51], in which the entropy
of both phases was computed, showed that for packing fractions in the range
φ = 0.49 − 0.55 (the packing fraction φ is the fraction of volume filled by the
hard spheres), a disordered fluid phase with packing fraction φ = 0.49 coexists
with an ordered solid phase with φ = 0.55. While for packing fractions below
φ = 0.49 the fluid is the more stable form, at densities between φ = 0.55 and close
packing occurring at φ = π/18 ≈ 0.74 the hard sphere system exists as a solid.
Both the solid and the fluid branch of the equation of state can be extended into
the respective metastable region (see Fig. 4), which indicates that the hard sphere
freezing transition is indeed of first order. Recent experimental and computational
studies have focused on the related intriguing question, if identical objects of a
given geometry may be packed more densely when they are arranged in a random
rather than a crystalline fashion [52]. In three dimensions, the highest possible
random packing fraction for spheres is φ = 0.64, considerably smaller than φ = 0.74
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for the crystalline closed packed structure. Interestingly, there are indications that
in dimensions higher than 57 the situation reverses and random packing yields a
higher density than crystalline packing [53].

An interesting aspect of the hard sphere freezing transition is that it is purely
entropic. To see what that means we need to consider the thermodynamics of the
liquid-solid transition. We know that according to the Second Law of Thermo-
dynamics a system with given volume V and temperature T exists in a state for
which the Helmholtz free energy

F = U − TS (4)

is a minimum. In other words, the thermodynamically stable phase is that one
with the lower Helmholtz free energy. Other phases with higher free energy may be
metastable but they tend to transform into the more stable phase provided this is
kinetically possible. As stated in the famous inscription engraved on Boltzmann’s
tombstone in Vienna’s central cemetery,

S = k log W, (5)

the entropy S is proportional to the logarithm of the number of states W acces-
sible to the system. (Incidentally, this equation, expressed by Boltzmann only in
words, was explicitly written down later by Planck.) Boltzmann’s expression for
the entropy is the link between statistical mechanics and thermodynamics and it
provides a precise prescription on how to calculate the entropy for a given micro-
scopic model. The general intuition now is that for an ordered system a smaller
number of states is accessible than for a disordered system and, hence, the entropy
of the ordered system should be lower than that of the disordered one. Together
with the expression of the Helmholtz free energy (see Equ. (4)), this suggests that
for any particular substance the transition from the disordered liquid to the ordered
solid can only occur if the lower entropy of the ordered crystal is compensated by
a sufficiently large loss in energy.

This scenario indeed describes some transitions, but in many cases this rather
naive reasoning based on associating low/high entropy with apparent order/disorder
is inaccurate, and it is entropy that drives the transition rather than energy. This
is particularly evident for the hard sphere freezing transition. Since in the hard
sphere system particles do not overlap due to the infinitely high interaction en-
ergy at contact, the total potential energy of the system vanishes for all possible
configurations. Hence, the internal energy U is just the kinetic energy and, as in
the ideal gas, is a function of temperature only. Thus, along an isotherm, the only
change in free energy is due to the changing entropy which can be determined with
high accuracy from computer simulations (since the entropy is a measure for the
available phase space volume and cannot be written as an ensemble average of a
dynamical variable, advanced simulation techniques such as thermodynamic inte-
gration have to be used). While for packing fractions below φ = 0.49 the fluid has
the higher entropy, for packing fractions above φ = 0.55 the solid is entropically
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favored and, hence, the thermodynamically stable phase. For intermediate pack-
ing fractions, the lower density fluid coexists with the higher density solid. The
result that the solid, which we usually perceive as “ordered”, has a higher entropy
than the disorderd liquid is slightly counterintuitive and demonstrates that one
should be careful in relating high entropy with disorder (of course, if one defines

disorder via the number of accessible states, no inconsistencies arise). In the case
of the hard sphere system at high densities, the solid is the thermodynamically
stable phase, because in the regular crystalline structure more configuration space
is available. Other transitions also have very important entropic components in-
cluding the isotropic-nematic transition of liquid crystals, the phase separation of
binary mixtures, protein crystallization and entropic forces in general [54]. In all
these cases, computer simulations have played a decisive role in elucidating the
complex physics underlying these processes.

Recently, non-Boltzmann Monte Carlo simulation algorithms have been devel-
oped [18, 55], which permit a rather direct calculation of the entropy S(E) as a
function of the energy E from the density of states g(E). The basic idea of these so
called flat-histogram methods is to sample a phase space density ρ(H(x)), which
depends only on the system energy H(x). This phase space density ρ(H(x)) is
not constant but evolves in time in a particular way. Initially, one starts with a
guess for the dependence of ρ on H , using, for instance, a constant. As the simu-
lation proceeds, ρ(H) is adapted iteratively in a way such that all system energies
in a certain range occur with equal likelihood, i.e., the energy histogram is flat.
When flatness is achieved, the phase space density is inversely proportional to the
density of states, ρ(H(x)) ∝ 1/g(H(x)), and the entropy is given, except for a
constant, by S(E) = −kB ln ρ(E). Flat-histogram methods are of very general ap-
plicability. Recently, this idea has been used for the calculation of coarse grained
Landau-Ginzburg free energies via Monte Carlo simulations in Fourier space [56].
Dynamical versions of flat-histogram sampling, such as the metadynamics method
[57], have been proven very useful for the exploration of the configuration space of
complex systems.

While the early work of Alder and Wainwright and of Wood and Jacobsen, as
well as computer simulations performed later, unequivocally confirmed the exis-
tence of the hard sphere freezing transition, another related and seemingly simpler
question proved much more persistent, namely that about the structure of the
hard sphere solid. It took about forty more years to figure this out on the basis
of computer simulations. At high densities, the hard sphere solid is expected to
exist in a structure that supports close packing such as the face-centered-cubic
(fcc) structure or the hexagonal-close-packed (hcp) structure, which differ in the
particular way hexagonal close-packed layers of spheres are stacked on top of each
other. The question now is: is the fcc or the hcp structure the more stable phase?
Or, in other words, which one of the phases has the higher entropy? While in
both phases the first neighbor shell of each particle is identical, the fcc and hcp
structures differ in their second neighbor shell and beyond. It is this difference
that causes the entropy of the two phases to be different. Early analytical calcu-
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lations based on a series expansion indicated that the hcp structure has a higher
entropy than the fcc structure [58]. Computer simulations carried out between
1960 and 1990 gave inconclusive result which only demonstrated that the entropy
difference per particle, if any, is very small compared to kB. Using the so called
Einstein crystal technique, a thermodynamic integration method based on a ref-
erence system with particles attached to lattice sites with harmonic springs, and
sophisticated multicanonical sampling techniques, it was finally shown in the late
1990s that the fcc structure has the highest entropy [59, 60]. The entropy differ-
ence between fcc and hcp, which slightly increases as the density is raised from
melting to close packing, has a value of about 10−3kB with error bars of the order
of 10%. The fcc-structure has also a higher entropy than all other, random and
periodic, stacking sequences [61].

Computer simulations have not only helped to understand the structure of
systems with hard interaction, but also their dynamics. One early discovery con-
cerns the appearance of vortex-like flow patterns around moving particles in the
hard sphere fluid [62]. Such collective vortices effectively store the momentum of
a thermal particle and return it to the same particle at a later time, thus causing
autocorrelation functions to decay algebraically for long times rather than expo-
nentially as was originally expected from kinetic theory under the assumption of
uncorrelated binary collisions. Motivated by these computational results of Alder
and Wainwright, Cohen and Dorfman later reproduced the algebraic long-time
behavior of correlation functions with kinetic theory and traced it back to the im-
portance of ring collisions involving the correlated motion of many particles [63].
The vortices observed by Alder and Wainwright are consistent with predictions of
continuum hydrodynamics indicating that, in an averaged sense, hydrodynamics
remains valid all the way down to the atomic length scale.3 This conclusion was
also supported by later simulations [64]. More recently, computer simulations of
the dynamics of hard sphere systems have concentrated on the nucleation of the
stable solid phase from the metastable fluid generated by sudden compressions.
As already discussed by Boltzmann in the context of the van der Waals theory
[31], metastable phases may have macroscopic lifetimes before the phase transi-
tion occurs and the thermodynamically stable phase forms. Qualitatively, this
phenomenon can be understood by classical nucleation theory, which asserts that
the phase transformation occurs via the formation of a critical nucleus [65]. Cre-
ation of the interface between the nucleus of the stable phase surrounded by the
metastable phase carries a cost of free energy, such that this process initially raises
the free energy. Thus, most small crystalline clusters formed by random fluctu-
ations decay. Only when a rare fluctuation produces a cluster sufficiently large
for the volume term, related to the lower chemical potential of the stable phase,
to take over, can the nucleus spontaneously grow and initiate the phase transi-
tion. Recent computer simulations also showed that already for packing fractions
0.42 < φ < 0.49, well below the freezing transition of the hard sphere fluid, a

3However, the transport coefficients depend on the wave vector in this case.
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structural precursor to the development of long-range order exists [66]. It mani-
fests itself as a shoulder in the second peak of the radial distribution function and
is a consequence of crystalline domains commensurate with those in the crystal at
the melting point (φ = 0.55). Similar features have been experimentally observed
for several simple liquids.

A quantitative understanding of nucleation and growth from first principles is
currently attainable only with computer simulations. Frenkel and collaborators
recently developed new and efficient computational methods employing advanced
sampling techniques such as parallel tempering [40] to study the thermodynamics
and kinetics of the nucleation process, and applied them to the nucleation of
the hard sphere solid [67]. These and other new computational studies of the
structure and dynamics of hard sphere systems are far from being of only academic
interest. Rather, hard spheres are excellent models for colloidal systems that are
currently studied experimentally in various settings. Using advanced experimental
techniques such as confocal microscopy [68], it is now possible to study these
systems particle by particle, such that colloidal systems are a fascinating new
probing ground for statistical mechanical theories.

6 Fluctuation theorems and the Second Law

“The impossibility of an incompensated decrease of entropy seems to be reduced
to an improbability”. With this quote of Gibbs [69], Boltzmann opens the Fore-
word to Part II of his “Lectures on Gas Theory” [31]. Gibbs’ quote is from his
memoir “On the Equilibrium of Heterogeneous Substances” in which, among other
things, he discusses the entropy increase which occurs when two distinguishable
gases mix. Clearly, both Gibbs and Boltzmann, as they repeatedly expressed, were
fully aware of the fact that the tendency of the entropy to increase as the systen
relaxes towards equilibrium is an average property and that, particularly at small
time and lengths scales, fluctuations contrary to this macroscopic law are possible.
As new experimental tools become available to probe and manipulate small sys-
tems ranging from biomolecules and molecular motors to carbon nanotubes and
nanocrystals, a quantitative understanding of these fluctuations already envisioned
by Boltzmann and Gibbs is crucial for further progress.

We had to wait for over 100 years, however, for quantitative relations to emerge
which describe such fluctuations in various non-equilibrium situations. These re-
lations, now known as fluctuation theorems [70, 71, 72], essentially quantify the
probability of trajectories with negative entropy production relative to that of
trajectories with positive entropy production. The entropy production is related
to the heat released to or absorbed from the environment. As the heat transfer
is an extensive property, for macroscopic systems this relative likelihood is over-
whelmingly tilted towards entropy production in agreement with the Second Law.
This result also bears significance for the resolution of the so-called “reversibility
paradox” raised by Joseph Loschmidt in 1876 as a reaction to Boltzmann’s mon-
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umental 1872 paper. Loschmidt’s objection was based on the observation that for
a dynamics that is time-reversal invariant, trajectories along which the entropy
decreases must also exist. According to the fluctuation theorems, such entropy re-
duction episodes do indeed occur, but with a probability that practically vanishes
for macroscopic systems.

For the development of the fluctuation theorems, which can be viewed as an
extension of Boltzmann’s statistical interpretation of the Second Law of Thermo-
dynamics, computer simulations were extremely important. The first quantitative
study of entropy-reducing fluctuations was performed using molecular dynamics
simulations of a sheared fluid in a non-equilibrium steady state [73]. Closely
related to the fluctuation theorems is the Jarzynski equality [74], which relates
equilibrium free energies to the statistics of work carried out on a system during
non-equilibrium transformations. In the development of this exact result compu-
tation played a slightly different role than for the fluctuations theorems, for which
the results of computer simulations provided the motivation. In contrast, Jarzyn-
ski’s incentive to derive his equality originated in the desire to develop an efficient
computational algorithm for the calculation of free energies. An approximate pre-
cursor of Jarzynski’s method were finite-time switching approaches [75, 76], in
which upper and lower bounds to the free energy difference are obtained from the
dissipated work, while a system is switched irreversibly between the two states of
interest. Jarzynski then realized that it is possible to determine exact free energy
differences from such non-equilibrium trajectories along which the system departs
strongly from equilibrium. To be more specific, imagine a system with a Hamil-
tonian H(x, λ) depending on an external parameter λ that can be controlled, for
instance the position of a piston sealing a gas filled cylinder. Here, x denotes all
microscopic degrees of freedom of the system. Different values of λ correspond to
different macroscopic states which may differ in free energy:

∆F = FB − FA = −kBT ln

∫

dx e−βH(x,λB)

∫

dx e−βH(x,λA)
. (6)

Now, if one switches the external parameter from an initial value λA to a final
value λB in a finite time τ and the system evolves according to the rules of the
underlying dynamics, the work W =

∫ τ

0
(∂H/∂λ)λ̇dt is carried out on the system.

According to Clausius’ maximum work theorem, which is a consequence of the
Second Law of Thermodynamics, the average work 〈W 〉 carried out by changing
an external parameter is larger than the difference of the Helmholtz free energy of
the two equilibrium states corresponding to the initial and final value of λ,

〈W 〉 ≥ ∆F. (7)

The angular brackets denote an average over many realizations of the switchinng
process starting from canonically distributed initial conditions. The equality holds
only if the transformation is carried out reversibly, i.e., if the system is in equi-
librium at all times during the transformation. In 1997 Jarzynski proved under
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quite general conditions that, if the average is taken for the exponential of the
work rather than the work itself, the Clausius inequality is transformed into an
equality:

〈exp(−βW )〉 = exp(−β∆F ). (8)

Today, several proofs of the Jarzynski identity exist [74, 77, 78, 79, 80, 81, 82].
Due to the convexity of the exponential function, the maximum work theorem
follows as a corollary from this equality. Remarkably, the Jarzynski equality is
exact even if the system is violently driven away from equilibrium. In this case,
the average work carried out during the non-equilibrium process can exceed the
equilibrium free energy difference by far. Nevetheless, the equality (8) is saved by
the occurrence of very rare work fluctuations that provide significant contributions
to the exponential work average.

An important extension of Jarzynski’s equality was provided by Crooks [78],
who compared the probability distribution PF (W ) of the work W , carried out
during the switching process from A to B, to the work distribution PR(W ) for the
switching from B to A with the time reversed protocol. Crooks found that

PR(−W )

PF (W )
= exp[−β(W − ∆F )]. (9)

As the fluctuation theorems mentioned above, also this so-called Crooks fluctuation
theorem provides a quantitative relation for the probability of fluctuations that
seemingly violate the Second Law. The Jarzynski equation follows immediately
from the Crooks fluctuation theorem.

Both the Jarzynski equality and the Crooks fluctuation theorem can be easily
translated into computer algorithms for the calculation of free energies. Whether
such fast switching methods can be competitive compared to conventional ap-
proaches such as umbrella sampling or thermodynamic integration [11] is an open
question, but there are indications that they might not [4, 5]. The true significance
of these results, however, lies in the fact that they provide a rigorous way to ana-
lyze and interpret experiments carried out far away from equilibrium [83, 84]. As
some of the few known exact relations for non-equilibrium systems, the fluctuation
theorems briefly discussed in this section may prove crucial for the development
of a unified theory of non-equilbrium processes at small length and time scales.

7 Fractal phase space distributions and irreversibility of

nonequilibrium stationary states

Boltzmann’s probabilistic explanation of the irreversibility of macroscopic pro-
cesses applies to closed systems which do not interact with the outside world. He
repeatedly pointed to the significance of the initial conditions, if the system is
released from a non-equilibrium state to relax towards equilibrium. The question
arises, what makes the equilibrium state so unique in view of the time-reversible na-
ture of the (Newtonian) equations of motion for the particles? Pusz and Woronow-
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Figure 5. Modern micromanipulation equipment permits to exert well defined forces on
single molecules and probe the free energetics of selected degrees of freedom. On the left-
hand side a decaalanine molecule is stretched by a laser trap translated at constant speed
(graphics by Harald Oberhofer, University of Vienna). The free energy F (q) shown on
the right-hand side as a function of the end-to-end distance q was obtained by analyzing
the work performed on the system during the non-equilibrium stretching process [79, 85].

icz proved that equilibrium states are ”passive”, which means that no mechanical
work may be gained from an isolated system in such a state by applying an external
adiabatic perturbation [86, 87]. The notion of passivity is a particular formulation
of the Second Law and is equivalent to the statement that the system cannot be
used as a perpetuum mobile of the second kind. But what are the ”active” states
which may give rise to fluctuations violating the Second Law, and how are they
distributed in phase space? If the concept of passivity is applied to trajectories of
pure states, i.e. points in phase space, it has been shown for an ensemble of non-
interacting harmonic oscillators that the active states have measure zero and are
distributed on a Cantor-like fractal set in phase space [88]. Most likely, a similar
picture prevails also for more realistic systems, although we do not know of any
proof. For the first time, we encounter fractal objects in phase space in connection
with the Second Law.

Closer to laboratory experiments are systems in stationary nonequilibrium
states. Computer simulations turn out to be essential for the study of transport
properties in this case. Nonequilibrium states are generated by the application
of an external perturbation, which may be either mechanical (external fields) or
thermal (velocity or temperature gradients). Since the perturbation does work
on the system which is eventually dissipated into heat, a thermostating mecha-
nism is required to achieve a stationary state. A prototypical example is a gas
sandwiched between two huge blocks of copper at different temperatures acting
as thermostats such that a stationary heat flow develops from the warm to the
cold block. However, for computer modeling, the ”huge blocks” pose a serious
obstacle, since they add (too) many thermostated degrees of freedom to the prob-
lem. An ingenious dynamical scheme may be used to avoid the introduction of so
many additional variables. It consists in replacing a ”block” by a small number
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of thermostat particles and adding a constraint force −ζ(t)pi to their equations of
motion, which follows from Gauss’ principle of least constraint [89, 90]. Here, pi

is the momentum of the thermostat partice, and ζ(t) is a time-dependent friction,
one for each thermostat. In this way the kinetic energy (or internal energy) may be
controlled, either instantaneously (Gauss thermostat) or in a time-averaged sense
(Nosé-Hoover thermostat) [91, 92].

The key observation is that Gauss and Nosé-Hoover thermostats leave the equa-
tions of motion invariant with respect to time reversal. This means that for any
computer-generated trajectory obtained in the forward direction of time, the same
sequence read backwards in time with the sign of the momenta and the friction
variables reversed is also a solution of the original motion equations. Nevertheless,
a computer simulation of a thermostated nonequilibrium system always gives a
positive time-averaged friction variable (or a positive sum of time-averaged fric-
tion variables, if more than one thermostat is involved), if the evolution is followed
long enough either in the positive or negative direction of time. The system always
behaves irreversibly on a macroscopic time scale in accordance with the Second
Law although the microscopic dynamics is time reversible [93, 94, 95, 96].

To understand this behaviour, we consider as a simple example the Lorentz
gas introduced in Sec. 3. But now the point particle moving in a periodic array of
circular scatterers in two dimensions is also subjected to a constant force E acting
in the positive x direction, and a Gauss thermostat is used to keep the kinetic
energy exactly constant. Between collisions, the particle still moves with constant
speed but not on straight lines anymore (left panel of Fig. 6). On average, it

�

Figure 6. Left panel: Geometry and short trajectory of a periodic driven Lorentz gas.
In addition to the elastic reflections, a constant force E and a Gauss thermostat acts on
the wandering point particle. Right panel: Section of the phase-space probability in the
stationary nonequilibrium state. The same coordinates as in Fig. 3 are used.

experiences a constant drift velocity in the direction of the perturbing force. A
section of the phase space density f is shown in the right panel of Fig. 6 for
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this case. Whereas in the absence of the perturbation the points are uniformly
distributed as in the bottom-right panel of Fig. 3, the nonequilibrium stationary
state of Fig. 6 is characterized by a multifractal phase-space distribution f , which
is singular in every point. The following important chain of relations holds [97]:

〈

d ln δV

dt

〉

= −

〈

d ln f

dt

〉

= −
Ṡirr

kB

=

D
∑

l=1

λl = −〈ζ〉 < 0 (10)

The first two equalities state that any infinitesimally-small phase volume δV , co-
moving with the phase flow, shrinks on average and leads to an attractor and a
multifractal probability distribution f in phase space as shown in Fig. 6. Further-
more, the rate of irreversible entropy production, Ṡirr, is constant and positive as
expected for a stationary system, and is proportional to the time-averaged friction,
which determines the rate with which heat is extracted by the thermostat. It is
also proportional to the sum of all Lyapunov exponents,

∑D

l=1 λl, where D is the
dimensionality of the phase space, which is four in this particular model. Finally,
the last inequality assures that the associated transport coefficient, a conductivity,
is positive in accordance with the Second Law.

The fractal nature of the phase-space probability density f provides the key for
understanding irreversibilty in this case. Both forward and backward in time, a
phase space trajectory converges to this attracting set characterized by a negative
sum of Lyapunov exponents. A time reversal transformation maps this attracting
set into a repellor which is also a fractal set, but with a positive Lyapunov exponent
sum. Therefore, the repellor is much more unstable than the attractor, and the
phase flow always leads from the repellor to the attractor regardless of the direction
of time. This constitutes irreversibility on a macroscopic time scale.

Let us add a few comments concerning this remarkable result. The chain of
relations in Eq. (10) and the conclusions drawn from them are not particular to
this specific model, but - with very slight generalizations - apply to all stationary
nonequiliibrium systems with dynamical time-reversible thermostats. Through
the appearance of the Lyapunov exponents, it establishes a link between trans-
port theory and dynamical systems theory and opens a new way to understand
irreversibility and the Second Law [98]. It should be noted that this insight was
first obtained by computer simulations [93] with theoretical verification for simple
cases following later [99]. We like to think that Boltzmann would have approved
of these results which extend his way of thinking to a wide class of dynamical
systems in nonequilibrium stationary states.

Although these results are appealing and robust with respect to the choice of
the dynamical thermostats and details of the computation, they suffer from the
fact that this kind of thermostats cannot be realized in a laboratory experiment.
At present, there is great theoretical activity trying to extend these ideas and
concepts to the general case of stochastic constraints and boundaries.
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8 The Boltzmann equation

Boltzmann’s landmark paper of 1872 [100] had an enormous influence on the de-
velopment of statistical mechanics for multiple reasons. In that paper, Boltzmann
derived an equation, now known as the Boltzmann equation, for the time evolution
of the single particle distribution function f(x,v, t) in µ-space. In the absence of
external forces, the Boltzmann equation may be written in simplified form as

∂f

∂t
+ v ·

f

x

=
∂f

∂t

∣

∣

∣

∣

coll

. (11)

While the left-hand side of this equation describes the free streaming of the par-
ticles, the right-hand side takes into account the effect of intermolecular colli-
sions. Neglecting correlations, Boltzmann’s famous “Stoßzahlansatz”, or hypoth-
esis of molecular chaos, permits to write an explicit integral for the collision term
∂f/∂t|coll that depends only on single particle distribution functions and not on
higher ones. In this approximation, the collision integral consists of a loss and a
gain term due to molecules removed from, or injected into, a given µ-space element
by the collisions. The Boltzmann equation is an approximate but nevertheless very
complicated integro-differential equation. It can be analytically solved only by ap-
plying further approximations. Even then, its solution is not straightforward and
it took over 40 years before Chapman and, independently, Enskog succeeded in
deriving from it the viscosity of a dilute gas [44]. The macroscopic Navier-Stokes
equations for fluid flow follow from the Boltzmann equation provided the devia-
tions from local thermodynamic equilibrium are small.

Although the Boltzmann equation was developed to understand the proper-
ties of dilute gases in and away from equilibrium and, in this way, to support the
atomic hypothesis so vigorously promoted by Boltzmann, its significance extends
far beyond this particular application. Historically, one important point is that
the Boltzmann equation was the first equation of motion for a probability dis-
tribution. The equations of Smoluchovski, Fokker and Planck, Kolmogorov, etc.
grew out of this probabilistic approach and are currently used to describe a wide
range of phenomena in physics, chemistry, biology, and even in the social sciences.
The applications go far beyond those envisioned by Boltzmann when he wrote
down his equation [101, 102]. Also, Boltzmann’s H-theorem derived from the
Boltzmann equation initiated the discussion on irreversible behavior arising from
time-reversible equations of motion. This discussion still persists to the present
day as was mentioned briefly in Sec. 6 in connection with recent fluctuation the-
orems, and in Sec. 7, where we sketched a scenario for nonequilibrium systems
in stationary states. Finally, the Boltzmann equation provides an elegant way to
derive equilibrium distribution functions such as the famous Maxwell-Boltzmann
distribution in momentum space.

From a computational point of view, several modern simulation techniques,
particularly in the field of fluid dynamics, are based on Boltzmann’s stochastic
stream-and-collide idea [103, 104, 105, 106, 107, 108, 109]. At first sight, however,
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it is not immediately clear what the advantages of such a perspective are. After
all, the exact time evolution of an atomistic system can be followed in detail us-
ing molecular dynamics simulations, and all relevant microscopic and macroscopic
informations can be extracted from them. While this is true in principle, such
simulations are limited by the available computing resources both in the accessi-
ble length and time scales. Running on modern computer equipment, molecular
dynamics simulations can be used to follow dense atomistic systems with lin-
ear extensions up to of tens of nanometers for times up to tens of nanoseconds.
Phenomena occurring on longer length and time scales are outside the reach of
present-day molecular dynamics methods. Attempts to extend these limitations
have led to new computational methods which are based on the Boltzmann equa-
tion and, thus, emphasize its significance even today. These methods use coarse
graining of the system’s dynamics in a way which is consistent with macroscopic
hydrodynamics as embodied in the Navier-Stokes equations.

Whereas in macroscopic hydrodynamics the moving fluid is represented by con-
tinuous fields related to the conserved quantities, computational methods based
on the Boltzmann equation retain some atomistic features, however far less so
than detailed molecular dynamics simulations. The fundamental premise of all
these methods is that for the large scale flow, which arises from the collective
motion of many particles, the details of the microscopic collision dynamics are ir-
relevant. In the direct simulation Monte Carlo method of Bird [103], for instance,
binary collisions between particles still occur, but the collisions are determined
statistically rather then from the deterministic dynamics of the system. In this
method, the main idea is to decouple the motion of the “particles”, each possibly
representing many real atoms or molecules, from their collisions. To do this while
maintaining some crude spacial relations, space is partitioned into cells. The dy-
namics of the particles then consists of two steps: a free flight part, during which
the particles move deterministically in a force-free way, and a collision part that
takes into account particle interactions. The collisions are carried out by selecting
pairs of particles at random from the same cell with a probability depending on
their relative velocity. The collision parameters are then selected from appropriate
distributions, and the collision is completed according to the rules of Newtonian
mechanics for the selected random parameters. Energy and momentum are con-
served during these collisions, a necessary requirement for hydrodynamic behavior
to arise in the long wavelength limit. The statistical treatment of the collisions is
equivalent to Boltzmanns’s assumption of molecular chaos and, hence, the same
limitations apply. The direct simulation Monte Carlo method has been used to ad-
dress problems ranging from the dynamics of rarefied gases, for instance around a
spacecraft re-entering the atmosphere, to growth processes of thin films[104, 110].

Perhaps even closer to the Boltzmann equation is the Lattice Boltzmann method
where one considers mesoscopic particles (i.e., each particle is thought of consisting
of many microscopic particles) evolving on a regular lattice [108, 109]. Historically,
the Lattice Boltzmann method emerged from Lattice Gas Cellular Automata, in
which particles exist with discrete velocities on the sites of a lattice. In these mod-
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els, multiple occupation of lattice sites is possible but is limited to a maximum
number. The fictitious particle dynamics proceeds in discrete time steps, and dur-
ing each step particles move from one lattice site to another depending on their
current velocities (this is the streaming step of the dynamics). At the lattice sites,
particles interact and change velocities according to collision rules that guarantee
the conservation of total energy and momentum. Remarkably, one can show that
despite these drastic simplifications the macroscopic Navier-Stokes equation for
fluid flow arises in the continuum, limit provided the underlying lattice has the
proper symmetry [111]. Although Lattice Gas Cellular Automata can be used to
simulate hydrodynamic flow, they have some shortcomings, chiefly among them
the statistical noise stemming from the discrete nature of the occupation numbers.
These limitations were overcome by introducing the Lattice Boltzmann method
which differs from Lattice Gas Cellular Automata mainly by the replacement of
the discrete occupation numbers with continuous populations representing ensem-
ble averages. This eliminates statistical noise to a high degree. Today, the Lattice
Boltzmann method is used widely to study phenomena ranging from turbulence,
fluid flow in porous media, and aeordynamics to nanoscale hydrodynamics and hy-
drodynamic interactions in colloids. Complex boundary conditions can be easily
implemented in Lattice Boltzmann simulations such that flow in complicated ge-
ometries can be studied. It is also worth pointing out that the Lattice Boltzmann
methods ideally lend themselves to parallelization. A snapshot of a complex sound
generating air flow in a recorder calculated with the lattice Boltzmann method is
shown in Fig. 7.

Figure 7. Complex air flow in a recorder as computed with the Lattice Boltzmann
method. Shown in green is an iso-speed surface at 40% of the maximum jet speed
(simulation and figure by Hemut Kühnelt, University of Vienna).
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The Lattice Boltzmann method is more intimately related to the Boltzmann
equation than suggested by its historic origin from Lattice Gas Cellular Automata.
In fact, the Lattice Boltzmann method, or, more properly, the Lattice Boltzmann
equation, can be directly derived from the Boltzmann equation in the relaxation
approximation of Bhatnar, Gross and Krook [109]. In this approximation, also
a direct numerical solution of the Boltzmann equation with finite differences is
possible. However, the computational effort is extremely challenging particularly
for turbulent flow.

9 Coda

It is an amazing fact that even 100 years after Boltzmann scores of scientists
have not been able to come to the bottom of many of the problems he so boldly
sketched for us. This testifies to the inherent difficulties related to these prob-
lems, but also to the incredible creativity and insight from Boltzmann’s part to
recognize and isolate the essence of many problems and to provide a mathematical
framework which has withstood the test of time. Although he could not foresee
the possibilities computers offer to the present-day statistical physicist, his logic
has very often been translated into computer algorithms capable of illuminating
some aspects of the interplay between the microscopic and macroscopic world. He
is still considered the patron saint of their craft by most computational statistical
physicists.
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N02 and P18798-N20. We thank Helmut Kühnelt, Harald Oberhofer and Bernhard
Reischl for useful discussions and for providing Figures 1, 5, and 7.

References

[1] K. Binder and D. P. Landau, “A Guide to Monte Carlo Simulations in Statistical
Physics”, Cambridge University Press, Cambridge (2005).

[2] A. Bellemans and J. Orban, Phys. Lett. A 24, 620 (1967).

[3] M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande, Phys. Rev. Lett. 91, 140601
(2003).

[4] H. Oberhofer, C. Dellago, and P. L. Geissler, J. Phys. Chem. B 109, 6902 (2005).

[5] W. Lechner and C. Dellago, J. Stat. Mech.; Theory Exp., P04001 (2007).

[6] S. G. Brush, “The Kind of Motion We Call Heat”, North-Holland, Amsterdam (1976).

[7] D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chem-
istry, p. 301, J. Grotendorst, Ed., John von Neumann-Institut für Computing (NIC),
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[56] A. Tröster, Phys. Rev. B, in print (2007).

[57] A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002).

[58] W. G. Rudd, Z. W. Salsburg, A. P. Yu, and F. H. Stillinger, J. Chem. Phys. 49,
4857 (1997).

[59] P. G. Bolhuis, D. Frenkel, S.-C. Mau, and D. A. Huse, Nature 388, 235 (1997).

[60] A. D. Bruce, N. B. Wilding, and G. J. Ackland, Phys. Rev. Lett. 79, 3002 (1997).

[61] S.-C. Mau and D. A. Huse, Phys. Rev. E 59, 4396 (1999).

[62] B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970).

[63] E. G. D. Cohen and J. R. Dorfman, Phys. Rev. Lett. 25, 1257 (1970).

[64] D. C. Rapaport, Phys. Rev. A 36, 3288 (1987).



30 C. Dellago and H. A. Posch

[65] P. G. Debenedetti, “Metastable Liquids”, Princeton University Press, Princeton
(1996).

[66] T. M. Truskett, S. Torquato, S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Phys.
Rev. E 58, 3083 (1998).

[67] S. Auer and D. Frenkel, Adv. Polym. Sci. 173, 149 (2005).

[68] U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science 292,
258 (2001).

[69] J. W. Gibbs, Trans. Conn. Acad. 3, 229 (1875).

[70] D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645 (1994).

[71] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694 (1995).

[72] C. Bustamante, J. Liphard, and F. Ritort, Physics Today , p. 42, July 2005.

[73] D. J. Evans, E. G. D. Cohen, and G. P. Morris, Phys. Rev. Lett. 71, 2401 (1993).

[74] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[75] J. E. Hunter III, William P. Reinhardt, and Thomas F. Davis, J. Chem. Phys. 99,
6856 (1993).

[76] B.L.Holian, H.A.Posch, and W.G. Hoover, Phys. Rev. E 47, 3852 (1993).

[77] C. Jarzynski, Phys. Rev. E 56, 5018 (1997).

[78] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998).

[79] G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. USA 98, 3658 (2001).

[80] D. J. Evans, Mol. Phys. 101, 1551 (2003).

[81] W. Lechner, H. Oberhofer, C. Dellago, and P. Geissler, J. Chem. Phys. 124, 044113
(2006).
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