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Summary. We review recent results about the segregation process of a granular
mixture of disks on an horizontally oscillating tray. In this condition an initially
disordered mixture first segregates via the formation of stripes perpendicular to the
driving direction; then stripes merge in a coarsening process. We discuss quanti-
tatively both the short-time and the long-time dynamics of the system, and the
dependence of the observed phenomenology on the frequency and amplitude of os-
cillation of the tray. The same system is also investigated when, instead of being
disordered, is initially prepared in two stripes parallel to the driving direction. In this
condition the interface between the two stripes manifests an instability which again
leads to the formation of stripes perpendicular to the driving direction. Finally, we
shortly review the mechanism which have been proposed in order to explain the
observed segregation process.

1 Introduction

A granular medium consisting of a collection of dry, cohesionless, identical
particles exhibits a wide range of complex behaviours. Despite the simplic-
ity of the constituent particles no reliable mathematical model exist for most
of these collective phenomena. Of particular interest is the counter-intuitive
phenomenon of species segregation [1]. When subject to an external pertur-
bation, such as vertical or horizontal oscillations, an initially disordered bi-
nary mixture of grains (which may differ in size, mass, frictional properties)
often segregates their components. Depending on the driving conditions dif-
ferent mechanism, such as percolation [2–4], inertia [5], convection [6], or even
purely thermodynamical effects [7], have been shown to be responsible for the
segregation process.

Recently segregation of a binary mixture subject to horizontal oscillations
has been observed by T. Mullin and co-workers [8–11]. In their experiment
a granular disordered monolayer, composed of a mixture of steel spheres and
poppy seeds, where placed on a horizontal tray oscillating along the x-axis.
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They observed the system to segregate via the formation of a pattern of al-
ternating stripes of particles of the same kind, parallel to the y-axis.

In order to understand the physical mechanism which is responsible for
this segregation process we have recently investigated this experiment via
soft-core molecular dynamics simulations. Here we review our work [12–14]
and present new results relative to the coarsening process of the stripes.

2 Model

We perform soft core Molecular Dynamics simulations of a two-dimensional
granular media taking into account grain-grain and grain-tray interactions
[15]. Two grains with diameters Di and Dj in positions ri and rj interact if
overlapping, i.e., if δij = [(Di +Dj)/2−|ri−rj |] > 0. The interaction is given
by a normal repulsive force with viscous dissipation [16, 17]. In two dimensions
this reduces to the linear spring-dashpot model,

fn = knδijnij − γnmeffvnij , (1)

where kn and γn are the elastic and viscoelastic constants, and meff =
mimj/(mi + mj) is the effective mass. We follow the realistic simulations
of [11, 15] and model the interaction with the tray via a viscous force

ft = −µi(vi − vtray), (2)

where vtray(t) = 2πAν sin(νt)x is the velocity of the tray and vi the velocity
of the disk i, plus a white noise force ξ(t) with

〈ξ(t)ξ(t′)〉 = 2Γδ(t− t′). (3)

For the grain-grain interaction, we use the value kn = 2 105 g cm2s−2 and
γn chosen, for each kind of grains, such that the restitution coefficient is
given: e = 0.8 [17]. The two components of our mixture have mass Mh = 1
g and Ml = 0.03 g, and viscous coefficient µh = 0.28 g s−1 and µl = 0.34
g s−1. The white noise has Γ = 0.2g2cm2s−3. Apart from a simple rescaling
of masses and lengths, these values are those of reference [11] (and given
in private communications), and are taken from direct measurements on the
experimental system. We solve the equations of motion by the Verlet algorithm
with an integration time-step dt = 6µs, which is limited by the value of Kn

and not, as usual in numerical simulations of the Langevin equation, by the
relaxation time m/µ (in our case dt � Ml/µl � Mh/µh). The numerical
resolution of stochastic force may be difficult [18]. We have validated the
algorithm and the integration time step considering that smaller value of dt
reproduces the same results, and that the expected properties of a thermal
binary mixture are recovered if the grain-grain interaction is made elastic (i.e.
γn is set to zero).
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The heavier grains of our mixture have diameter Dh = 1 cm. We consider
lighter grains diameter Dl to be Gaussian distributed with mean value 0.7
cm and 17% polydispersity, or to have the same size of the heavier grains,
Dl = Dh = 1 cm. We use a tray of width dy = 20 cm and length dx = 40 cm
or dx = 320 cm. Our simulations refer to oscillations with amplitude A = 1.2
cm and frequency ν = 12 Hz. The qualitative picture we discuss does not
change if these values are changed.

The dynamics of the system is determined by the amplitude and the fre-
quency of oscillation, and by the grain properties: size, mass and area fractions.
These are defined as

Φl = Nl
π

4LxLy
D2

l , Φh = Nh
π

4LxLy
D2

h, (4)

where D2
l is the mean value of the square of small grains diameter (D2

l �= D2
l

when we considering polydisperse light grains), and Nh (Nl) is the number of
heavy (light) grains.

3 Dynamics

The dynamics of a disordered mixture subject to horizontal oscillations can be
schematically divided in two steps, stripes formation and stripes coarsening:

• Stripe formation After few oscillations of the tray particles of the same
species organize in cluster, which rapidly merge and orientate giving rise
to a pattern of stripes perpendicular to the driving direction, as shown in
Fig. 3.

• Coarsening On a much longer timescale a coarsening process takes place:
stripes of particles of the same kind merge. Consequently the number of
stripes decreases and the mean stripe width increases.

This qualitative explanations of the dynamics is formally described by the
temporal evolution of the quantity a characteristic length of the system in the
x direction, ξx. As usual in coarsening processes this length is defined as:

2πξx =
∫
dkxSx(kx)dkx, (5)

where Sx(kx) = S(kx, 0) is the structure factor for wave vectors �k = (kx, 0)
with null y component. Fig. 2 shows the time evolution of ξx for a mixture
of grains of equal size, and area fraction Φh = 0.20, Φl = 0.31. This is well
described by the following functional form

ξx(t) = a+ b exp(−t/τ) + ctα (6)
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Fig. 1. Evolution of a mixture of equal-sized grains subject to horizontal vibrations.
The plots show the state of the system (from top to bottom) after 0, 400, 9800 and
20500 oscillations. Periodic boundary conditions are used in both directions. Note
that about 7 stripes are observed after 400 taps, which becomes 4 after 20500 taps.
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which combines an exponential relaxation with lasts approximately τ 	 175
oscillations, with a subsequent coarsening process. In this last stage the char-
acteristic length grows with a power law with an exponent α 	 0.25. A similar
growth exponent has been observed in [8]. We discuss now in some more detail
the short dynamics (stripes formation) and the long time dynamics, coarsen-
ing.
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Fig. 2. Temporal evolution of the characteristic length of the pattern. This is well
described by eq. 6 (smooth line), which combines an exponential relaxation with a
coarsening process.

3.1 Short-Time Dynamics

In a previous work we have examined the short time dynamics of the sys-
tem [12]. The goal was to understand under which conditions stripes form,
an what is the dependence of the initial wavelength of the striped pattern
on the properties (amplitude and frequency) of the drive. In order to make
direct comparisons with the experiments this analysis has been conducted
with monodisperse heavy grains, and polydisperse small grains. Under these
conditions, which are those studied by T. Mullin and coworkers, the system
can be mixed or segregated in stripes. Moreover, if segregation occurs, stripes
of the monodisperse species can be either “fluid” or “crystalline”.

This behaviour, in the (φh, φl) plane, is summarized in the diagram of
Fig. 3(a) showing the system “fluid” and “crystal” regions along with their
segregation properties, for ν = 12 Hz and A = 1.2 cm. Large grains are con-
sidered to be in a “fluid” configuration when their radial density distribution
function, g(r), shows a first peak at r = Dh and a second one at r = 2Dh, and
to be in a “crystal” configuration when a new peak at r =

√
3Dh appears [10].
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Fig. 3. Panel a Ordering properties of the late stage configurations of the mixture
as a function of the area fractions of the two components. The shaded area covers
the region where segregation via stripes formation occurs. circles: large grains are
in a fluid state. squares: large grains form a crystal. stars: the system appears
blocked in a “glassy” disordered configuration (see text). When stripes form their
characteristic short time length scale λ is a function of the frequency, ν, and of the
amplitude, A, of the driving oscillations. This is shown, in the case φh = 0.30 and
φl = 0.28, in panels b and c.

The system is in a “glassy” state [19] when on the longest of our observation
time scales, the system is still far from stationarity.

Fig. 3(a) shows that grains at small concentrations are mixed and in a fluid
state. Segregation via stripes formation appears at higher concentrations. At
even higher concentrations, large grains form stripes with a crystalline order,
as smaller grains are always fluid for their polydispersity. Finally, at very high
area fractions, the system is blocked in its starting disordered configuration
(“glassy” region). For instance, by increasing φl at a fixed value of φh (say
φh 	 0.174), we observe first a transition from a mixed fluid state to a seg-
regated striped fluid and then a transition where the the monodisperse phase
crystallize. The experiments of [10], where φh 	 0.174, show the very same
transitions found here at locations differing by a 10%.
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In the case φh = 0.30 and φl = 0.28, where stripes form, we describe
their dependence on the dynamics control parameters in Figs. 3(b) and 3(c),
showing that the length scale λ = dx/n, with dx later dimension of the tray
and n number of stripes, increases as a function of the shaking frequency, ν,
and of the amplitude A. These results are to be compared, for instance, with
those found in liquid-sand mixtures under oscillating flow: as we will discuss
in the next section, in fact, is it possible that in the investigated system stripes
form as a result of a dynamical instability of Kelvin-Helmholtz type, the same
instability responsible for ripples formation in liquid-sand mixtures. While
our results show that the wavelength depends both on the amplitude and the
frequency of oscillations, in liquid sand mixture the wavelength depends on
the amplitude of oscillation, but not on its frequency [20].

In our system the dependence on ν can be schematically understood by
comparison with the characteristic time scales τh = Mh/µb and τl = Ml/µs

of the two species (here τ−1
h = 0.28 Hz and τ−1

l = 11.3 Hz): in the limit
ν � τ−1

h , τ−1
l grains are not able to follow the tray motion and no sensitivity

to ν is expected, as well as when ν � τ−1
l since the grains move with the

tray. Analogously, the dependence on A is expected to be substantial when A
is at least of the order of the mean grains separation length, l = (4φh/πD

2
h +

4φl/πD
2
l )−1/2, since under this condition grains strongly interact.

3.2 Long-Time Dynamics

The long time dynamics of the system is characterized by a coarsening process
in which the characteristic length of the system increases as a power law,
ξx(t) ∝ tα, with an exponent α 	 1/4, as Fig. 2 shows.

The term ‘coarsening’ is usually referred to describe the out-of equilibrium
dynamics of a binary mixture (or of a magnetic system) whose temperature is
quenched from a high value to a value Tq which is below the coexistence curve.
At Tq the stable state is made of two coexisting regions: one region is rich in
one component of the binary mixture (has positive magnetization), while the
other region is rich in the second component of the mixture (has negative
magnetization). Therefore the system, which shortly after the quench is still
in a mixed state, spontaneously segregate forming growing domains rich in
one species or the other. These characteristic size of these domains grow in
time with a power law with an exponent which is 1/4 for the case of conserved
order parameter (the binary mixture case), 1/3 if the order parameter is not
conserved (magnetic system) (for a comprehensive review see [21]).

The long-time dynamics of our system exhibits a phenomenology which
closely resemble that of a thermal system undergoing coarsening. However
it is worth noting that (at the moment) this coarsening process cannot be
interpreted like the phase separation of a binary mixture quenched below the
critical point. For instance, it is difficult to introduce a temperature in our
system. If we try to define the temperature as the velocity fluctuations, in fact,
we end up in a confusing situations: for each species the fluctations of the x and
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of the y component of the velocities are different (as if the temperature was a
vector), the temperature of the two components are different, and the velocity
distributions are not Maxwellian. At the present stage of understanding the
notion of temperature and that of stable phase for the investigated system
appear to be meaningless, and the coarsening process must be seen as induced
by the forcing.

In this respect one may try to devise a simple model to understand the
origin of the growth exponent α. The idea is to model the fluctuations of the
width of the stripes, and to consider that two stripes merge if in contact [8, 22].
Assuming that all of the trips have the same width in order for two stripes to
merge the need to fluctuate of a distance of order ξx. Therefore we have:

∂ξx
∂t

∝ n · dy · P (ξx) (7)

where n = dx/(2ξx) is the number of stripes, P (x) is the probability that a
point of a stripe fluctuates of a distance x, and dy the y length of the tray. In
order to estimate P (x) we assume that each point of a stripe makes a random
walk in the horizontal direction as a consequence of the various collisions; P (x)
is proportional to the time τ(x) we have to wait for a point to be displaced
by x: P (x) ∝ τ(x) ∝ 1/x2. With this assumption:

∂ξx
∂t

∝ 1
2
dxdy

1
ξ3x
, (8)

and therefore ξx(t) ∝ t1/4.

4 Dynamical Instability

We have seen so far that a disordered granular mixture subject to horizon-
tal oscillations segregates via the formation of stripes. Here we discuss the
evolution of the same system when the initial state is not disordered. On the
contrary the two species are placed in two stripes parallel to the driving direc-
tion, as show in 4. The solution of the equation of motion of a grain of mass
M interacting with the oscillating tray via a viscous force regulated by the
coefficient of friction µ is

x(t) = − A

1 + τ2ν2
[cos(νt) + τν sin(νt)], (9)

where τ = M/µ. In our system the two species, having different relaxation
times τh = Mh/µh = 3.57 s and τl = Ml/µl = 0.09 s, are thus forced to
oscillate with different amplitudes and different phases. In the configuration
shown in 4 (upper panel) one one may expect the two species to oscillate
independently (following equation 9 with different relaxation times), and the
initial configuration to be a stable one. But this is not the case. The oscillatory
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Fig. 4. Evolution of a binary mixture of disks placed on a tray oscillating along
the x direction. Here we consider the case in which the diameters of particles of
different species are equal. The pictures shows only 1/4 of the system length, which
is of 320 Db. The initial state (t= 0 s) is made of two stripes of particles of different
species parallel to the driving direction. As times goes on the flat interface between
the two species evolves via the formation of a sine-like modulation (t=40 s). Finally,
the wavy interface between grains of different species breaks leading to the formation
of a striped pattern as seen before (t=320 s).

motion of the tray induces an oscillating shear velocity at the interface between
the two species which causes the interface to evolve via the formation of
a modulation with a sine-like shape. As times goes on the amplitude of the
modulation grows until it breaks giving rise to the striped pattern seen before.

The mechanism responsible for the evolution of the pattern is understood
by considering Fig. 4 at t=40 s, and by making use of fluid-dynamics con-
siderations. Here ‘F’ and ‘H’ mark regions in which the horizontal motion
of grains of a given species is free, or hindered by the presence of grains of
the other species. By virtue of Bernoulli’s law the pressure in ‘F’ is smaller
than the pressure in ‘H’, implying a growth of the perturbed interface. This
sets-up a mechanism with a positive feedback, which leads to the formation
of the striped pattern. At the moment a closer connection between the inves-
tigated system and instability in fluids appears difficult. For instance one is
tempted to study the instability via a generalization of the Kelvin-Helmholtz
instability (which is a well-known fluid mechanical instability observed when
there is a constant shear velocity between two fluid flowing one past the the
other [23, 24]) to the case where the shear velocity between the two fluids
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oscillates in time. However the Kelvin-Helmholtz instability is investigated
introducing a typical lengthscale of the system, the capillary length, a combi-
nation of gravity and surface tension: in the investigated system gravity plays
no role, and there is no surface tension.

A dynamical instability similar to the one of Fig. 4 has been observed both
in two fluid systems [25] and in liquid sand mixtures [26]. In these cases, how-
ever, gravity stabilizes the interface in a wavy like configuration, and stripes
perpendicular to the driving direction are not observed.

5 Conclusion

We conclude by shortly discussing the mechanisms which have been pro-
posed in order to explain the observed segregation process. Originally the
phenomenology was attributed to the depletion potential [9], a form of inter-
action well known in colloidal systems [27]. Two big spheres immersed in bath
of smaller ones are subject to an effective potential, due to an entropic effect
(the clustering of big spheres increases the free space available to the smaller
ones, and consequently the entropy of the system), which is attractive at small
distances. This attractive interaction is used to explain the phase separation
of the system. The anisotropy of the drive, in turn, is used to explain why
the phase separation manifests via the formation of stripes [9]. However in
order for the depletion potential to exists it is necessary that the mixture is
made of particles of different size. Since we have observed segregation also in
the case of equal-sized particles, we can rule out the depletion potential as
a possible explanation of the observed phenomenology (in ref. [13] we show
that the depletion potential does not explain segregation even when the two
species have different size).

Another mechanism responsible for segregation, the ‘differential drag’, has
been proposed in [10, 28, 29]. Shortly, the authors suggest that since the two
species are forced to oscillate with different amplitudes and phases (see eq. 9)
there is an effective repulsion between particles of the different species, which
is responsible for the observed phenomenology. While it is certainly true that
such a repulsion exists and could possibly play a significant role in order
to explain the observed phenomenology, we note here that the ‘equilibrium‘
configuration of the system, that is the one that minimize this repulsion, is
made of stripes parallel to driving direction, and not of perpendicular stripes
as observed. When the stripes are parallel to the driving direction, in fact,
particles of different species never interact, while they interact if the stripes
are perpendicular to the driving direction.

Finally, in Ref. [12] we have suggested that the segregation process can
be related to instability process previously discussed. However there is no
direct evidence that this is instability is responsible for the segregation, and
it could be that the segregation process and the instability share a common
yet unknown microscopic origin.
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In conclusion, even though the overall phenomenology of the segregation
process of a granular mixture subject to horizontal oscillations is clear, the
microscopic origin of the observed phenomenology is still obscure.
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2005, edited by R. Graćıa-Rojo, H.J. Herrmann and S. McNamara.
15. H.J. Herrmann and S. Luding, Cont. Mech. Thermod. 10, 189-231 (1998).
16. P.A. Cundall and O.D.L. Strack, Geotechnique 29, 47-65 (1979).
17. L.E. Silbert, D. Ertas, G.S. Grest, T.C. Halsey, D. Levine and S.J. Plimpton,

Phys Rev E 64, 051302 (2001).
18. R. Mannella, in Stochastic Processes in Physics, Chemistry, and Biology, J.A.

Freund and T. Pöshel (ed.s) Springer-Verlag (2000); T. Pöshel and T. Schwa-
ger, Computational granular dynamics, Springer (2004).

19. “Unifying concepts in granular media and glasses”, (Elsevier Amsterdam,
2004), Edt.s A. Coniglio, A. Fierro, H.J. Herrmann, M. Nicodemi.

20. A. Stegner, J.E. Wesfreid, Phys. Rev. E 60, R3487 (1999).
21. N. Goldenfeld, Lecture on phase transitions and the renormalization group,

Addison-Wesley, 1992.
22. P.A. Mulheran, J. Phys. I France 4, 1 (1994).
23. H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1932).
24. S. Chandrasekhar, Hydrodynamic and Hydromagnetic stability. (Clarendon,

Oxford, 1961).
25. A.A. Ivanova, V.G. Kozlov and P. Evesque, Fluid Dynamics 36 362, (2002).
26. M.A. Scherer, F. Melo, M. Marder, Phys. of Fluids 11, 58-67 (1999).
27. S. Asakura and F.Oosawa, J. Chem. Phys. 22, 1255 (1954).
28. C.M. Pooley, and J.M. Yeomans, Phys. Rev. Lett. 93, 118001 (2004).
29. P. Sánchez, M.R. Swift, and P.J. King, Phys. Rev. Lett. 93, 184302 (2004).




