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Abstract. We study the stochastic motion of an intruder in a dilute driven
granular gas. All particles are coupled to a thermostat, representing the external
energy source, which is the sum of random forces and a viscous drag. The
dynamics of the intruder, in the large mass limit, is well described by a linear
Langevin equation, combining the effects of the external bath and of the ‘granular
bath’. The drag and diffusion coefficients are calculated under a few assumptions,
whose validity is well verified in numerical simulations. We also discuss the non-
equilibrium properties of the intruder dynamics, as well as the corrections due to
finite packing fraction or finite intruder mass.
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1. Introduction

Granular materials in the fluidized state [1, 2] have represented, during the last 10–
15 years, an excellent benchmark for new and old theories in non-equilibrium statistical
mechanics: the presence of non-conservative forces makes unavailable the standard tools
used at equilibrium, such as Gibbs measure, equipartition, thermodynamic limit, Einstein
relation and more [3]–[6]. It is therefore necessary to resort to more fundamental theories,
from the Boltzmann equation up to stochastic processes and modern generalizations of
statistical mechanics to non-equilibrium states [7, 8].

In order to achieve a stationary state, the fundamental ingredient is an external source
of energy, required to compensate the energy lost in inelastic collisions. The role of the
energy source is played by some injection mechanisms, depending upon the experimental
set-up, e.g. a box with a vibrating wall, a layer (or more than one) placed over a vibrating
plate, a gas flux going through orifices in the box walls, etc. The different mechanisms
may produce quite different states with different symmetries: for instance, a layer over a
vibrating plate is homogeneous on average, while a boundary driving (e.g. a shaken box
wall) leads to spatial gradients and currents [9]–[11].

From the point of view of a tracer particle, however, the dynamics is always of a similar
kind: the tracer interacts, in a random sequence, with the surrounding particles and with
the energy source. The ratio between frequencies of interaction dictates the relevance of
tracer–particle collisions with respect to exchanges between the tracer and the source.
Of course, in a boundary-driven set-up, the statistics of collisions suffered by the tracer
depends upon the distance from the energy source. Anyway, the random motion performed
by the granular tracer should always take into account the two contributions: collisions
with other granular particles and interaction with the energy source. In more idealized
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set-ups, the so-called homogeneous or non-homogeneous cooling states, no energy injection
is involved: in this regime, anyway, a collisional stationary state cannot be achieved and
experimental verification is very difficult to reach.

Here we consider a model commonly used in the theoretical literature on granular
fluids: all grains are coupled to a thermostat-like energy source, with a typical interaction
time τb which is usually taken larger than the interparticle collision time τc [12, 13]. The
stationary granular gas obtained in this way, is then used as a ‘granular bath’ where
a massive intruder performs a non-equilibrium Brownian motion, still being coupled to
an external energy source. The result is a double bath whose properties are analyzed
starting from a linear Boltzmann–Lorentz–Fokker–Planck equation, which is treated in
the diffusional approximation (large mass) to be cast into a Langevin equation.

Self-diffusion of an intruder [14, 15] or a tracer [16, 17] has been previously studied in
the homogeneous cooling state. The same calculations have been performed for models
with an impact-velocity-dependent restitution coefficient [18] and a good review of the
main results can be found in the textbook [8]. Diffusion in a stationary granular fluid
obtained by imposing shear boundary conditions has also been considered [19].

To the best of our knowledge this is the first time that self-diffusion of a large
mass intruder is studied for a model with homogeneous energy injection, considering
explicitly the effect of a ‘double bath’, i.e. of both sources of noise, granular and external,
respectively. A Langevin equation (31) with expressions for the tracer temperature,
equation (34), mobility, equation (32), and diffusion coefficients, equation (35), all involve
the interplay of both energy sources. The large mass limit, together with the molecular
chaos assumption (due to diluteness), guarantees that a granular fluctuation–dissipation
theorem holds, where the ratio between diffusion and mobility is simply given by the
intruder granular temperature [20, 21].

In section 2 we introduce the model (granular gas, thermostat and intruder); in
section 3 the Kramers–Moyal expansion and the large-mass limit are discussed, leading
to the Langevin formulation in section 3.2. Numerical experiments (molecular dynamics
and direct simulation Monte Carlo) are performed to study the limits of the assumptions
used in section 4 and finally conclusions and perspectives are drawn in section 5.

2. The model

We consider a gas of N granular spheres in d dimensions, each sphere has index i, with
i ∈ [1, N ], and mass mi. Particle i = 1 (referred to as ‘the intruder’) has mass M and
radius R, while all other particles (usually denoted as ‘the gas’) have mass m and radius

r. The parameter ε =
√

m/M will be used for large-mass expansion. The system is
contained in a box of volume V = Ld, much greater than the volume occupied by the
particles, so that the hypothesis of molecular chaos applies. We denote by n = N/V the
density of the gas and by φ the occupied volume fraction (in d = 2 it is, for instance,
φ = π[(N − 1)r2 + R2]/V).

The intruder and the gas particles undergo binary instantaneous inelastic collisions
when coming into contact, with the following rule:

vi = v′
i −

mj

mi + mj

(1 + α)[(v′
i − v′

j) · σ̂]σ̂ (1)

vj = v′
j +

mi

mi + mj
(1 + α)[(v′

i − v′
j) · σ̂]σ̂, (2)

doi:10.1088/1742-5468/2010/04/P04013 3
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where vi (vj) and v′
i (v′

j) are the post- and pre-collisional velocities of particle i (particle

j), respectively; α ∈ [0, 1] is the restitution coefficient1 and σ̂ is the unit vector joining the
centers of the colliding particles. The mean free path of the intruder is l0 = 1/(n(r+R)d−1).
Two kinetic temperatures can be introduced for the two species: the gas granular
temperature Tg = m〈v2

i 〉/d (i > 1) and the intruder granular temperature Ttr = M〈v2
1〉/d.

In order to maintain a fluidized granular gas, an external energy source is coupled to
every particle in the form of a thermal bath. The motion of a particle i with velocity vi

is then described by the following stochastic equation:

miv̇i(t) = −γbvi(t) + fi(t) + ξb(t). (3)

Here fi(t) is the force taking into account the collisions with other particles and ξb(t) is
a white noise, with 〈ξb(t)〉 = 0 and 〈ξb,iα(t)ξb,jβ(t

′)〉 = 2Tbγbδijδαβδ(t − t′), where Latin
indices refer to particle labels while Greek indices denote Cartesian coordinates2.

The effect of the external energy source balances the energy lost in the collisions and
a stationary state is attained. Several temporal scales are important in this system:

• τ g
c , the mean free time between collisions of a gas particle;

• τ tr
c , the mean free time between collisions of the intruder;

• τ g
b = m/γb the typical interaction time of the bath with gas particles;

• τ tr
b = M/γb the typical interaction time of the bath with the intruder.

When γb is small enough to have the mean free times τ g
c and τ tr

c smaller than the
interaction times τ g

b and τ tr
b , inelasticity is sufficient to put the gas out of equilibrium:

this is reflected, among other things, in the failure of equipartition Tg < Tb and Ttr < Tb.
It is also known that Tg �= Ttr [22, 23].

The main goal of this paper is to show that, in the limit of large mass M , the
force f1 acting on the intruder can be expressed by means of a Langevin-like formula
f1(t) = −γgV(t) + ξg(t), providing explicit expressions for γg and 〈ξg(t)ξg(t

′)〉.
In order to do that, let us start by writing the coupled Boltzmann equations for the

probability distributions P (V, t) and p(v, t), denoting (for simplicity) by V and v the
intruder velocity and the gas velocity, respectively:
∂P (V, t)

∂t
=

∫
dV′[Wtr(V|V′)P (V′, t) − Wtr(V

′|V)P (V, t)] + BtrP (V, t)

∂p(v, t)

∂t
=

∫
dv′[Wg(v|v′)p(v′, t) − Wg(v

′|v)p(v, t)] + Bgp(v, t) + J [v|p, p],

(4)

where Btr and Bg are two operators taking into account the interactions with the thermal
bath. In these equations the effects of the collisions for the tracer and the gas particles
are described by, respectively,

Wtr(V|V′) = χ

∫
dv′

∫
dσ̂p(v′, t)Θ[−(V′ − v′) · σ̂](V′ − v′) · σ̂

× δ(d)

{
V − V′ +

ε2

1 + ε2
(1 + α)[(V′ − v′) · σ̂]σ̂

}
(5)

1 For simplicity we consider the restitution coefficient to be equal for all particles.
2 We use a constant γb, but in principle this coefficient may depend on the mass and on the radius of the particle,
since it is only a model description of a more complicated interaction with plates, walls or fluids going through
the granular medium.
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and

Wg(v|v′) =
χ

N

∫
dV′

∫
dσ̂P (V′, t)Θ[−(V′ − v′) · σ̂](V′ − v′) · σ̂

× δ(d)

{
v − v′ +

1

1 + ε2
(1 + α)[(v′ −V′) · σ̂]σ̂

}
, (6)

where Θ(x) is the Heaviside step function, δ(d)(x) is the Dirac delta function in d

dimensions and χ = g2(r+R)
l0

, g2(r + R) being the pair correlation function for a gas

particle and an intruder at contact; in the expressions (5) and (6) we have assumed that
the probability P2(|x−X| = r+R,V,v, t) that a collision between the intruder and a gas
particle occurs, when they have velocities V and v and positions X and x, respectively,
is given by the Enskog approximation [8]

P2(|x − X| = r + R,V,v, t) = g2(r + R)P (V, t)p(v, t) (7)

which is a small correction to molecular chaos, taking into account density correlations
near the intruder; the terms describing the action of the thermal bath are

BtrP (V, t) =
γb

M

∂

∂V
[VP (V, t)] +

γbTb

M
ΔV [P (V, t)] (8)

Bgp(v, t) =
γb

m

∂

∂v
[vp(v, t)] +

γbTb

m
Δv[p(v, t)], (9)

where Δv is the Laplacian operator with respect to the velocity; finally, the Boltzmann
collision operator for the particle–particle interactions J [v|p, p] can be found in many
papers, see, for instance, [24]. In view of the fact that it is not relevant for the rest of the
paper, we omit its explicit expression.

2.1. Decoupling the gas from the tracer

The two Boltzmann equations appearing in the system (4) are coupled through the terms
involving Wtr and Wg. Nevertheless, if the number N of granular particles is large enough,
the term Wg can be neglected because of the factor 1/N in equation (6). Hence, the
surrounding gas is weakly perturbed by the tracer and fast and homogeneous relaxation
is expected. One assumes that the probability distribution function p(v) is stationary and,
following numerical evidence (verified below), it is approximated by a Gaussian function
with variance Tg/m:

p(v) =
1

√
(2πTg/m)d

exp

[
−mv2

2Tg

]
. (10)

Substituting equation (10) into equation (5), and projecting the velocities along the
collision direction and the orthogonal one, the integral can be solved [25], yielding

Wtr(V
′|V) = χk(ε)−2(V ′

σ − Vσ)2−d 1
√

2πTg/m

× exp{−m[k(ε)−1(V ′
σ − Vσ) + Vσ]2/(2Tg)}, (11)

doi:10.1088/1742-5468/2010/04/P04013 5
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where Vσ = V · σ̂ (note that σ̂ is parallel to V′ −V) and k(ε) = (1 + α)ε2/(1 + ε2). From
now on we specialize to the two-dimensional case, where the above equation simplifies to

Wtr(V
′|V) = χ

1
√

2πTg/mk(ε)2
exp{−m[V ′

σ − Vσ + k(ε)Vσ]2/(2Tgk(ε)2)}. (12)

As discussed in detail below, once the gas is decoupled from the intruder, the dynamics of
the tracer alone is Markovian, and it is known that such transition rates satisfy detailed
balance with respect to a Gaussian-invariant probability P (V) [25] (the temperature of
the tracer, in that case, where m = M , is given by α+1

3−α
Tg [26]).

2.2. Granular temperature of the gas

The granular temperature Tg can be obtained from the Langevin equation (3). Indeed,
multiplying by v(t) and averaging, one gets

1

2
m

d

dt
〈v2(t)〉 = −γb〈v(t)2〉 + 〈v(t)f(t)〉 + 〈v(t)ξb(t)〉. (13)

At stationarity, the lhs of the above equation vanishes and 〈v(t)ξb(t)〉 = 2γbTb/m. The
term 〈v(t)f(t)〉 represents the average power dissipated by collisions, which we assume to
be dominated (this is true for N large enough) by gas–gas collisions:

〈v(t)f(t)〉 = −〈ΔE〉col, (14)

where ΔE = 1/8m(1 − α2)[(v1 − v2) · σ̂]2 is the energy dissipated per particle and the
collision average is defined by

〈· · ·〉col = χg

∫
dσ̂

∫
dv1

∫
dv2 · · · p(v1)p(v2)Θ[−(v1 − v2) · σ̂]|(v1 − v2) · σ̂|

where χg =
g′2(2r)

lg0
and lg0 = 1/(n(2r)d−1) is the mean free path for gas–gas collisions and

g′
2(2r) is the pair correlation function for two gas particles at contact. The integral in

equation (14) can be computed by standard methods [8] and, in two dimensions, yields

〈ΔE〉col = χg

√
π(1 − α2)√

m
T 3/2

g . (15)

Substituting this result into equation (13) and recalling that Tg = m〈v2〉/2, one finally
obtains the implicit equation

Tg = Tb − χg

√
πm(1 − α2)

2γb

T 3/2
g , (16)

which can be solved to obtain Tg.

3. Kramers–Moyal expansion for the tracer–gas collision operator

With the assumption discussed above, the system of equations (4) is decoupled. That
allows us to write the following linear Master Equation for the tracer:

∂P (V, t)

∂t
= Lgas[P (V, t)] + Lbath[P (V, t)], (17)

doi:10.1088/1742-5468/2010/04/P04013 6
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where Lgas[P (V, t)] is a linear operator which can be expressed by means of the Kramers–
Moyal expansion [27]:

Lgas[P (V, t)] =

∞∑

n=1

(−1)n∂n

∂Vj1 · · ·∂Vjn

D
(n)
j1···jn

(V)P (V, t), (18)

(the sum over repeated indices is meant) with

D
(n)
j1...jn

(V) =
1

n!

∫
dV′(V ′

j1
− Vj1) . . . (V ′

jn
− Vjn)Wtr(V

′|V), (19)

and Wtr is given by relation (12). The second term in the Master Equation represents the
interaction with thermal bath:

Lbath[P (V, t)] = BtrP (V, t). (20)

In the limit of large mass M , i.e. small ε, we expect that the interaction between the
granular gas and the tracer can be described by means of an effective Langevin equation.
In this case, we keep only the first two terms of the expansion [27]:

Lgas[P (V, t)] = − ∂

∂Vi
[D

(1)
i (V)P (V, t)] +

∂2

∂Vi∂Vj
[D

(2)
ij (V)P (V, t)]. (21)

A justification of this truncation, in the limit of small ε, comes from observing that terms

D
(n)
j1···jn

are of order ε2n: this can be obtained by plugging equations (1) (for the case of
the tracer, i.e. V ≡ v1) into (19).

It is useful at this point to introduce the velocity-dependent collision rate and the
total collision frequency

r(V) =

∫
dV′Wtr(V

′|V), (22)

ω =

∫
dV P (V)r(V). (23)

The former quantity can be exactly calculated, giving

r(V) = χ

√
π

2

(
Tg

m

)1/2

e−ε2q2/4

[
(ε2q2 + 2)I0

(
ε2q2

4

)
+ ε2q2I1

(
ε2q2

4

)]
, (24)

where the rescaled variable q = V/
√

Tg/M is introduced in the appendix through
equation (A.14) and In(x) are the modified Bessel functions. To have an approximation
of ω, on the other side, one has to make a position about P (V). Let us take it to be
a Gaussian with variance Ttr/M . The consistency of this choice will be verified in the
following section. With this assumption, the collision rate turns out to be

ω = χ
√

2π
√

Tg/m + Ttr/M = χ
√

2π

(
Tg

m

)1/2
√

1 +
Ttr

Tg
ε2 = ω0K(ε), (25)

where ω0 = χ
√

2π(Tg/m)1/2 and K(ε) =
√

1 + (Ttr/Tg)ε2.

doi:10.1088/1742-5468/2010/04/P04013 7
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3.1. Large-mass limit

We are then able to compute the terms D
(1)
i and D

(2)
ij appearing in Lgas. The result and the

details of the computation of these coefficients as functions of ε are given in the appendix.
Here, in order to be consistent with the approximation in (21), from equation (A.15) we
report only terms up to O(ε4):

D(1)
x = −χ

√
2π

Tg

m
qx(1 + α)ε3 + O(ε5)

= −χ
√

2π

(
Tg

m

)1/2

(1 + α)ε2Vx + O(ε5)

= −ω0(1 + α)ε2Vx + O(ε5) (26)

D(1)
y = −ω0(1 + α)ε2Vy + O(ε5) (27)

D(2)
xx = D(2)

yy = χ
√

π/2

(
Tg

m

)3/2

(1 + α)2ε4 + O(ε5)

=
ω0

2

Tg

m
(1 + α)2ε4 + O(ε5) (28)

D(2)
xy = O(ε6). (29)

The linear dependence of D
(1)
β upon Vβ (for each component β) allows a granular

viscosity

ηg = ω0(1 + α)ε2. (30)

In the elastic limit α → 1, one retrieves the classical results: ηg → 2ω0ε
2 and D

(2)
xx =

D
(2)
yy → 2ω0ε

2(Tg/M). In this limit the fluctuation–dissipation relation of the second kind
is satisfied [28, 29], i.e. the ratio between the noise amplitude and γg, associated with
the same source (collision with gas particles), is exactly Tg/M . When the collisions are
inelastic, α < 1, one sees two main effects: (1) the timescale associated with the drag
τg = 1/ηg is modified by a factor (1 + α)/2, i.e. it is weakly influenced by inelasticity;
(2) the fluctuation–dissipation relation of the second kind is violated by the same factor
(1 + α)/2. This is only a partial conclusion, which has to be reconsidered in the context
of the full dynamics, including the external bath: this is discussed in the next section.

3.2. Langevin equation for the tracer

Putting together the results in equations (26)–(29) with equations (17)–(21), we are finally
able to write the Langevin equation for the tracer:

MV̇ = −ΓV + E , (31)

where Γ = γb + γg and E = ξb + ξg, with

γg = Mηg = Mω0(1 + α)ε2 = ω0(1 + α)m (32)

〈Ei(t)Ej(t
′)〉 = 2

[
γbTb + γg

(
1 + α

2
Tg

)]
δijδ(t − t′), (33)

doi:10.1088/1742-5468/2010/04/P04013 8
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concluding that the stationary velocity distribution of the intruder is Gaussian with
temperature

Ttr =
γbTb + γg

(
1+α

2
Tg

)

γb + γg
. (34)

Equation (31) is consistent with the Gaussian ansatz used in computing ω0. Note that
the above expression for Ttr is consistent with the large-mass expansion obtained in
equation (29) only if it is dominated by Tg, for instance when γg 	 γb (see the discussion
at the end of the appendix). In the opposite limit, the tracer dynamics is dominated
by the coupling with the external bath and the typical velocity of the tracer cannot be
taken sufficiently small with respect to the typical velocity of gas particles, making the
expansion unreliable. In this case, however, if the diameter of the intruder is similar to
that of the gas particles, it is reasonable to expect similar collision frequencies: the gas
particles will therefore be dominated by the external bath and the whole system will be
very near to equilibrium [30, 12].

For the self-diffusion coefficient it is immediately obtained that

Dtr =

∫ ∞

0

dt〈Vx(t)Vx(0)〉 =
Ttr

Γ
=

γbTb + γg

(
1+α

2
Tg

)

(γb + γg)2
. (35)

Solving numerically equation (16) and substituting the result into the above equation,
one can study Dtr as a function of the restitution coefficient α (this is done numerically
in the next section). When all other parameters are kept constant and α is reduced from
1, the behavior of Dtr is non-monotonic; it decreases, has a minimum and then increases
for lower values of α. Anyway, this minimum is expected for quite low values of α or high
values of the packing fraction φ, where the approximations involved in this theory are not
good. For this reason, at the values of parameters chosen to have a good comparison with
simulations, this non-monotonic behavior is not observed.

It should also be noticed that, in the homogeneous cooling state, the self-diffusion
coefficient at a given granular temperature increases as α is reduced from 1, i.e. it has
an opposite behavior with respect to the present case [14, 15]. Other studies on different
models of driven granular gases have found expressions very close to equation (32), which
is not surprising considering the universality of the main ingredient for this quantity,
i.e. the collision integral [5, 31].

3.3. Energy fluxes and detailed balance

A few comments are in order, at this point, concerning the non-equilibrium properties of
this system. The first question comes about the term (1 + α)/2 which multiplies Tg in
equation (34). It is easily explained with the following argument [25]: we have assumed
that the tracer feels no memory of past collisions, which means that any post-collisional
correlation with recoiling gas particles is lost. With these assumption, the fate of the
recoiling particles can be ignored and the dynamics concerns only the intruder:

V = V′ − (1 + α)
m

M + m
[(V′ − v) · σ̂]σ̂, (36)

where v is the pre-collisional velocity of the colliding gas particle (randomly extracted
from the given distribution p(v)). Then, one simply observes that for any value of α,
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M and m, such a rule can be rewritten as an elastic collision rule with an effective mass
M ′ = 2(M + m)/(1 + α)−m ≈ 2/(1 + α)M for large intruder mass. This is equivalent to
saying that the tracer has elastic interactions with the gas particles, with an effective mass
M ′, and therefore feels an effective temperature of the gas T ′

g = (M/M ′)Tg = (1 + α)/2Tg.
Note that this argument, for m = M , gives the formula T ′

g = (1 + α)/(3 − α)Tg, which
has been derived for the first time in [26].

The energy injection rates of the two thermostats [32] are

Qb = 〈V(t) · (ξb − γbV)〉 = 2
γb

M
(Tb − Ttr) (37)

Qg = 〈V(t) · (ξg − γgV)〉 = 2
γg

M
(T ′

g − Ttr). (38)

It is easy to see that the balance of fluxes Qb = −Qg is equivalent to formula (34) for Ttr.
This balance implies that, if Ttr < Tb, then Ttr > T ′

g. When α < 1, the two fluxes are
different from zero, i.e. energy is flowing from the external driving, through the tracer,
into the granular bath.

Apparently, this contradicts the ‘equilibrium’ nature of the Langevin equation (31):
the tracer dynamics is Markovian and stationary, and the equation satisfies detailed
balance with respect to the Gaussian-invariant distribution. As already discussed
in [25], this is not a paradox but only a consequence of molecular chaos and the
decoupling assumption which allows us to write equation (17): here we have employed the
Enskog approximation, which is a weak modification of molecular chaos, still preserving
Markovianity, i.e. no memory terms appear in equation (4). The absence of memory
implies that both ξb and ξg are white noises and makes them indistinguishable: an observer
which can only measure V(t) cannot obtain separate measures of Qb and Qg, but only a

measure of the total energy flow Q = M〈V · V̇〉 = 0 which hides the presence of energy
currents. A more detailed analysis, e.g. by relaxing the Enskog approximation, should put
in evidence the different time correlations of the two baths: eventually, the observer, by
means of some ‘filter’, should be able to sort out their different contributions Qb and Qg.
This is an interesting example where memory plays a crucial role in the non-equilibrium
characterization of a system [33].

We expect that time reversibility (detailed balance) is a symmetry, for the intruder,
which is broken in the following cases: (i) at small values of M (this is different from
the case discussed in [25], where the intruder was not in contact with the external bath);
(ii) when the non-Gaussian behavior of the gas velocities is taken into account; (iii) when
the tracer has asymmetric properties with respect to some spatial axis [34] and (iv) when
molecular chaos (or its weak Enskog correction) is violated [5].

4. Numerical simulations

In this section we report the results of molecular dynamics (MD) simulations of the model,
together with direct simulation Monte Carlo (DSMC) simulations [35] incorporating the
Enskog correction, and compare them with our theoretical predictions. In all simulations
we have kept constant the dimension d = 2, the mass of gas particles m = 1 and the
radii r = R = 0.005, as well as the properties of the bath Tb = 1 and γb = 0.1; instead
we have varied N , M , α and φ (values of L and n can be obtained from the knowledge
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Figure 1. The autocorrelation function C(t) = 〈Vx(t)Vx(0)〉 is measured in
MD and DSMC simulations (black circles and red diamonds, respectively) for
M = 100, 25, 5, 2 in the model with restitution coefficient α = 0.8 and packing
fraction φ = 0.007 85 and coupled to a thermal bath with γb = 0.1 and Tb = 1.
The blue lines show the theoretical predictions of equation (39).

of r and φ). We have used the Carnahan–Starling expression for g2 at contact [36]:
g2(r + R) = (1 − 7

16
φ)/(1 − φ)2. For the chosen values of φ ≤ 0.07, it is always

g2(r+R) ≤ 1.12. In all simulations we have also checked that the Gaussian approximations
for the velocity distributions of gas particles and for the intruder are satisfied, observing
very small values for the second Sonine coefficient a2 ≤ 0.02 [8].

In figure 1 we show the velocity–velocity autocorrelation function C(t) = 〈Vx(t)Vx(0)〉
of the tracer for different values of its mass M = 100, 25, 5, 2 in a dilute and moderately
inelastic case: α = 0.8 and φ = 0.007 85 (and N = 104 for MD). We can clearly observe
that in the case of large mass M = 100 the Langevin equation (31) describes very well
the dynamics of the tracer. Indeed, in that case, the numerical results are consistent with
the theoretical prediction:

C(t) =
Ttr

M
e−(Γ/M)t. (39)

As expected, for smaller values of M , the numerical results move away from the analytical
ones and large corrections to the exponential decay do appear. The deviations are observed
(and are quantitatively similar) for both MD and DSMC results, implying that they are
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Figure 2. The temperature Ttr (top panel) and the drag coefficient γg (bottom
panel) measured in MD (black circles) and DSMC (red diamonds) is plotted for
different values of the packing fraction φ = 0.007 85, 0.2, 0.5, 0.7 in the model
with M = 100, N = 104 (in MD) and α = 0.8 (error bars fall within the
symbols). The dashed blue lines show the theoretical predictions following from
equations (34), (32).

due, as expected, to the breakdown of the large-mass expansion, rather than that of
molecular chaos. For MD results we have noticed that, going from N = 103 to N = 104,
the comparison with DSMC (and with theory at large M) is improved.

In order to check the validity of the hypothesis of molecular chaos, we report the
results of MD and DSMC simulations for higher packing fractions in figure 2, keeping
M = 100, N = 104 (in MD) and α = 0.8: since the clean part of the decay of C(t)
is always exponential, we focus only on the two parameters of interest, i.e. Ttr and γg.
One clearly observes that, increasing the packing fraction, the discrepancy between the
theoretical value and the values obtained from MD increases. On the other hand, DSMC
always gives results very close to theory, as expected. The Enskog approximation (7),
which does not take into account memory effects, is no longer valid in MD at high packing
fraction, while it always holds in DSMC. In order to enforce this statement, we computed
the following correlation coefficient: CV um = (〈δVxδum〉)/(

√〈δV 2
x 〉

√〈δu2
m〉), where we

introduced the stochastic variable um(t) given by the averaged x-component velocity of
the particles lying, at time t, in a fixed area around the tracer. In particular, δVx and
δum measure the deviations of Vx and um from the average values, which tend to 0 for a
large number of measures. The coefficient defined above must be zero, if molecular chaos
holds; in contrast, we observed that its value sensibly increases as the packing fraction gets
higher. For example, for φ = 0.007 85, CV um = 0.005 whereas for φ = 0.07, CV um = 0.07.

Finally let us compare the diffusion coefficient Dtr =
∫ ∞

0
dtC(t) measured in MD and

DSMC with the theoretical value obtained through equations (16) and (35). In figure 3 we
show our results at different values of α, keeping fixed M = 100, φ = 0.007 85 and N = 104

(in MD). Again there is a perfect match for DSMC, while MD simulations present a small
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Figure 3. The diffusion coefficient of the tracer Dtr is measured in MD
(black circles) and DSMC (red diamonds) simulations for different values of the
restitution coefficient α = 0.9, 0.8, 0.7, 0.6 in the model with M = 100 and packing
fraction φ = 0.007 85. The dashed blue line shows the theoretical prediction
following from equations (16), (35). In the inset the same curve is plotted in the
whole range α ∈ [0, 1].

discrepancy which becomes more evident at small values of α. We have again verified that
this discrepancy is a finite N effect and is reduced as N increases.

5. Conclusions

While many papers have been devoted to the large mass diffusive properties of an intruder
in a cooling granular gas, the driven case, somehow, has received less attention [19]: this is
in contrast with the fact that, in real experiments, the most common situation is a driven
granular gas. The problem, at the level of the basic assumptions treated here (Enskog
approximation, negligible non-Gaussianity and large separation of timescales between
collisions and driving), does not pose particular conceptual difficulties. Nevertheless it
is revealed to be already quite rich. The external driving mechanism, characterized
by a temperature Tb and the ‘internal’ granular bath at temperature Tg < Tb, sum
up together in giving a linear Langevin dynamics for the intruder, provided that the
collision frequency between the intruder and the gas particles is larger than the frequency
of interaction with the bath. Such a Langevin equation predicts for the ‘intruder
temperature’ Ttr a weighted sum (with weights given by the drag coefficients of the two
baths) of Tb and T ′

g = (1 + α)/2Tg, i.e. the intruder feels the surrounding gas to be at a
different temperature T ′

g < Tg, because of non-conservative interactions. The self-diffusion
coefficient is even more interesting, showing a non-trivial non-monotonic behavior with a
minimum at low values of the restitution coefficient. Our results lose validity when the
mass of the intruder is reduced, when the packing fraction of the gas is increased, when
the inelasticity is too low to disregard non-Gaussian corrections, and when the interaction
times of the two baths become comparable.
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It is interesting to discuss what is happening at moderately high packing fractions
φ ∼ 10%: we have seen that the Enskog approximation is not very good to predict
the intruder dynamics, because it is missing memory effects mediated by the surrounding
fluid. A scenario which can be conjectured is the following: the gas may display two typical
relaxation times, a local one related to collisions τrel ∼ τ g

c and a global one τ ′
rel > τrel,

which is due to the diffusion of slower modes (e.g. hydrodynamics). If τ ′
rel > τ tr

c > τrel,
one has that the intruder feels a ‘locally equilibrated’ surrounding granular gas. In this
case it is reasonable to replace equation (10) with

p(v) =
1

√
(2πTg/m)d

exp

[
−m(v − u)2

2Tg

]
(40)

where u and Tg are some local velocity and temperature fields which change on timescales
larger than τ tr

c (and correspondingly large spatial scales). A partial verification of this
scenario has been mentioned at the end of [5], but requires further investigation.
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Appendix. Calculation of first two coefficients of the Kramers–Moyal expansion

For larger generality (whose motivation is discussed in the conclusions), in this appendix
we discuss the case where the gas surrounding the intruder may have a non-zero average
u:3

p(v) =
1

√
(2πTg/m)d

exp

[
−m(v − u)2

2Tg

]
(A.1)

which is a simple task involving only the definition of new shifted variables

c = V − u (A.2)

c′ = V′ − u. (A.3)

We are interested in computing

D
(1)
i (V) =

∫
dV′(V ′

i − Vi)Wtr(V
′|V) =

∫
dc′(c′i − ci)χ

1
√

2πTg/mk(ε)2

× exp{−m [c′σ + (k(ε) − 1)cσ]
2
/(2Tgk(ε)2)}. (A.4)

3 Note that in all the cases discussed in the main text, we have always taken u = 0.
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Figure A.1. An example for the change of variables (c′x, c′y) → (cσ, c′σ), introduced
in equation (A.5). Such change of variable, when inverted, has two possible deter-
minations: in this example both represented vectors c′ yield the same (cσ , c′σ).

In order to perform the integral, we make the following change of variables (see
figure A.1 for an example):

cσ = cx
c′x − cx√

(c′x − cx)2 + (c′y − cy)2
+ cy

c′y − cy√
(c′x − cx)2 + (c′y − cy)2

c′σ = c′x
c′x − cx√

(c′x − cx)2 + (c′y − cy)2
+ c′y

c′y − cy√
(c′x − cx)2 + (c′y − cy)2

(A.5)

which implies

dc′ = dc′xdc′y → dcσdc′σ|J |, (A.6)

where

|J | =
|c′σ − cσ|√
c2
x + c2

y − c2
σ

Θ(c2
x + c2

y − c2
σ) (A.7)

is the Jacobian of the transformation. The collision rate is then

r(V) = χ

√
π

2Tg/m
e−(mc2/4Tg)

[
(c2 + 2Tg/m)I0

(
mc2

4Tg

)
+ c2I1

(
mc2

4Tg

)]
, (A.8)

where In(x) are the modified Bessel functions. For D
(1)
i we can write

D
(1)
i (V) = χ

∫ +∞

−∞
dcσ

∫ ∞

cσ

dc′σ(c′i − ci)|J | 1
√

2πTg/mk(ε)2

× exp{−m [c′σ + (k(ε) − 1)cσ]
2
/(2Tgk(ε)2)}

= χ

∫ +c

−c

dcσ

∫ ∞

cσ

dc′σ(c′i − ci)
c′σ − cσ√
c2 − c2

σ

× 1
√

2πTg/mk(ε)2
exp{−m[c′σ + (k(ε) − 1)cσ]2/(2Tgk(ε)2)} (A.9)
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where we have enforced the constraint of the theta function, namely cσ ∈ (−c, +c), with
c =

√
c2
x + c2

y. Notice that the integral in dc′σ is lower bounded by the condition c′σ ≥ cσ

which follows from the definition of cσ. In order to compute the integral, we have to invert
the transformation (A.5). That yields two determinations for the variables c′x and c′y (see
figure A.1):

(A)

⎧
⎪⎨

⎪⎩

c′x − cx =
c′σ − cσ

c2

(
cσcx + cy Sign(cx)

√
c2 − c2

σ

)

c′y − cy =
c′σ − cσ

c2

(
cσcy − cx Sign(cx)

√
c2 − c2

σ

)

(B)

⎧
⎪⎨

⎪⎩

c′x − cx =
c′σ − cσ

c2

(
cσcx − cy Sign(cx)

√
c2 − c2

σ

)

c′y − cy =
c′σ − cσ

c2

(
cσcy + cx Sign(cx)

√
c2 − c2

σ

)
.

Then the integral (A.9) can be written as

D(1)
x (V) =

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ[(c′x − cx)
(A) + (c′x − cx)

(B)]|J |

× 1
√

2πTg/mk(ε)2
exp{−m[c′σ + (k(ε) − 1)cσ]2/(2Tgk(ε)2)}, (A.10)

yielding

D(1)
x = −2

3

1

l0
k(ε)

√
mπ

2Tg

cxe
−(mc2/4Tg)

[
(c2 +3Tg/m)I0

(
mc2

4Tg

)
+(c2 + Tg/m)I1

(
mc2

4Tg

)]
,

D(1)
y = −2

3

1

l0
k(ε)

√
mπ

2Tg
cye

−(mc2/4Tg)

[
(c2 +3Tg/m)I0

(
mc2

4Tg

)
+(c2 + Tg/m)I1

(
mc2

4Tg

)]
.

(A.11)

Analogously, for the coefficients D
(2)
ij one obtains

D(2)
xx (V) =

1

2

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ
[(

(c′x − cx)
(A)

)2
+

(
(c′x − cx)

(B)
)2

]
|J |

× 1
√

2πTg/mk(ε)2
exp{−m[c′σ + (k(ε) − 1)cσ]2/(2Tgk(ε)2)}

=
1

2

1

l0

k(ε)2

15

√
2mπ

Tg
e−(mc2/4Tg)

×
{

[c2(4c2
x + c2

y) + 3Tg(7c
2
x + 3c2

y)/m + 15T 2
g /m2]I0

(
mc2

4Tg

)

+

[
c2(4c2

x + c2
y) + Tg(13c2

x + 7c2
y)/m + 3T 2

g /m2
−c2

x + c2
y

c2

]
I1

(
mc2

4Tg

)}
,

(A.12)
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D(2)
xy (V) =

1

2

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ[(c′x − cx)
(A)(c′y − cy)

(A) + (c′x − cx)
(B)(c′y − cy)

(B)]|J |

× 1
√

2πTg/mk(ε)2
exp{−m[c′σ + (k(ε) − 1)cσ]2/(2Tgk(ε)2)}

=
1

2

1

l0

k(ε)2

5

√
2mπ

Tg

e−(mc2/4Tg)cxcy

×
[
(c2 + 4Tg/m)I0

(
mc2

4Tg

)
+

c4 + 2c2Tg/m − 2T 2
g /m2

c2
I1

(
mc2

4Tg

)]
. (A.13)

Then we introduce the rescaled variables

qx =
cx√
Tg/m

ε−1 qy =
cy√
Tg/m

ε−1, (A.14)

obtaining

D(1)
x (V) = −2

3

1

l0

√
π

2

Tg

m
qxk(ε)εe−(ε2q2/4)

[(
ε2q2 + 3

)
I0

(
ε2q2

4

)
+

(
ε2q2 + 1

)
I1

(
ε2q2

4

)]
,

D(2)
xx (V) =

1

2

1

l0

1

15

√
2π

(
Tg

m

)3/2

k(ε)2e−(ε2q2/4)

×
{

[ε4q2(4q2
x + q2

y) + 3ε2(7q2
x + 3q2

y) + 15]I0

(
ε2q2

4

)

+

[
ε4q2(4q2

x + q2
y) + ε2(13q2

x + 7q2
y) + 3

−q2
x + q2

y

q2

]
I1

(
ε2q2

4

)}

D(2)
xy (V) =

1

2

1

l0

1

5

√
2π

(
Tg

m

)3/2

qxqyk(ε)2ε2e−(ε2q2/4)

×
[
(
ε2q2 + 4

)
I0

(
ε2q2

4

)
+

(
ε4q4 + 2ε2q2 − 2

ε2q2

)
I1

(
ε2q2

4

)]
. (A.15)

Up to this last result we have not introduced any small ε approximation. The next step
consists in assuming that q ∼ O(1) with respect to ε, which is equivalent to assuming
that c2 ∼ Tg/M : this assumption must be compared to its consequences, in particular
to equation (34); the assumption is good for not too small values of α and for γg 	 γb,
i.e. when Ttr ∼ Tg. When this is the case, expanding in ε and using that I0(x) ∼ 1 + x2/4
and I1(x) ∼ x/2 for small x, one finds equation (29).
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