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Abstract:

Anomalous scaling laws appear in a wide class of phenomena where global dilation invariance fails. In this case, the description of scaling
properties requires the introduction of an infinite set of exponents.

Numerical and experimental evidence indicates that this description is relevant in the theory of dynamical systems, of fully developed
turbulence, in the statistical mechanics of disordered systems, and in some condensed matter problems.

We describe anomalous scaling in terms of multifractal objects. They are defined by a measure whose scaling properties are characterized by a
family of singularities, which are identified by a scaling exponent. Singularities corresponding to the same exponent are distributed on a fractal set.
The multifractal object arises as the superposition of these sets, whose fractal dimensions are related to the anomalous scaling exponents via a
Legendre transformation. It is thus possible to reconstruct the probability distribution of the singularity exponents.

We review the application of this formalism to the description of chaotic attractors in dissipative systems, of the energy dissipating set in fully
developed turbulence, of some probability distributions in condensed matter problems. Moreover, a simple extension of the method allows us to
treat from the same point of view temporal intermittency in chaotic systems and sample to sample fluctuations in disordered systems.

We stress the phenomenological nature of the approach and discuss the few cases in which it was possible to reach a more fundamental
understanding of anomalous scaling. We point out the need of a theory which should explain its origin and pave the way to a microscopic calculation
of the probability distribution of the singularities.

Io fingo e suppongo che qualche corpo si muova all’insu secondo la nota proporzione et orizzontal-
mente con moto equabile . . .
Se poi le palle di piombo, di ferro, di pietra, non osservano quella supposta direzione, suo danno: noi
diremo che non parliamo di esse.

I feign and assume that some bodies move vertically according to the known ratio, and horizontally
by uniform motion. ..
If balls made of lead, iron or stone do not comply to this rule, it is all to their disadvantage: for we shall
say that we are not talking of them.

Evangelista Torricelli

0. Introduction

Scaling invariance plays a fundamental role in many natural phenomena and is often related to the
appearance of irregular forms which cannot be described by the usual differential geometry. A classical
example is given by the Brownian motion the study of which led Jean Perrin [P06, P13] to understand
the physical relevance of non-differentiable curves and surfaces.

The necessity of introducing a new class of geometrical objects, the fractals, has subsequently arisen
in various different problems. Indeed, some aspects of ‘fractality’ were already present in the ideas of
some scientists at the beginning of this century like Perrin himself, Besicovitch, Hausdorff, Wiener,
Richardson, but the concept of ‘fractal object’ was explicitly formulated and made popular in the
scientific community in recent years by Mandelbrot.

The main idea consists in the characterization of the scaling structure of an object by means of an
index, the fractal dimension D, which coincides for ‘ordinary’ shapes with the usual (topological)
dimension D. Indeed, the dimensionality of objects can be defined in different ways. One can define it
as a topological concept by counting the number of independent directions in which one can move
around any given point (for a rigorous definition see, e.g., [ER85]). One can call this notion the
topological dimension. On the other hand, we can define the fractal dimension as a ‘capacity’ measure
by considering the number N(/) of hypercubes of edge / necessary to cover an object embedded in a
D-dimensional space in the limit /—0:

N(l) o« 7PF (0.1)
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It follows that D, < D and the object is called fractal if D> D..

The fractal dimension is purely geometrical, i.e. it only depends on the shape of the object. In
general, one has to assign to the physical object a suitable probability measure du, according to the
particular phenomenon considered.

The measure du should scale with the resolution length. Let us define a coarse grained probability
density

P = duo 02)
A

as the ‘mass’ of the hypercube A; of size /, with i=1,2,... N(I). The scaling rate is given by the

information dimension D, defined by Balatoni and Renyi [BR56]:

N(I)

2 p;In(p)=D;In()). (0.3)

One can easily show that D, = D. where the equality is valid only for a uniform distribution
p*=1/N(l) = I°F for each box A,.

D, is a more interesting index than D.. It must be noted, in fact, that the number Ny(/) of boxes
containing the dominant contributions to the total mass, and thus the relevant part of the information,
is:

Ng(ys 1™ (0.4)

as consequence of the Shannon-McMillan theorem (see e.g. [K57)).

If D, <D, then the measure itself is called fractal [F82] since it is singular with respect to the
uniform distribution p*, i.e. p,/p* can diverge in the limit of vanishing /. The support of the measure is
in this sense an inhomogeneous fractal object.

The principal aim of this review is to characterize different physical systems by means of the analysis
of the probability measure singularities. The understanding of their structure can be actually achieved
by extracting from experiments or simulations the ‘mass’ moment scaling

N

<mmﬂsgmm“wﬂ%u (0.5)

The d_ are the Renyi dimensions which generalize the information dimension D; = d, as well as the
fractal dimension D, = d,. If the fractal is homogeneous, then one can extract g out of the average
operation in (0.5) and the Renyi dimensions are therefore all equal to the fractal dimension. On the
contrary, if the d’s are not constant, one speaks of anomalous scaling and, as the order g varies, the
amount of the difference d, — Dg gives a first rough measurement of the inhomogeneity of the
probability distribution. Such a behaviour arises in many different systems and was first pointed out by
Mandelbrot [M74] in fully developed turbulence. Subsequently Parisi and coworkers [FP85, BPPV84]
introduced the concept of multifractal object in the same context, realizing that the moment scaling
indices can be related to the scaling of the probability distribution of the singularities. The object can be
regarded in this approach, further developed by Halsey et al. [HIKPS86, JKLPS85], as an interwoven
family of different homogeneous fractal sets S(a) on which the measure has a singularity of type « (i.e.
p:(!) < 1* for boxes A, belonging to S(a)). It is possible to relate the Renyi dimensions (which can be
directly measured in experiments) to the fractal dimensions f(a) of the sets S(«) (or equivalently to the
probability of picking up a singularity o with resolution scale /) via a Legendre transformation.
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This is the heart of the method which has been also applied to the study of the moments of generic
observables A computed on scale /:

<A(l)q> o [8D)

Despite its name, anomalous scaling, i.e. a non-linear shape of the function g(g), is the more common
situation even if it contrasts with the standard ideas about critical phenomena where one usually
considers only a finite number of scaling exponents.

Moreover the same object can be a multifractal with respect to a certain observable and a
homogeneous fractal with respect to another one. The reader can find an explicit example of such a
feature in section 2.

Up to now we have looked at multifractality as the manifestation of the spatial fluctuations of the
observables. Nevertheless, temporal scaling features appear of great importance in the chaotic
evolution of deterministic dynamical systems. In these cases one usually observes strong time variations
in the degree of chaoticity. This intermittency phenomenon involves an anomalous scaling with respect
to ‘time dilations’ identifying the parameter exp(—¢) with the parameter / used in spatial dilations. A
measure of the degree of intermittency requires the introduction of infinite sets of exponents which are
analogous to the Renyi dimensions and can be related to a multifractal structure given by the dynamical
system in the functional trajectory space.

In section 1 we introduce the multifractal formalism in the context of dissipative dynamical systems.

We define the Renyi dimensions of the natural measure generated by a deterministic evolution law
on a chaotic attractor and describe the numerical algorithms for their calculation. Indeed, typical
chaotic attractors can be regarded as multifractal objects. We discuss in detail how the scaling of the
probability that a point of the attractor (representative of the state of the dynamical system) belongs to
S(e) is determined by the fractal dimensionality f(«) of S(a) and we point out that there is a singularity
hierarchy the top of which is given by the information dimension D),.

If the attractor is homogeneous, the natural measure is not fractal and has only a singularity
a = D = D, with respect to the Lebesgue measure and d, = Dy, Vq.

In section 2 we apply this approach to the study of the statistical properties of fully developed
turbulence where there is spatial intermittency of the energy dissipation &(x) implying anomalous
scaling laws for the moments of the velocity differences, the so-called structure functions. Intermittency
can be reproduced by models assuming that ¢ is concentrated on fractal structures with D, <3.

One may then consider ¢ as a mass density and a non-homogeneous distribution corresponds to
anomalous scaling laws as in chaotic attractors. This allows us to extend the results of section 1 to the
characterization of the singularities of &.

We introduce a multiplicative process (random S8-model) for building-up a proper multifractal object
and thus obtain a good fit to the experimental data with only one adjustable parameter on the basis of
phenomenological assumptions.

We also emphasize that the multifractal nature of turbulence does not affect in a substantial way
some phenomena like the separation of particle pairs whereas it is relevant in determining the number
of degrees of freedom involved.

Section 3 shows how the degree of temporal intermittency of the chaoticity in a dynamical system can
be measured by indices which are extracted either by an experimental signal (the Renyi entropies K| )
or by numerical calculations (the generalized Lyapunov exponents L(g)).

The multifractal approach can be extended to the study of ‘temporal inhomogeneities’ with slight
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modifications and it allows to reconstruct the probability distribution which rules the temporal
fluctuations around the average degree of chaoticity measured by the Kolmogorov entropy K, and the
characteristic Lyapunov exponents. We also give some examples of numerical calculations of the L(g)’s
in dynamical systems with few degrees of freedom.

We finally discuss the case of one-dimensional chaotic maps which highlights the relation between the
multifractal method and the thermodynamic formalism introduced for hyperbolic systems by Bowen,
Ruelle, Sinai and Walters. In this framework we show that the appearance of edges in the Renyi
entropies is an indication of phase transitions.

In section 4 the techniques developed for the characterization of the chaotic behaviour of dynamical
systems will be used in the study of the trajectories given by the products of random transfer matrices.
They can, e.g., describe the localization of the wave function of the Schroedinger equation in a random
potential or the partition function of spin glasses. The multifractal approach is in this case the analogue
of the usual statistical theory of finite volume fluctuations of the physical observables (we shall
respectively consider the localization length and the free energy) among different replicas of the same
system with respect to disorder. The calculation of the generalized Lyapunov exponents therefore gives
the possibility to reconstruct the scaling properties of the probability distribution of the observables.
The mass density is the density of replicas characterized by the same observable value corresponding to
trajectories with the same degree of chaoticity, and in this sense the replicas define a multifractal object
in the realization space.

In section 5 we analyse some critical phenomena (localization transition and conduction in random
resistor networks at the percolation threshold) as well as some growth phenomena (diffusion limited
aggregation) where a hierarchy of different exponents appears as a new interesting feature. We stress
the fact that, approaching the critical point, the probability of finding scaling exponents different from
that corresponding to the information dimension tends to zero as a power of correlation length.

In section 6 the reader will find some concluding remarks.

1. Chaotic attractors as inhomogeneous fractals
1.1. Why study attractors’ dimensions?

Recently, it has been shown that deterministic evolution laws may lead to chaotic behaviours even in
absence of external noise [LL83, ER85]. This phenomenon, called deterministic chaos, is essentially
due to a sensitive dependence on initial conditions and has a great relevance in the description of many
physical systems whose dynamics can be modelled by ordinary differential equations or maps:

dx/dt=f(x(¢)), x(i+1)=g(x(i)) (1.1.1)

with x, f, g€R".

One of the first examples was given by Lorenz [L63] who showed that a dynamical system of just
three differential equations can be chaotic.

In this section we limit ourselves to the study of the attractors of dissipative systems but many results
can also be applied to generic chaotic signals. Indeed, after a transient, a dissipative system usually
evolves in the neighbourhood of a set called attractor (for a rigorous definition see, e.g., [ER85]).

The concept of dimension is relevant for the dynamics because it provides a precise way to estimate
the number n, of independent relevant variables involved in the evolution.
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To be explicit, let us consider fixed points, limit cycles, tori, where n; is the dimension of the
attractor.

A trivial example is given by a dynamical system with a stable fixed point x,,, where for large times
x(t)— x, (fig. 1a). The attractor is a zero-dimensional set and n, = 0. On the other hand, a limit cycle
(fig. 1b) is a one-dimensional set and n,=1 since x(#) asympotically evolves on a line. Generally
speaking, for a quasi-periodic motion with n incommensurate frequencies, the attractor is an n-
dimensional torus and n;, =n <F.

On the contrary, the spatial features of deterministic chaos are much more complex as numerical
experiments indicate that the points generated by the time evolution (1.1.1) cover a strange set with a
selfsimilar structure (see fig. 2). This chaotic attractor usually is a fractal object [M82] in the phase
space. What is in this case the effective number of degrees of freedom? The fractal dimension Dy, of the
attractor gives a first estimate of n; since one has the lower bound:

ne=[Dg] +1 (1.1.2)

where [()] is the integer part of (-).

)

<
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‘//
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Fig. 1. Example of a stable fixed point (a) and of a stable cycle (b).
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Fig. 2. Structure of the attractor of the Henon map [H76], with 2 = 1.4 and b =0.3. (b), (c) and (d) show successive blow-ups of the regions inside
the box of the previous figure.

We have decided here and in the following, to use the term fractal dimension in the sense of the
definition (0.1) instead of the term Hausdorff dimension D, [H19] which involves the evaluation of the
extremum among different non-uniform partitions into hypercubes of edge </. One has D, < D, but
in typical cases the equality holds.

Let us briefly discuss the procedure to compute D. The analysis of the practical difficulties will in
fact lead to introduce, in a quite natural way, an infinite set of generalized dimensions.

Remark that we are assuming that the dynamical system is ergodic and mixing so that it is possible to
extract the statistical properties by a time average on a single trajectory.

Following the definition of D (0.1) the most direct computational method is the box-counting
[RHOB80]. One generates the series x; = x(ir), i =1, ... M > 1 and divides the region of R” where the
motion evoives in hypercubes of edge /.
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Namely let us consider the number N(/) of F-dimensional hypercubes of size / necessary to cover the
attractor (i.e., containing at least one point x,), in the limit M— oo

N(l)<I P for I-0. (1.1.3)

With this definition, D of a regular attractor is the usual (topological) dimension.

The box-counting method is rather difficult to be applied whenever F =3 because of the consuming
of computer memory. Other methods have therefore been introduced for estimating the fractal
dimension of chaotic attractors.

Grassberger and Procaccia [GP83a] have defined a correlation dimension v by considering the scaling
of the correlation integral:

C)= lim - E 2 6(I—|x,~x) (1.1.4)

i j#i

where 9 is the Heaviside step function. C(!) is the percentage of pairs (x,, x,) with distance |x, — x,| <!

and in the limit /— 0 one has:

l’]

Cly«1”. (1.1.5)

If each box has the same density of points, v is equal to Dy. Typical chaotic attractors however are
inhomogeneous fractal and one can show that in general

v=<D;. (L.L6)

v is a more ‘relevant’ scaling index than Dy since it is related to the point probability distribution
generated by (1.1.1) on the attractor (‘natural’ or ‘physical’ measure, see [ER85]) while D cannot take
into account an eventual inhomogeneity in the visit frequencies. The correlation dimension v in fact
measures the scaling properties of the average density of points even if it gives no information on the
density fluctuations.

Indeed, let us define the number of points in an F-dimensional ball of radius / and centre x,

n(l)= m 1)29(1 |x, — x;|) (1.1.7)

ji
in order to write down the correlation integral as the average number of points in the ball:

()= (n(l)) (1.1.8)
where (f) =lim,_. M™' LY f(x,), by ergodicity. On the other hand the fluctuations of n, are ruled

by a probability distribution Wthh can be reconstructed by knowledge of the moments ( n(/ )") [PV84].
We must therefore introduce a whole set of generalized scaling exponents [BR56, G83, PV84]:

M

(%) = lim All 2 n (1) = 19 (1.1.9)
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where ¢(1) = ». In a homogeneous fractal ¢(q) = Dg- q and the deviations from this linear law are a
measure of the degree of inhomogeneity. In fig. 3 ¢(q) vs. g is shown for the Henon map [H76].

If we consider a uniform partition of the phase space into boxes of size [ it is convenient to introduce
the probability p, (/) that a point x, falls into the kth box.

In this case the moments of p, can be estimated by summing up the boxes:

N()

(p()Ty = 2 p(D)* o], (1.1.10)
k=1
The exponents d, are called Renyi dimensions and a moment of reflection shows that

#(q)/q=d,., (1.1.11)

because of the ergodicity n,(/)~ p,(I) if x, belongs to the kth box and since one can use either an
“ensemble” average (weighted sum over the boxes) or a ‘temporal’ average (sum of the time evolution

x(1)).
The fractal dimension is obtained by relation (1.1.11) for g = —1:

D.=d,=—¢(-1) (1.1.12a)

while the correlation dimension is:

v=d,=¢(1). (1.1.12b)
AQ
g |2@
6 /o
/,/,O
4 /°
SO
IS
2 Pel
3

Fig. 3. ¢(q) vs. q for the Henon map [H76] with a=1.2 and b =0.3. The dashed line indicates ¢(q) = D,q.
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One can also show that ¢(q) is a convex function of g by a general theorem of probability theory [F71]
and d, consequently decreases as g increases.

A numerical computation of the Renyi dimensions has to be performed following the definition
(1.1.9) instead of (1.1.10). It is in fact easy to generalize the Grassberger—Procaccia method for
computing the moments of n,(/) with a time-consuming of the same order as that for computing », while
the memory-consuming problems of the box-counting method are escaped [PV84].

Other ways exist for introducing an infinite set of dimensions; Hentschel and Procaccia [HP83a],
e.g., proposed the following characterization of the attractors. Let us define:

C,()= }lim [number of n-tuplets of points (x;, x, ,...x;)
whose distances |x, — xiﬂl are less than [ for all i, iy] (1.1.13)

which should scale as:
C,(y«!™  for small (1.1.14)

with », = v. Note that the direct computation of », following the definition (1.1.13) requires a CPU time
increasing as M". However it is easy to recognize that

v=(n-1)-d,, n=2304,.... (1.1.15)

The relation (1.1.15) is obtained by the fact that in the ith box the distribution of points is essentially
uniform implying

C¥(I) = [number of n-tuplets of points (x,- - xiB) contained
in the ith box with all |x, — xia| <lxp,() -M". (1.1.16)

(1.1.15) follows from (1.1.10), (1.1.13) and (1.1.16) since C,(!) = lim (1/M) M, CcOW).
1.2. Characterization of chaotic attractors as multifractal objects

It is intuitively reasonable that the dimensions d, give a measure of inhomogeneity in the distribution
of points on the attractor. Let us now show how this inhomogeneity can be related to the existence of a
spectrum of singularities of the natural measure.

Let us cover the attractor with N(/) boxes of edge / and define the probability p,(/) that a point
belongs to the ith box A,(/)

p)= j dp(x). (1.2.1)

A

du(x) is the natural measure given by the dynamics. In practice, in a numerical experiment p,(/) is
given by n,(!) defined in (1.1.7) with x, centred in A,(/). In the limit of a homogeneous attractor,
p:(1) = I°F, while this does not happen in a generic case. Let us therefore group the boxes with the
singularity « € [@, a + da]:
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p;(x1*  for small / (1.2.2)

into a subset S(a) of the attractor. Roughly speaking « is a ‘local mass dimension’.
The number of boxes dN, (/) needed to cover S(a) should behave in the scaling hypothesis like:

dN_ () =dp(a) I/ (1.2.3)

where f(a) are the different fractal dimensions of the sets S(«) upon which the singularities are of kind
. Essentially we are describing the measure on the attractor by interwoven sets each with singularity of
kind o and fractal dimension f(a).

Now we can relate f(a) to d, by computing the quantities (1.1.10) as an integral on a. Following
equations (1.2.2, 1.2.3) one has:

N

> p ()7 | dp(a) 197 (124)
i=1
The integral can be computed for small / by the saddle point method:
1
d = ———min(aq - fla)). 1.2.5
+= Ty i (eq — (@) (1.2.5)

If we know f(a), then we can find d, and, alternatively, given d_, we obtain f(a) inverting (1.2.5). In
the limit case of homogeneous attractors f(e) is defined only for a = Dy implying f(D;) = D, and
d,= Dy, Vq.

" The meaning of (1.2.5) is quite obvious: d, is detected by a particular value of a(q) determined by
the extremum conditions of (1.2.5):

dfidel,_; = g(a) (1.2.6)

and
-1 a-—fla
d,= 7o laa @), (1.2.7)

One has the obvious inequality f(a)=< D, because N, (/)= N(!), while the information dimension
D, = d, satisfies the relation

D, = f(Dy) . (1.2.8)
We can repeat the above computations for the exponents (1.1.9) by a summation over the points
instead of over the boxes. This description is exactly equivalent but allows to emphasize certain physical
aspects. Let us introduce the percentage of points W, (/) which belongs to the boxes of size / such that
(1.2.2) holds:

dN, () «=dN, (1) 1* = dp(a) 17 (1.2.9)
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with
H(a)=a —f(a)=0. (1.2.10)

By (1.1.9) and (1.2.9) it follows

(n(1)*) = [ dptay 1247
and one obtains
¢(q)=qdq+1=main[aq+H(a)]. (1.2.11)

For g =0, we select the information dimension d, = d¢/dg|, ., corresponding to the singularity & = D,
for which H = 0. In the limit /— 0 all the points with & # D, cannot be detected since ¥, vanishes with [
for positive H(«). This situation is well known in the framework of information theory. Indeed we gain
an information I(/) = —Z¥% p.(I)In p,(!) in a measurement of the system state with precision /. The
Shannon-McMillan theorem [K57] assures that the number Ng(I) of boxes which give the leading
contribution to I(/) should scale like ~°% D, is therefore the most probable ‘local mass dimension’, if
we pick up the points according to the natural measure. This fact has practical consequences in the
analysis of experimental signals where one usually computes the correlation dimensions on a small set
of points. let us define v as

v= ln(% kﬁ: nk(l))/lnl

where one chooses M points x, at random among t the M points x,, x,, . . . x,, of the temporal sequence
[ER85]. If M is much smaller than M, then 7 is closer to D, rather than to ». We think that
experimentalists should take into account this warning for the estimation of the dimension of an
attractor.

The Legendre transform becomes simple also in the limit g— +o where the minimum condition
picks up the extreme values of the singularities:

= lim d = lim d (1.2.12a)

g—>—® q9 ’ q—->+00 q

For g large enough (say ¢ > g, >0, g <g, <0), the function ¢(q) reaches its asymptotic behaviour:

&(q) = g + H(ay,) for ¢>g,
(1.2.12b)
¢(q) = amaxq + H(amax) fOl' q < q2 ‘

Let us note that f(«) can be negative. In this case the fractal dimension of the corresponding set S(a) is
zero, of course and S(e) is called ‘volatile’ fractal [M82]. Negative f(«)’s indicate how fast the number
of boxes necessary to cover S(a) converge to zero in the limit of vanishing size /.

Analytical calculations of some features of f(a) have been performed just on particular scale-
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invariant structures (such as the 2-cycle of period doubling, mode-locking structures, quasi-periodic

trajectories for circle maps) [HIKPS86, K86].

In numerical (or real) experiments it is possible to compute the d s, e.g., via the generalized
correlation integrals (1.1.9). One can then obtain f(a) by means of the Legendre transformation (1.2.5)
as shown in fig. 4. f(a) usually approximates the typical parabolic shape, given by a lognormal

distribution:

1 2
fa)=a—-5=(a- D)
2w (1.2.13)

H(a) = 51-,; (a - D)

i 3
H(a}ﬂ W /

0.8 1 1.25 15

0.5

-08
Fig. 4. H(a) (a) and f(a) (b) vs. & for the Henon map [H76] with a = 1.2 and b =0.3. The full lines indicate the parabolic approximations given by
eq. (1.2.13).
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and p is given by
. {In’(n(1)) = {In(n(1)))*
ot S0) — (In(0)))

10 In{|

(1.2.14)

We shall discuss in the appendix B the limits of this approximation. However, for small g one has in
general:

dy,y=d, ~ing. (1.2.15)
1.3. Other characterizations of attractors and experimental problems

The methods developed in sections 1.1 and 1.2 are related to the statistical properties of p,(/) in the
limit of infinite number of points (M — ). There are other possible characterizations of the attractor,
of course. We briefly dicuss one of these approaches, due to Badii and Politi [BP84, BP85], which can
be easily used in a numerical analysis and allows to give a good description of the inhomogeneity of the
attractor.

The method is based on the statistical analysis of the minimal distance §,(M) between x, and the
other M —~ 1 points,

8(M) = I}EP |x, - x,'l .
In the homogeneous case one has for each i
(M) M™"r (1.3.1)

but for a generic attractor we could expect that (1.3.1) does not hold. In order to compute Dy (or D;
and the other d,) one therefore needs to perform suitable averages of §,(M). Let us introduce the
moments of §,(M) and the ‘dimension function’ D(y):

M
SV = o= 3 (M) ™" (132)
i=1

It is clear that D(y) is a monotonic non-decreasing function. Moreover the scaling behaviour of the
distribution of points on the attractor can be obtained by varying y.
Badii and Politi [BP85] have in fact proved that the Renyi dimensions are related to the D(y) by:

D(y=(1-¢)d,)=4d,. (1.3.3)

We want finally to point out the problems which arise in the computation of the fractal dimension (or in
general of the d’s) from the analysis of the chaotic signals. Some practical difficulties are common to
computer or real experiments where one always handles with finite time series, noise and so on. A
typical puzzle is the choice of the ‘meaningful range’ (/,, /,) which has to be considered in order to fit
the data. The noise level and the finite number of points play of course a role in the question, and the
choice of a good scaling interval essentially follows by practical ‘good sense’.
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Moreover, the evolution equations are explicitly known only in computer experiments. On the
contrary, in real experiments, one works with just few signals (usually one). The most relevant problem,
at least from a conceptual point of view, is thus the construction of the points in phase space (which is in
general infinite dimensional) by an experimental time series u(1), u(2), . . ., corresponding to measure-
ments regularly spaced in time (¢=7,27,...). One therefore has to introduce the points y™ in R™:

¥y = (u(i), u(i + 1), ... u(i + m—1)) (1.3.4)
for computing »(m) defined by
(n1)) « 7™ (1.3.5)

where n'™ (1) is given by (1.1.7) replacing x by y™.

One expects to obtain v in the limit of large values of m: ¥(m)— ». The above method is not entirely
justified from a mathematical point of view but it seems rather reasonable. It however gives the
possibility of characterizing an experimental chaotic signal at least on heuristic grounds [MABDS3,
C85].

We shall see in section 3 that similar problems arise in the estimation of the Kolmogorov entropy
from experimental data.

2. Intermittency in fully-developed turbulence
2.1. Basic concepts on fully-developed turbulence

It is well known that at low Reynolds numbers (R, ) an incompressible fluid behaves in a laminar way
(i.e. roughly speaking the evolution is regular and stable). On the contrary, at very large Reynolds
numbers there is a highly chaotic and irregular behaviour. The regime R, > R_,, is called fully
developed turbulence where R, is the value of R, at which the onset of turbulence appears, i.e. there
is a transition from laminar to chaotic flow. We underline that for R, = R, there are often only
temporal chaos and highly spatial coherent structures. In the limit R, > R, the chaotic behaviour
involves fluctuations on a so small scale of space and time that it seems possible only a description in
terms of the statical properties of the flow. An idea of the increasing chaos with R_ is given by fig. 5.

Turbulent flows are very common in nature and they are of great interest in applications for their
ability to transfer momentum or heat. Other relevant peculiarities of turbulent flows are unstability and
unpredictability: a small perturbation at a certain time ¢, may rapidly lead to a strong distortion of the
(unperturbed) flow pattern [MY75].

In principle one could build up the statistical mechanics of turbulence on the basis of the
Navier-Stokes (N-S) equations:

crit

{o'?,u+(u—V)u= 1 VWo+vAu+f
Veu=0 p (2.1.1)
+ initial and boundary conditions

where u is the velocity field, p the density, p the pressure, v the kinetic viscosity and f an external force.
Unfortunately, each analytical theory of turbulence, i.e. an approach which makes use of eq. (2.1.1),
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Fig. 5. Schematic pictures of the behaviour of a fluid around a cylinder at different Reynolds numbers.

unavoidably encounters closure problems. If, e.g., one tries to write down an equation for correlation
of second order ({u;(x) u,(y))), then third-order correlation terms appear, and so on. These difficulties
are typical of all non-linear equations. An analogous situation is present in the gas kinetic theory with
the B-B-G-K-Y hierarchy [U59]. We do not consider in this review these approaches (for a general
reference see [L73]).

However, an approximate understanding of a large number of statistical properties (at least on small
scales) does not require a direct use of the N-S equations since the identification of the fundamental
physical mechanism is sufficient.

Richardson [R22, R26] was the first who put forward some penetrating ideas on the physical
mechanism acting at large R,. In his assumption the fully developed turbulence consists essentially in a
hierarchy of ‘eddies’ (i.e. turbulent structures or disturbances) on different scales. ‘Eddies’ of a certain
scale are the result of the unstability of larger ‘eddies’ at a larger scale, and in their own turn, they
generate smaller ‘eddies’ by their unstability. One has, in this scenario, a cascade process of eddy
breaking-down in which there is a transmission of energy of the overall flow to motions of smaller and
smaller eddies up to the smallest scale 7 where the fragmentation process is stopped by dissipation.

This physical picture is nicely expressed in the following rhyme ([R22], p. 66):

Big whorls have little whorls;
Which feed on their velocity;

And little whorls have lesser whorls;
And so on to viscosity

(In the molecular sense).
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Let us recall that these considerations are related to the three-dimensional case since in the bidimen-
sional situations a quite different phenomenology appears [PV86C] as discussed in section 2.5.

2.2. Kolmogorov theory and the intermittency problem

The qualitative and general ideas of Richardson have been further developed and formulated in a
more precise language by Kolmogorov [K41].

Kolmogorov made an addition to the assumptions on the cascade process by noting that, because of
the chaotic nature of the energy transfer among the eddies, the orienting effect of the mean flow must
be weakened with each breaking down. Consequently it is natural to expect that at spatial scales much
smaller than the external length L (i.e. the typical length of the mean flow) and time scales much
smaller than the typical time of the mean flow, the velocity fluctuations are homogeneous, isotropic and
quasi-steady. At sufficiently small-scale the turbulence is thus characterized by the mean flux of energy
£ (from the overall flow to the smallest eddy) and by the dissipation. Moreover, if the scale length is not
too small it is natural to assume that the viscosity plays no role, because the dissipation term in the N-S
equations is negligible.

We can summarize all the above considerations in fig. 6. In a more quantitative way Kolmogorov
formulated the two following hypotheses:

1) The n-variate probability distributions of the velocity difference AV(r)= u(x + r) — u(x) are
universal isotropic function only of r, v and &, in the case r < L.

2) If L > r> ) (the so-called inertial range) the probability distributions are independent of .

The two hypotheses lead immediately, by dimensional analysis, to an explicit form for the moments
of |AV(r)| for r in the inertial range:

(|aV()|7) x (en)"" (2.2.2)

where ( - ) now denotes a spatial average. Moreover the dissipation length (i.e. the scale at which the
dissipation is able to compete with the non-linear transfer) is

n=8)"*«R*'L . (2.2.3)

000

O OO D [
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DISSIPATION

Fig. 6. Scheme of the energy cascade. The reader must think that successive eddies are embedded one within each other.
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Independently also Onsager [O45, O49] obtained the same results as Kolmogorov.

Let us stress that the basic assumption in the K41 theory is that £ should be the only relevant
parameter in the cascade process. This hypothesis is reasonable only if the energy transfer (or the
energy dissipation density) (x) does not strongly fluctuate with varying x and over a scale r which one
is looking at. The assumption on the smooth behaviour of &(x) seems to be not satisfied since
experiments [BT49)] evidence strong intermittent bursts, both in space and time. For details on
experimental studies see refs. [GM72, KC71, KC72, VP72]. Figure 7 obtained by a direct simulation of
the N-S equations [S81] shows that &(x) is concentrated in a tiny region of the space.

The presence of intermittency, as first pointed out by Landau [LL71], leads to a contradiction in the
K41; the statistical laws at small scales have to depend not only on ¢ but also on the fluctuations of £(x).

Experiments at large Reynolds number [GM72, VP72, AGHAR84| show scaling laws in the inertial
range:

(JAV(r)[?) = rto (2.2.4)

but with {, # p/3. The disagreement between the experimental values of {,’s and the K41 predictions is
small for not too large p(=<4-5) and increases with p. In the following we shall compare the
experimental data with the estimates obtained by fractal and multifractal models.

These considerations on small-scale intermittency led Kolmogorov and Obukhov [K62, 062, Y66] to
modify the K41. In their approach (called lognormal model) the fluctuations of energy dissipation are
distributed according to a lognormal distribution. We discuss it in appendix A, since it is not directly
relevant to our purpose and because of the peculiarity of the lognormal distribution [M72].

Fig. 7. Numerical simulation [S81] shows the structure of the zones containing the energy dissipation. 95% of the energy dissipation is concentrated
in the dark regions.
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2.3. Fractal and multifractal models for intermittency
The K41 theory assumes that each point x of the fluid has the same ‘singularity’ structure:
AV.(n«r", h=%. (2.3.1)

It is easy to see that (2.3.1) is equivalent to assume that £(x) is smoothly distributed in a region of R’.
Let us define the eddy turn-over time and the kinetic energy per unit mass at scale r:

1(r) ~ r/AV(r) (2.3.2)
E(r)~AV(r)*. (2.3.3)
The transfer rate of energy per unit mass from the eddy at scale r to smaller eddies is then given by
&ry= E(n)/(r) ~AV(r)ir. (2.3.4)

Since £,(r) = (1/r7) fo(,) e(y)d’ (A,(r) is a cube of edge r around x), one has by (2.3.4) and (2.3.1)

J gy dy~r. (2.3.53)

A0

A simple way to modify the K41 consists in assuming that the active turbulent structures cover a
homogeneous fractal S (with D <3) on which &(x) is uniformly distributed.

Let us remark that in turbulence we do not use the word fractal in the exact mathematical sense.
Indeed in the ‘true’ limit r— 0 because of the dissipation one probably finds no singular structures.
r—0 means r in the inertial range and the regions containing a large part of &(x) are a ‘physical’
approximation of a fractal structure. In this approach (cailed absolute curdling [M74] or B-model
[FSN78]) one replaces (2.3.5a) with

Prifx€S
fs(y)d3ym{r0 s (2.3.5b)

Ag(r)
or in an equivalent way:

h .
r ifxeS$
AV (r) cx{ 0 if x @S (2.3.6)

with h = (D —2)/3. Since at scale r there is only a fraction
1D number of cubes of edge 7 in S rPF

F = T o«
number of cubes of edge r in the fluid ¢

-3

occupied by the ‘active’ eddies, we have in the inertial range the following behaviour for the structure
functions
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(JAV(R)|?) o r*r™Pe = ple
(23.7)

(,=(272) p+3- ).

In the limit D = 3, we recover the K41 results. In this approach Dy is a free parameter and cannot be
obtained with simple arguments. In this approach &(x) is not distributed over all the fluid as in K41,
since by (2.3.5b) one sees that £(x) has a singular structure. We shall discuss again this model in the
following. In fig. 8 we report the experimental data [AGHAB84] of {, vs. p and the implications of the
homogeneous fractal model (eq. (2.3.7)). A linear fit leads to a good agreement with the experimental
data for p <7, while for larger values of p one observes a non-linear behaviour.

The hypothesis of the existence of a whole spectrum of singularities allows to justify the non-linearity
of {,. The model can be improved by considering the set on which the energy dissipation is
concentrated as a multifractal set, following the lines introduced in section 1 for chaotic attractors. Let
us namely define S(h) as the set of points for which in the inertial range

AV (r) o r"

indicating with d(h) the fractal dimension of S(k). It is easy to compute {, noting that the fraction of
cubes with edge r in the set S(k) is proportional to r~“®/r™ = > ~**_ Therefore one gets

VP = [ dp(h) P P4 s (238)

and by the steepest descent method:

£, =min {ph+3 - d(h)} . (2.3.9)

1 1 L 1 ] 1 1 1 A N |

o 2 4 § 8 0 ©” 11w ® 1B P

Fig. 8. {, vs. p. Dots and circles are experimental data [AGHA84); the full line is the B-model result (2.3.7) with D =2.83 and the dashed line is
the random B-model result (2.3.16) using the distribution (2.3.22) with x = 0.125.
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Equation (2.3.9) shows that at a given value of p, {, depends on a particular value of /. Hence the kind
of instabilities needed to set up the sets S(k) are picked up by different moments.

We have worked out the muitifractal approach in terms of singularities of AV, (r) only because in the
literature of turbulence the moments {|AV(r)|”) are usually involved. However it is simple to
emphasize the explicit correspondence with chaotic attractors. Let us note that

| enayer i« 23.10)

Alr)

so that the analogues of the exponent « and f(a) are 3h +2 and d(3h +2).

The homogeneous fractal case is the limit of the multifractal one when d(h) is defined only for
h=(Dg—2)/3 and d(h) = Dy.

Up to now we have remained at a rather descriptive level in the problem of intermittency. d(h)
contains all the relevant features, but cannot be obtained by a first principle calculation based on the
N-S equation singularities.

2.3.1. The B-model (absolute curdling)

A pictorial scenario of the energy cascade can be given in terms of multiplicative processes (absolute
and weighted curdling) [M74], see fig. 9. We think that the details of the model [FNS78] and of the
random model [BPPV84] are useful to give a more direct idea of the fragmentation processes in
turbulence. We want here to remind that all ‘modern’ fractal and multifractal cascade approaches have
been originated by ad hoc models involving particular structures, as vortex sheets or vortex tubes, for
the region containing the energy dissipation [C62, T68, S70]. The explicit idea of the B-model is due to
Novikov and Stewart [NS64, N69, N70] and to Kraichnan [K74].

Let us consider the scales /, =27"/,, where /,= L is the scale at which energy is injected and the
scaling factor 2 between /, and [, ., is conventional. Let us call v, =AV(l,) the typical velocity

b) 0 V7

Fig. 9. Schematic view of the 8-model (case a) and of the random B-model (case b). The dashed areas are the active zones during the fragmentation
process.
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difference across a distance /, in an active eddy. In order to take into account the intermittency Frisch
et al. [FSN78] introduced the coefficient B =2°%"> equal to the fraction between the volume of the
daughter eddies at scale /,,, and the volume of the mother eddy at scale /,. The transfer energy from
the eddy at scale /, to that at scale /[, is

3
g, xv,/l, .
Since the energy transfer rate is constant in the cascade process one has

6 =Ber, VL =BV,.,. (23.11)
Iterating (2.3.11) one then obtains
v, <1, (1, /1) " (2.3.12)

i.e. eq. (2.3.6) with h = (D —2)/3.

In the previous model one essentially has a two-valued multiplicative process: each eddy at scale /, is
divided into eddies of scale /,,,, in such a way that the energy transfer for a fraction B of eddies
increases by a factor 1/8 while it becomes zero for the other ones.

2.3.2. The random B-model (weighted curdling)

Let us generalize the 8-model. We namely assume that at scale /, there are N, active eddies, each
eddy I (k) (k labels the ‘mother’ eddy and k =1, ... N,) generates active eddies covering a fraction of
volume B,, (k). Since the rate of energy transfer is constant among mother and daughters, we get:

0 (kYL = B (K0, (K, (23.13)

The iteration (2.3.13) of v, gives an eddy generated by a particular ‘history’ of fragmentations
[Bis--. Bl

vn“li”(‘f[ B,->_m : (2.3.14)

Let us remark that the fraction of volume occupied by an eddy generated by [B,,... B,]is /., B;, so
from eq. (2.3. 14) it follows

AV )Py =12 f H dB Bl " P(B,, ... B,)- (2.3.15)

Assuming no correlation among different steps of the fragmentation, i.e. P(B8,,... B,)=1I"_, P(B.),
one obtains for {, :

{,=p/3—In,{B" 77"} (2.3.16)

where { -} stands for the average over the distribution P( ). If B, is a constant (=2¢">) one recovers
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the results of the B-model. The knowledge of the probability distribution P(B) is related to the
understanding of the nature of the N-S equation singularities. However this problem is far to be solved
at present. The fractal object generated by the random B-model (or more general a multifractal object)
has no more global dilatation invariant properties; even if, one can still compute the fractal dimension
Dy as:

N, ol PF (2.3.17)

where N, is the number of active eddies at the nth step of the fragmentation and (-) is an average over
an ensemble of cascades. It is easy to show that

D.=3-¢, (2.3.18)
which in the random B-model is given by:

D.=3+In,{B}. (2.3.19)
Moreover the analogue of d, is D* defined by:

D*=1+¢, (2.3.20)
and in terms of the random B-model

*=3-1n,{B87"}. (2.3.21)

Let us recall that D* is related to the scaling of energy dissipation density correlation [FSN78],

(e(x+r) e(x))y<r’?”

and that in the experimental literature the fractal dimension is usually estimated by D* even if in
general D > D*. D, = D* actually holds only for homogeneous fractals.
We have performed a simple fit of the experimental data choosing for P(B) the form

P(B)=x8(8-0.5)+(1-x)8(8—1); (2.3.22)

the value x =0.125 gives good agreement with the experimental data (see fig. 8). There is no deep
reason to choose the form (2.3.22); we have simply followed some phenomenological ideas considering
two possible kinds of fragmentation: an active eddy can generate either vorticity sheets (8 =0.5) or
space filling Kolmogorov-like eddies (8 =1). With the fit (2.3.22) we get D, =2.91 and D* =2.83,
with a small but significant difference. There exist some physical arguments to give a bound to the
values of k. In the set S(k) the local Reynolds number at scale ris R, (r, h) = r - r"/v « r'*", Therefore in
order to stop the turbulent cascade one must require that R (r, k) decreases with r implying h > —1.
Let us note however, that it is reasonable to assume s = 0 because for negative & one could have points
for which |AV_(r)| increases when r decreases and this seems quite unrealistic. Note that in the
distribution (2.3.22) we have taken h,, =0 (corresponding to B, = 3 )-
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Mandelbrot [M76b] conjectured, using Taylor’s frozen turbulence assumption [T38], that fractal
structure with a fractal dimension <2 cannot be detected in a real experiment.

However, Mandelbrot’s remark is valid only in the (mathematical) limit =0 while in real
turbulence, because of the existence of a finite minimal scale for the active region, one has just an
approximation of the fractal object. The shape of d(k) obtained with the fit (2.3.22) shown in fig. 10 is
therefore not selfcontradictory.

The approaches to the statistical description of turbulence (K41, fractal, multifractal, lognormal) do
not directly use the dynamics given by the Navier-Stokes (and Euler) equations. However, the previous
phenomenological arguments as well as some closure approximations [AL77} imply that the N-S
equations, in the limit of zero viscosity, lead to a singularity in a finite time (see, e.g., [F76]). For finite
small » we expect that the singularity is smoothed by the dissipative term. In our phenomenological
model the analogue of the singularity is the hierarchy of eddies down to the dissipative scale. There are
some numerical evidences for these singularities [MOF80, BMONMF84]. Perhaps the most relevant
point is the ‘fractal’ spatial nature of these singularities. Their mathematical existence is unproven and
controversial, but if they exist, then they must be enormously ‘sparser’ [P74, S76, K76] and their spatial
‘fractality’ is a plausible conjecture [M76a, M76b].

Recently some other non-fractal models for the description of intermittency have been proposed
[SL84, NN85, N86]. They are alternative to the scenario of this section. We do not discuss them, but we
want just to note that they imply {, = p/3 for p <p = 5-6.

We think that this is in strong disagreement with all experimental results. Even if one could think
that for large values of p(=8) the experimental data for {, are not enough accurate in order to prefer

dth}
4

Dy

v

~1

Fig. 10. d(h) vs. h given by the Legendre transform of (2.3.16) using the fit (2.3.22) with x =0.125.
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definitively a model or another, all the recent experiments nevertheless give values for ¢, and ¢,
respectively larger and smaller than 2/3 and 4/3 obtained by the K41 (e.g. £, =0.70 = 0.01).

2.4. Remarks and consequences of multifractality in turbulence

The concept of ‘muitifractal’ is related to the properties of the distribution of ‘mass’ (in turbulence
the density of energy dissipation, in a chaotic system the density of points on the attractor) and not to
‘geometrical’ properties [M86, BPPV86].

For example there is no anomalous scaling law for the number of active eddies N, :

NI~(N,) a1 (2.4.1)

where (-) means the average of an ensemble of cascades. Equation (2.4.1) is a quite trivial
consequence of the law of large numbers. For sake of completeness we consider the random B-model of
section 2.3.2 where the number of active eddies at scale [, is

N, =2"11 B, _ (2.4.2)

B== 2 BK). (2.4.3)

In the limit of large n (i.e. N,>1) one has (large number theorem):
B ={B}-(1+O(N;"")

the probability distribution of N, has therefore a very narrow peak around 2{B}" =1PF so that
(2.4.1) holds. Equation (2.4.1) can easily be proved for positive integer values of g by direct
computation [BPPV86].

2.4.1. Irrelevance of multifractality for relative diffusion

Let us now show why the multifractal structure is not relevant for the relative diffusion of particle
pairs [CPV87].

Indeed, the growth of the moments of the relative distance R between a pair of particles scales with
time as:

R¥ o« 247 (2.4.4)

((*) is now an average over a large number of pairs). We found that for each g, »(¢) = v and v is only
related to the exponent {;:

p=1/(1-¢,). (2.4.5)
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Let us consider M > 1 pairs of particles at positions 7" and r'” (i=1,... M). The interparticle
distance is R, = (r{"’ ~ r{")) and the relative velocity 8V, = u(r") — u(r®) = (d/ df)R,. Let us compute
the time derivative of R’:

4R 2y -l—f‘, SV.(R,) "R,
dt M—»wM,=
1 M
=2 }}anﬁzaV(R)Rcoso (2.4.6)

where 6, is the angle between R, and 8V,(R,). In the case of isotropic turbulence the relative positions
and velocities are uncorrelated [MY75 section 24, C69, O70a], moreover cos 8, is positive and does not
depend on R [C69, O70]. Therefore this one has

dRYdt=2(cos 6) SVR) R . (2.4.7)

In order to compute M~ - £ 8V,(R,)R, = SV(R) R we group together all the n(a) pairs with the same
value R(a) of the interparticle distance in such a way that one obtains:

S aV(R)R=3 [n—(la—) d avk] R(a). (2.4.8)

The sum I is over the set of different values of R(a) and L, is over the n(a) pairs with R, = R(a).
Note that for large M (and n(a))

5 S8V, = (AV(R(@)) < R(a)" (249)
therefore
dRYdr« R4 . (2.4.10)

It is trivial to repeat the same computations for R™
dR¥/dtx R#H0T (2.4.11)

Now it is easy to see that v(q), as defined in (2.4.4), must be constant. In fact by (2.4.11) and (2.4.1)
one has

2q-1+¢
2 ()-1=(2 -1+ ) o L50);
moreover ¥(g) does not increase when g increases [F71], therefore one obtains:

g =v=1/(1-¢), Vq.

Let us remark that the multifractal structure induces only a (slight) correction to the Richardson law
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v = 3 [R26] and in the diffusion process there is no anomalous scaling. The scaling laws (2.4.4, 2.4.5)
are parametrized by a single exponent ¢;; the same result holds for a homogeneous fractal [HP83b]
(with ¢, = (7 —2D;)/3) or a multifractal.

2.4.2. The problem of the number of degrees of freedom

It is clear that a satisfactory description of turbulent fluids needs a resolution up to scale of the same
order of the dissipative Kolmogorov length 7 at which the molecular friction is able to compete with the
non-linear transfer. One has:

n=>"e)"" (2.4.12)

where ¢ is the rate of the energy dissipation for unit mass and time (assumed to be constant in K41).

If L is the system characteristic length at which the external energy input is pumped then the
adimensional ratio R, = (¢L*)""/v is the Reynolds number. The number of grid points for unit volume
necessary to obtain a resolution up to 7 is thus

N(R,)~(L/m)* = RY*. (2.4.13)

This argument (due to Landau and Lifschitz [LL71]) hides the central assumption that all the fluid is
‘active’, i.e. that the energy dissipation density field is smoothly distributed on a three-dimensional
region.

Kraichnan [K85] has repeated the Landau-Lifschitz argument by making the hypothesis that the
energy dissipation &(x) is concentrated on a homogeneous fractal with non-integer dimension D <3.
The dissipation scale n can be now determined by imposing that the Reynolds number related to an
eddy of length scale / is of order one:

nAV(n)lv~0(1). (2.414)

This is equivalent to require that the dissipative (linear) term of the N-S equation is able to compete
with the non-linear transfer term.
Inserting eq. (2.3.6) in eq. (2.4.14) we obtain:

no L/RYD (2.4.15)
It follows that:
N(R,) ~ (LIn)"F « R2PF1+Pe) (2.4.16)

Let us remark that some other variables are also necessary for describing the non-active regions of
the fluid but their number does not depend on R.. If the B-model assumptions were correct, eq.
(2.4.16) would give (in principle) the scaling law for N(R,).

The number of degrees of freedom necessary for describing the multifractal of turbulence must be
defined with much more carefulness [PV87a]. In fact, for each singularity 4 a different dissipative length
n(h) is picked up by condition (2.4.15): n(k) < R. /M,

Since the number of eddies at scale / with singularity & is proportional to I ~**

, one deduces that the
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number of grid points which have to be considered for resolving the set S(h) is:
N,(R,) ~ (LIn(h))*® o« RI®W/(*R) (2.4.17)

We thus get the total number of degrees of freedom by integrating (2.4.17) over h:
N(R.)= | do() N,(R,) = R (2.4.18)

where & can be estimated by the steepest descent method in the limit of large R,
6= max [d(h)/(1+ h)]. (2.4.19)

A fit of the experimental data [AGHAB84]| gives the value § =2.2 which is close to the value given by
eq. (2.4.16).

The results (2.4.16) and (2.4.18, 19) are nevertheless quite different from a conceptual point of view.

We must stress that the estimate (2.4.18, 19) has just a theoretical relevance since it is rather difficult
in a computer simulation to locate the grid points on the sets S(#) (which also evolves in time). Indeed
one usually works with a fixed grid or with a pseudo-spectral method [PO71]. It follows that the only
relevant parameter is the minimal scale /[, considered which is bounded from below by the dissipative
length related to the strongest singularity:

yin ™~ M) % R0 (2.4.20)

The estimate /_;, =n(h,,,) assures that all the sets S(k) (i.e. even very improbable events) are taken
into account.

The number of equations which allows us to get such a fully accurate description is thus:
N:~(L/_, )}« RY("*hain) (2.4.21)

Equation (2.4.21) is in agreement with rigorous bounds [R82, CFMT85]. On the other hand, if one
decides to neglect the rare events a resolution /> . is sufficient; just the relevant features of
turbulence are reproduced loosing some details. In this case the number of equations is reduced to

min

N*~(LIY .

This scale / can be estimated by the dissipative length n(ﬁ ) related to an effective singularity h.
Let us define an ‘effective’ mass dimension D of the object on which the energy dissipation is
concentrated, by:

h=(D-2)/3.

Mandelbrot [M76b] has, e.g., assumed D= D,, the information dimension, and from the data
[AGHAS4] one has D, =2.87. This assumption corresponds to select a A =d{,/dp|,.,=0.29 and,
roughly speaking, / is thus the smallest scale on which in average active eddies are still present.

On the other hand, some heuristic arguments (see section 2.3) as well as the fit of experimental data
shown in fig. 10 indicate A, = 0. It follows that:
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Y 3/(1+h 2.3
N:ixR® and N*<RJU™W«RP.

Let us emphasize that N3 is much greater than N* which is close to the estimate of the number of
degrees of freedom obtained respectively in K41, in the B-model and in the framework of the
multifractal approach.

2.5. Two-dimensional turbulence

Two-dimensional fluids have a relevant interest, apart from a mathematical point of view, because
they idealize geophysical phenomena in the atmosphere, oceans and magnetosphere and are a starting
point for understanding these phenomena (see for a general review [KM80]).

The motion of fluids in two dimensions has many remarkable regularity properties which are
essentially due to the fact that the vorticity of each fluid element is constant if viscosity and external
forcing are absent. For this reason € depends on viscosity and there is no forward energy cascade [O77].

Nevertheless, quite reasonable arguments [K67, B69] allow to repeat a K41-like approach by
assuming the mean dissipation enstrophy 7 = —(d/d¢){(rot )’} as the relevant parameter (instead of
¢) and thus a forward cascade of enstrophy (instead of energy). One obtains by dimensional analysis, in
the inertial range:

(av(n|rysrfe,  §,=p (2.5.1)
and for the energy spectrum
E(k)o k™ (2.5.2)

There exist numerical evidences for an energy spectrum in strong disagreement with (2.5.2), i.e.
E(k)< k™, a=—4 to —6 [BLSB81, M84]. Some authors argued that this difference is related to
intermittency [BLSB81].

Let us briefly show that in two-dimensional turbulence a K41-like theory gives the exact scaling for {,
(i.e. £, = p) which is not affected by the ‘intermittency’.

One could naively think that either the fractal or multifractal approach can be repeated for
describing the enstrophy cascade. This is not true because in the two-dimensional Euler equation, as
consequence of the vorticity conservation for each fluid particle, one can prove [RS78]:

|AV(r)| < const. r |In 7| . (2.5.3)

The inequality (2.5.3) also holds for the N-S equations so that
é’p 2p * (2.5.4)

Moreover {, must be convex [F71] and {; =3, in order to have a constant forward enstrophy cascade.
All these constraints compel us to conclude that:

{p =p (2.5.5)

which implies the apparently surprising result that the K41-like theory prediction {, = p also holds in
presence of intermittency.
It is easy to see that a two-dimensional B-model (or random B-model), whenever 8, #1 gives a
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wrong result for the enstrophy cascade. Indeed if we repeat the considerations of section 2.3 for the
three-dimensional case imposing a constant enstrophy transfer rate we get, instead of eq. (2.3.13):

0 (KYIE = By () 3y s (2.5.6)

This equation gives a convex function {, (if 8,(k) # 1). The apparition of singularities in the velocity
field follows by the Bernoullian nature of the fragmentation process (8, is independent by 8,_,).
However, the random B-model can be modified assuming that

Boi=1 if (0,/0,) >y, . (2.5.7)

Equation (2.5.7) corresponds in some sense to a “Markovian” assumption in the fragmentation model
because the steps of the cascade are no longer independent. The constraint (2.5.3) is now satisfied in
this Markovian random B-model, but the enstrophy is concentrated in regions with fractal dimension
equal to 2, which cover a non-decreasing area for decreasing scale length.

Let us note that unlike the three-dimensional case, we can reach no conclusions on the shape of E(k)
from ¢,. The naive dimensional counting gives E(k) x k™ with a =1+ ¢,.

This is wrong if ¢, =2 [BBS84] and one can just derive from the bound (2.5.3):

a=3, (2.5.8)

Therefore, neither the a value nor the structure functions (since ¢, = p) give us information about the
‘intermittency’ in two-dimensional turbulence. Numerical experiments [BPPSV86] confirm that the
fragmentation is space-filling on the small scales (but larger than the viscosity dissipation ones). The
intermittency should be regarded as a somewhat “macroscopic”’ phenomena related to coherent
structures.

The enstrophy cascade indeed seems to be inhibited in some highly organized structures which
dominate the energy spectrum. Moreover the turbulent field seems to be decomposed in two parts: a
background with an energy spectrum k~° in the inertial range and a finite number of vortices (coherent
structures) which advect the background field.

3. Temporal intermittency in chaotic dynamical systems
3.1. General remarks

One of the relevant features of chaotic systems consists in their unpredictability. Essentially one
observes that nearby trajectories diverge exponentially in time. However, there exist time variations of
the ‘chaoticity’ which appear in all generical situations and consequently the mean exponential growth
of the uncertainty on the initial state does not exhaust all the typical behaviours.

One can, e.g., observe a regular motion in phase space for long times, interrupted by randomly
distributed bursts of strong chaoticity. This phenomenon, called temporal intermittency, plays an
important role. For example intermittency has been shown to be [PM80] one of the fundamental
mechanisms for the transition to turbulence.
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A quite simple example is the one-dimensional map x, = g, (x,_,) where g_(x) has for £¢ =0 a tangent
contact with the line x, = x,_,. For small ¢ the state x, spends a large number of iterations (~¢~''?) in
the ‘laminar’ phase, i.e. near the bisectrix. Nevertheless x, is finally expelled out and a chaotic burst
destroys correlations, see fig. 11. This behaviour is displayed also by non-trivial dynamical systems as
the Lorenz model at r=r_=166.07, where there are regular oscillations interrupted by randomly-
distributed bursts which become more and more frequent as r increases.

We shall use the word ‘intermittency’ in a broader sense than that used in the transition to
stochasticity via tangent bifurcation. Even weak variations of the chaoticity degree are included in the
class of intermittent behaviours.

Let us remark that quantities as the Lyapunov exponents and the Kolmogorov entropy cannot give a
characterization of the intermittency. Indeed they give ‘global’ indications on the mean exponential
divergence of nearby trajectories and cannot measure the variations of the ‘chaoticity degree’ along a
given trajectory.

Our purpose is to characterize the intermittency degree in the same way the Lyapunov exponents
and the Kolmogorov entropy do for the ‘global’ chaoticity giving a quantitative criterion which allows to
discriminate between weak and strong intermittency.

We want to show how to reach these goals by means of a generalization of the Lyapunov exponents
and of the Kolmogorov entropy which leads to introduce sets of exponents quite analogous to the Renyi
dimensions.

The intermittency will then appear as a manifestation of the multifractality with regard to the time
dilations in the trajectory space. This approach stresses the link between chaotic dynamic systems and
the equilibrium statistical mechanics, relating the new sets of exponents to a kind of free energy. We
can thus pick out the analogue of the thermodynamical state functions extending to a first rough level
the rigorous results of Bowen, Ruelle, Sinai and Walters.

J\,/\J\,U\,/\.,ﬁ

Fig. 11. x,—x,_, vs. n for a map near the tangent bifurcation. The values close to zero are related to iterations inside the ‘channel’ and the peaks
are related to chaotic bursts when x, goes out of the ‘channel’.

.
Xn = Xp-q
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3.2. Generalized Lyapunov exponents

A practical tool for characterizing the global degree of chaos in dynamical systems consists in
considering the set of Lyapunov exponents because they can be computed by means of simple
algorithms [BGS76, BGGS80]. Moreover they are linked to other stochasticity indicators like the
Kolmogorov entropy [P77] and the information dimension [KY78].

Let us define the spectrum of the Lyapunov exponents A, = A, = - - - = A of the flow T:R"—>R"
generated by the set of differential equations ¥ = f(x) by considering the linear evolution of the tangent
vector {:

F
=2 ¢ (3.2.1)
j=1

where J,; is the matrix df,/dx|,,
One can introduce the Lyapunov exponents also for a discrete map x(rn) = g(x(n — 1)) by considering
the corresponding evolution for {(n):

L(n)= 21 A,(n-1) {(n—1)

with A (n) = dg,/dx; | en n)°
Oseledec [068] proved that for almost all initial conditions x(0) there is a basis {¢,} in R” such that:

{0 = 2 |40)] ¢, & exp(A) (3.22)

for large enough times.

Roughly speaking, (3.2.2) tells us that in the phase space a sphere of radius ¢ and centre x(0) is
deformed with time into an ‘ellipsoid’ of semi-axes ¢,(t) = & exp(A,¢) directed along the é, vectors.

In the next section we shall show that the Oseledec theorem corresponds to the existence of a
thermodynamic limit of infinite volume in a statistical mechanics language.

The positive maximal Lyapunov exponent A, measures the growing of an error on the initial
“ condltlon knowledge. A small incertitude dx(0) is exponentially amplified along é, with characteristic
time A, . To be more specific eq. (3.2.2) implies that for A, > A,:

dx(t) ~ [3x(0)] €, exp(A,1) [1 + Oexp{—(A, = A,)1})].

This relation leads us to introduce the response R to a perturbation in x(7) after a time ¢ by the error
growth rate:

R =&+ DI/ | Z()l| = [8x(e + 1)}/ [8x(7)] - (3.2.3)

The maximal Lyapunov exponent can be defined by averaging the logarithm of the response over the
possible initial conditions along the trajectory:
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A, =lim -1— (In R(t)) (3.2.4)

where (- ) denotes lim,.__ (1/T) 77 -dt.

In the same way we can define the other Lyapunov exponents by the divergence of a small
n-dimensional point volume in phase space.

Let us namely consider n different tangent vectors J M ¢ ¢™. The rate of an n-dimensional
volume is then measured by an n order response R™ defined as:

[P R T S G Y S G|

R™(r) = > (3.2.5)
St St
where A denotes the vectorial product.
The sum of the first n Lyapunov exponents is [BGGSS80]:
A, =lim % (In R™(@)) . (3.2.6)

i

Let us also remark that, in the case of continuous flow, at least one of the Lyapunov exponents has to
be zero since {(¢) cannot grow exponentially in time along the direction tangent to the flow.

3.2.1. Characterization of intermittency

The Lyapunov exponents do not describe the degree of intermittency because of their global
character. Equation (3.2.4), e.g., defines the average of the characteristic time scale on which
correlations are lost but it does not give any further information about the fluctuations around this
average. Indeed, we must still consider a non-uniform distribution in time of the ‘chaoticity degree’, i.e.
of the response R.

The reconstruction of the probability distribution of R can be achieved by the analysis of the
moments (R?).

Let us therefore introduce the function [F83, BPPV85]:

L(g)= }me % In{R(¢)?) . (3.2.7)
L(q) is called generalized Lyapunov exponent (of order gq) since:
A, =dL/dq|,, (3.2.8)
and in the absence of fluctuations
L(g)= Mg (3.2.9)
while in the general case L(gq) is concave in g [F71].
The deviations from this linear law give a first rough indication on the intermittency degree in the

same way that the set of ¢(qg)’s is used to characterize the spatial inhomogeneity with regard to the
point density (see section 1.1).
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Equation (3.2.9) corresponds to long range correlations which inhibit fluctuations. However if the
correlations are weak enough the response at time N Af can be considered as the product of
independent random variables R, = R__,.,,(A?):

N-1

R(t=NAf)= I] R.(AY). (3.2.10)

As consequence of the central limit theorem, the probability distribution of R, is therefore well
approximated by the lognormal:

11 (InR-A)°
@(R) = W E exp{—_—_mT;} (3.2.11)

where w =1lim,_,, ¢ '[(In R(¢)*) — (A£)].
If (3.2.11) is exact then the generalized Lyapunov exponents are:

L(9)=Mg+}inq. (3.2.12)

It is thus natural to conjecture that, in the general case, L(q) is bounded between the linear form
(3.2.9) (strong correlations) and the parabolic one (3.2.12) (weak correlations).

Let us however recall that at large g the moments deviate from (3.2.12) even if the lognormal is a
good approximation because of the pathologies of this distribution (see appendix B).

In (3.2.11) the fluctuations are fully characterized by the second cumulant & and it is easy to show
that the value u/A, =1 delimits the borderline between weak and strong intermittency. To be more
specific let us remark that P(R) reaches its maximum for

R(t) = exp(At(1— p/A,)). (3.2.13)
It follows that for large times:

R—0 ifu/r,>1 (3.2.14)
R-» ifpir,<1.

The equations (3.2.14) give, in the phase transition jargon, a mean field result and it is interesting to
analyse the effects of the corrections. For u/A, <1 the fluctuations can be neglected at a first level since
they just slightly modify the characteristic time on which the ‘average’ response diverges from
A= win) " to AL

On the contrary, the mean field picture fully breaks down for /A, > 1 where it predicts a ‘laminar’
stable phase (R—0) instead of the ‘turbulent’ chaotic one characterized by a positive maximal
Lyapunov exponent.

We have performed a series of numerical computations of L(q) for the Henon-Heiles model
[HH64], the Henon map [H76] and the Lorenz system [L63] (see fig. 12). The Henon-Heiles model is
consistent with L( q) as done by eq. (3.2.12) with u/A, near 1. On the contrary, the Henon map and the
Lorenz model for r near 166.07 (the critical value of intermittency transition to turbulence, see [PM80])
show strong deviations from the lognormal prediction.
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Fig. 12. AL(q)=L(q) — A,q vs. ¢*; (a) for the Henon-Heiles model [HH64] with initial condition on the chaotic region at the energy surface
E =0.125; (b) Henon map [H76] with a = 1.2 and b = 0.3; (c) Lorenz model {L63] with r = 166.3. The full line indicates the parabolic approximation
*AL(q) = (p12)q"

3.2.2. Conceptual relevance of the intermittency in the definition of chaos

The introduction of the set of the generalized Lyapunov exponents is relevant from a conceptual
point of view since they allow to clear out when a system is chaotic. Indeed, it is commonly stated that a
system with negative A, is stable under small perturbations. The relation (3.2.7) evidences that even in
this case small perturbations might cause large responses with finite probability: if L(q) are positive for
q>q.. It is clear that the smaller is g_, the larger is the probability of having chaotic bursts in the
framework of a regular behaviour. A simple example is useful to stress this important point.
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Let us compute L(q) in the case of the Langevin equation:
¥=-dV/idx+n (3.2.15)
where 7 is a white noise, i.e. a random Gaussian process with zero average and covariance:
() (")) =8(t—1). (3.2.16)

We consider two trajectories x(¢) and x(¢) = x(¢) + &(¢), both satisfying eq. (3.2.15) with the same
realization of noise. We define:

|e(7)]

= 3.2.17

R(X(O), TITI) E(lég‘_)o |8(0)| ( )
which is of course a functional of n. The function L(gq) is then:

L(g)=lim ~ In [ d[a] P[] R(x(0), 7ln) (3218)

where P[n] is the Gaussian probability distribution functional. Let us remark that the definition of the
Lyapunov exponents for stochastic equations is a subtle mathematical point; we have here followed the
naive standard procedure (see e.g. [CFU82]). Usual arguments imply that L(gq) does not depend on
x(0). Our aim is to evaluate L(q). We first notice that:

R(x(0), 7|n) = exp[—j V"(x(2)) dt] (3.2.19)
]
where the dependence on 7 comes through the dependence of x(¢) on 7. Let us evaluate:
(RY(1)) = J du[x] exp(—q f V'(x(¢)) dt) (3.2.20)
0

where du[x]" is the measure induced on the trajectories by the stochastic differential equation (3.2.15).
It is well known that (see for example [G78]):

ulx) = exp( - [ a {107 + Ux()) ol

= exp(—JI U(x(2)) dt) dP[x]" (3.2.21)

where dP[x]" is the usual Wiener measure on the trajectories and we have neglected boundary terms
(i.e. terms depending on x(0) and x(7)). The function % is given by:
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U(x) = $(dV/dx)® — 1 d*V/dx*. (3.2.22)

The Feynman path integral representation for quantum mechanics at imaginary time implies that
[FH63]:

| dmlxl — exp(-r Ey(0)) (32.23)
where we have neglected the prefactor and E (%) is the ground state of the Hamiltonian
H=-1d%dx*+ Ux). (3.2.24)

Consistency requires that E,(%) =0, which is indeed trivial to check. We can now write:

(R%(2)) = | dlal" exp( - | e (32 + ) + V')
0
xexp(—7Ey(q)) - (3.2.25)
where E,(q) is the ground state of the Hamiltonian
H(g)= -1 d%dx* + U(x) + g V'(x) . (3.2.26)
It is clear that

L(q) = ~E,(q) . (3.2.27)

Equation (3.2.27) gives a method to compute L(g) in an approximate way. A few exact solutions are
available: for example if V= x* we have L(q) = —24. In the general case we remark that lim__, L(q)/
g = —L* is easy to compute and it is given by L* = min, V"(x). This means that, although L(q) can be
negative for small g and the system is stable in the usual sense, the system can be unstable under a small
perturbation as soon as V"(x) is negative somewhere as previously discussed.

We remark that this situation is somehow similar to what happens in the case of a multifractal set in
both fully developed turbulence and chaotic attractors: the strongest singularity dominates the
behaviour of the high moments for the structure functions [BPPV84]; for a similar case in different
context see [B77, B82].

3.2.3. Generalized Lyapunov exponents of higher order

A more accurate description of the chaoticity in a dynamical system can be achieved by taking into
account the fluctuations in the divergence of volumes in phase space under the dynamics. Toward this
goal, we can define a set of generalized Lyapunov exponents of order n which generalize the relation
(3.2.7) [PV86b]:

L™(q) =lim % In(R™(1)*) (3.2.28)
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where L'V(q) = L(q). It is then easy to verify that:

: dL®™
A= . 3.2.29
,~=21 todg =0 ( )
The whole spectrum of the Lyapunov exponent {A,, A,,... Az} has now found its counterpart but it

seems rather artificial to distinguish the contribution of each eigendirection ¢, in the fluctuations of the
exponential divergence of an n-dimensional volume. One is of course tempted to define:

LO(q) - L (g)
q

I(q)= (3.2.30)

with F=i=2 and /,(q)= L(q)/q.

This definition is however justified only by the trivial fact that /,(0) = A,. Moreover some preliminary
results [G86a] indicate that it cannot be correct for systems which are not hyperbolic where the stable
and unstable manifolds can mix each other under the dynamics. The measurable quantities are just the
L™ and we can repeat for them all the considerations done for L(gq).

We want to stress that L™(q) as well as L(g) cannot be extracted by an experimental signal while
they can be easily computed from the numerical analysis of a dynamical system evolution using the
methods developed by Benettin et al. [BGGS80] even if some precautions must be taken in order to
avoid computer overflows due to the fast divergence of R

3.3. The Renyi entropies
The Kolmogorov entropy is related to the sum of the positive Lyapunov exponents which measure

the divergence rate along the expanding directions. Indeed Pesin [P77] proved that for an ergodic
measure with a compact support

K =< i A (3.3.1)

It
—

where p is the number of exponents A, > 0. In many interesting situations, for example the Hamiltonian
systems, (3.3.1) becomes the identity [ER85]:

P (p)
Ki=2 )= dL (3.322)

which we shall assume valid in the following.

On the other hand, temporal intermittency corresponds to fluctuations in the predictability time
which can be described by a set of generalized entropies called in the information theory Renyi
entropies [R70].

Let us give their definition in a simple constructive way which can be made more rigorous without
excessive difficulties, see e.g. [CP85]. Take a record of measures of a signal x(¢) at uniform spacing 7:

x,=x(ir) withi=1,2,...M>1 (3.3.3)
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considering, as usual, a partition of the phase space R” into a grid of boxes of size I. A trajectory is thus
specified up to a time rd with resolution / and 7 by a sequence of boxes i, 7,, ... i, (see fig. 13). The
joint probability P,(i,, i,, . . . i,) that x, falls into i,, x, into i,, and so on, defines a ‘mass density’ in the
trajectory space R™, whose moments give a possible characterization of intermittency. The Renyi
entropy of order g is:

K,,, = —limlim lim L In(P{) (3.3.4)

70 (-0 d— dq

where the average is now taken over the different histories of the system:

(= 2 CPpby. .-y (3.3.5)

{igsig, . ig)
It is simple to show [F71] that K, = K . if ¢ > ¢’ and that K_ is constant in absence of intermittency.

The Kolmogorov entropy is obtained in the limit case of vanishing g:

K = ~lim lim lim —1— (nP)= hm K,. (3.3.6)

70 [0 d—>x
K gives the average loss of information for unit time which is independent of /. On the other hand, K is
the topological entropy h:

)
by = lim lim lim ——2 = K, (33.7)

70 [-0 d>x dT

where ¥, is the number of different sequences {i,, . .. i,} which have to be considered up to a time 7d
knowing the initial state of the system with resolution / and 7. s} is a topological invariant [ER85] which
does not require the introduction either of a metric or of a measure in the trajectory space at difference
with the other entropies K.

x(t)
4

S T B o 1

—»
t

Fig. 13. Partition of ‘space-time’ with resolution / and 7. Dots are the system states x; = x(i7).
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It is evident that the topological entropy is the analogue of the fractal dimension as well as the
Kolmogorov entropy of the information dimension. The probability P,(i,, . .. i,) is deduced from the
(chaotic) temporal evolution of the system and, in this sense, the entropies refer to the natural measure.
A more refined definition requires an extremum over the possible partitions of space-time but it goes
further than the purposes of this paper [W86, CP85].

Grassberger and Procaccia [GP83b] have firstly proposed a method for the computation of X, (a
lower bound of K') which is quite analogous to that for the computation of d,. This numerical algorithm
has been extended to the calculation of K [CP85] as well as of the whole set of the K, ’s [PV86b].

It is worth noting that the Renyi entropies can be extracted by an experimental signal while the
generalized Lyapunov exponents cannot. Indeed, let us estimate the average (3.3.4) by a record of M

measures at uniform spacing 7. The joint probability P,(i,, . . . i,) is then given for M large enough by:
@ L v i
d
n ()= 0(1 - Xipn—Xiin ) . 3.3.38
( ) (MTI) poy ! | + j l ( )

In the limit d = 1, n‘(/) becomes the density n,(!) of points in a ball of centre x, and radius / defined in
eq. (1.1.7).

Increasing the time this density decreases since many points which are initially in the ball of centre x;
do not remain in the ball around x,, , (the d-iterated point of x;). The Kolmogorov entropy measures
the inverse of the average characteristic time of this exponential decay. We can however define for each
moment the quantity:

CO, =37 2 (DY = (PY) (339)

The corresponding entropy K., is thus given by the d-asymptotic value of the ratio:

C(d)(l, )
q ))_

lim lim lim — ln(F‘H—l)(ﬁ

>0 [0 d—>= T

(3.3.10)

3.4. Relation between the generalized Lyapunov exponents and the Renyi entropies

We can find a simple relation between entropies and generalized exponents under the hypothesis that
the Pesin identity K = L7_, A, holds.

As a starting point it is convenient to define the concept of ‘mass’ M in the trajectory space.
Following Grassberger [G86b], let us focus on a given trajectory x(f) and the trajectories which stay
within a distance =</ from x(¢) for all the time in the interval [¢*, * + At]. One defines a domain B:

B={y(t): |y(t) = x(t)| =L, Ve E[t*, t* + At]} . ' (3.4.1)

Let us denote by M,(x(t*), At) the measure of B. Then, this mass decays with At since there are p
expanding directions (at least ‘in average’) corresponding to the p positive Lyapunov exponents. Let us
assume that the number of contracting directions does not change, i.e. defining p = p + 1 as the number
of non-negative Lyapunov exponents:
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LY 9<L™(q), V¥q>0; L"(g)>LPg), Vq<0. (3.42)
This inequality plays a fundamental role when relating K., to LP(g). It is probably satisfied in a
hyperbolic system and some arguments indicate that in general it remains valid only up to a certain
value g, above which p may change with a unity [BP87b]. If (3.4.2) holds, we see that for each point
x(¢) the mass should decay as:

M(x(2), At)=n_(I)/R'”(At) (3.4.3)

as schematically illustrated in fig. 14. The scaling of the mass is thus due to that of the response R’ and
eq. (3.2.28) implies for the moments:

(M7« {n(l)*) exp{At- L'”(~q)}
o« [*D exp{At- LP(—q)} . (3.4.4)

On the other hand, the joint probability P,(i, i,, . . . i,) is given by the mass part factors of order one:
M,(x(t), At =r1d)=P,(i,, i,,...1i,). (3.4.5)

te x(t)

t*+ At

t*

Fig. 14. Tube of trajectories y(r) which stay at a distance =</ from the trajectory x(r) between * and #* + Ar. The shadowed region B defined by eq.
(3.4.1) decays exponentially in ¢.
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We can therefore estimate the average in (3.4.4) by a weighted sum over the possible sequences of
boxes {i,, i,,...i,}:

(Mi)= 2 Pfii,...i,)"" =exp(-7dgK,.,). (3.4.6)

{igsig, .. -y

It follows, by comparing (3.4.6) and (3.4.4), the relation [PV86b]

L(P)_
xk -L"Ca9

g+1 _
q

(3.4.7)

Equation (3.4.7) becomes the Pesin identity in the limit g— 0 while k., the topological entropy K, is
equal to L”(1), the exponent which rules the exponential divergence, in average, of a p-dimensional
volume under the chaotic dynamics.

3.5. Multifractality in the trajectory space

We can regard the set of trajectories (box sequences) of an intermittent system as a multifractal
object with regard to the mass defined in eq. (3.4.1).
Let us namely call history X’ the finite sequence of measurements of the signal x(¢):

Xid) = (X, Xprts - - - Xygo1) (3.5.1)

where x, = x(kr).
X represents a point in the history space R° @ R” - - - @ R” (d times). We also introduce a metric
by defining the distance between two trajectories as: -

DX -YP)= sup |xe.; =y, (3.5.2)

O=j=d-1

Around each history X\ there is a tube T of trajectories Y*) such that:
T,(XY,d)={Y,: 2(¢'Y - X =1}, (3.5.3)

A natural measure in the space of histories is introduced if the initial state x, is distributed according to
the invariant natural measure on the attractor. We can thus define the probability P,(X'*) that a given
history falls within the tube T, around X, Such a probability can be estimated [GP83a, GP83b] if we
know a great number A of histories X g.N ) (or a very long record of consecutive states of the system,
which is then broken up into histories of length N). One has:

1 N
P(X)= 5 2‘,1 (- DX - X)) . (3.5.4)

This probability decreases exponentially with a characteristic time y ~' which depends on the particular
initial condition x,:
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P(XPyxe ™  for large ti 3.55
(X ge times . (3.5.5)

The temporal intermittency is thus characterized by the fluctuations of these local expansion parame-
ters, LEP, y. It is not difficult to apply the multifractal approach [EP86, PPV86, SSS86] to the
distribution of 7y in the same way as the distribution of « for the phase space has been characterized.

It is convenient at this point to divide the space of histories into boxes of linear size /. The ‘history’
boxes are then the cartesian product (for 1<j<d) of the ‘phase space’ boxes. The time evolution of
the system is thus given by a particular history box I= (i, ... i,) as we have seen in the section 3.3.
The joint probability P,(i, . .. i,) is the probability P,(I) that a history X'’ belongs to the box I.

We now consider the set (2(y) of histories whose LEP belongs to the interval [y, y + dy]. The
number &, of boxes necessary to cover this set will increase with d according to the law:

N, (d) xexp(r d h(y)) (3.5.6)
where h(y) is the topological entropy of the set £(y), with the warning that if A(y) <0, then the
topological entropy is zero. We have by definition h(y) =< h.

Let us now show that h(y) and K are related to each other by a Legendre transform analogous to
(1.2.5).
Indeed, the partition of the (multifractal) set of the histories into the sets £2(y) allows to compute

the averages (3.3.4) as weighted sums over the boxes I, by grouping together all the boxes which belong
to the same {2(y):

<P1(I)q_1> ={§I; P(1)*

[ ap(y) exp(=dr (qy ~ h(v)) (3.5.7)

where dp(y) is a smooth measure.
A saddle point estimation of the integral yields in the limit of large 7d:

K,(g—1)=min(qy - h(y)) . (3.5.8)

The term exp(—dr) is here the scaling parameter in the history space like / in the phase space.
Let us emphasize that the probability that a trajectory (i.e. a box I) belongs to a set (}(y) scales as:

P(X € O(y)) = exp(—S(y) 7d) (3.5.9)

with S(y)=0.
Arguments quite similar to those which lead to eq. (1.2.11) show that:

(Pi)= f PXE(y)e ™ dy (3.5.10)

and so:
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Kq+1q=myin(qy+S(y)). / (3.5.11)

It follows by comparing (3.5.8) and (3.5.11) that:
S(y)=—h(y)+vy. (3.5.12)

The equality S =0 holds only for y = K, implying that in the asymptotic limit #— % one has vanishing
probability of finding a trajectory with LEP different from the Kolmogorov entropy. Each g peaks up a
particular value of the LEP by minimizing (3.5.8) or (3.5.11):

g =dh/dy| and g =-dS/dyl,,, . (3.5.13)

¥(q)

In the limit g— +o the Legendre transform becomes trivial and one finds the extrema between
which y is bounded:

Ymin = Kw and Ymax = K——oo - | (3.5.14)
At g=0, y=K* (and y = K,) whereas h attains its maximum:
h(y=K*)=K,. (3.5.15)

S has its minimum at K,: S(K,) = 0. It is easy to show that 4 (and — ) are convex functions defined on
the interval [K,, K_,]; § has a quadratic minimum implying for y = K, the parabolic shape:

S(y)=(y-K,)/2b. (3.5.16)

Let us note that () is also approximated by a parabola around K, and not around its vertex K*. For
small enough g we then have:

K., =K, —bq (3.5.17)

where b is the second-order cumulant:

T | ) _ 2
b= lim ]11—133 lim pr [(In® P(I)) — (In P(I))7]. (3.5.18)
For a lognormal distribution of the ‘mass’ in the trajectory space the relations (3.5.16) and (3.5.17)
remain valid for all the g values.

The relation between —S(y) and K, is reminiscent of that linking the entropy to the free energy in
thermodynamics 8 F(B) = U(B) — ¥(B). The role of the inverse of the temperature B is played by the
moment index g, F(B) by K_.,, U by y and #(B) by —S(¥(q)).

Let us limit ourselves to consider the branch of positive temperatures (i.e. ¢ >0). As g—> (i.e.
vanishing temperature) the system is found in the state of minimal energy ¥,,, and minimal entropy
—S(ymin)'

A typical phase diagram of K vs. g is shown in fig. 15.
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Fig. 15. Typical shape of K, ., vs. g (full line). The dashed line indicates the lognormal approximation K =K —(b/2)g.

One may also speculate on the possible existence of ‘phase transitions’ which would appear as edges
in the K vs. g curve at a critical value g . Let us, e.g., suppose that the linking of the large g behaviour
K, = ¥pinq with the ‘high temperature’ expansion (q <q.) K, =L, c,q' is not smooth enough. In this
case one should have a discontinuity in the n-order derivative of K at g, implying a continuous
transition between the intermittent high temperature phase and the non-intermittent (‘ordered’) low
temperature phase.

3.6. A thermodynamical formalism for unidimensional maps

We want to discuss here how the statistical mechanics for spin systems on a lattice can be applied to
chaotic one-dimensional maps g [R78, B75, R76a,b],

X = 8(xy) -

For a system of n spins the partition function Z, is given by a sum over all configurations of the
Boltzmann weight exp(— BH, ) where H, is the configuration energy and ™' the temperature. The free
energy per spin is then given in the thermodynamic limit by:

.1
F(B)= —lim nB InZ, .
Such a thermodynamical approach can be rigorously used only for a particular class of dynamical
systems (see e.g. [R78]) but its generalization is possible at least on heuristic grounds.
For “typical” unidimensional maps before chaos each initial point is attracted into a periodic stable
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orbit such that x, = g™(x,) where g is the nth iterate of g. The evolution becomes chaotic whereas
all the orbits become unstable. Nevertheless, the statistical properties can still be characterized by these
unstable periodic orbits [B79)].

A global degree of instability is measured by the Lyapunov exponents [MR82]:

A= lim | du, () ol g/ (3.6.1)

where g’ =dg/dx and dpu, is an invariant measure which converges with n to the invariant ergodic
measure du(x).
Kai and Tomita [KT82] suggested the following form for u,:

N(n)
m(X)= 2 a,8(x-z) (3.6.2)
i=1
where z, are the ¥(n) unstable fixed points of period n (i.e. z;,=g"(z;)), the set of which will be
denoted by J™. Its cardinality #(n) is proportional to exp(k.n) by definition.

The weight g, for measures which are absolutely continuous with respect to the Lebesgue measure
[L81] is:

a,=c,/|g™ ()| with 2 a;=1. (3.6.3)
We can thus define a partition function following Takahashi and Oono [TO84]:

Z(g B)= 2 exp{-Bn|g”(z)]}. (3.6.4)

z,-eJ(”)

The fluctuation of the degree of chaos can be characterized varying B by the generalized Lyapunov
exponents. Let us in fact call R, (z)=|(g"’(2))| the response after n iterations of the map to a
perturbation in z, unstable periodic solution of order n.

The partition function (3.6.4) becomes:

Z,(g B)= 2 exp{-BInR,(z)) (3.6.5)

z,—EJ(")

which can be estimated by a time average in the chaotic phase. Moreover, let us recall the
Bowen—-Ruelle relation [B75]:

F(g,B=Dy)=0 (3.6.6)

where Dy, is the Hausdorff dimension. The definition of Hausdorff dimension requires a minimum over
the possible partitions into boxes of size =/ for /—0. We have escaped these troubles considering
uniform partitions into boxes of size /. If these procedures are equivalent (which is often true), then the
Hausdorff dimension is the fractal dimension.

For measures whose support is fractal, the ansatz (3.6.3) suggests to assume the weight
a,|g"(z,)'|P¥, which corresponds to a “uniform” measure for which ¢(g)= Dy q [BPPVS8S5].
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The partition function (3.6.5) can be - estimated by an ensemble average (‘)=
Ez,.eﬂ") (')|g(n)(z)'|_DF for large n:

Z,(g B)=(R,P™)=R,P""* (3.6.7)

where (- ) is a time average.
The generalized Lyapunov exponents computed with respect to the uniform measure therefore allow
one to determine the free energy F(B) by the relation:

P(B)=-BF(g, B)=L(q= (D~ B)), (3.6.8)

where we have introduced the so-called topological pressure P(B).

The Bowen-Ruelle formula (3.6.6) now simply follows from the trivial identity L(g =0)=0.

It is useful to note that the temperature parametrizes a whole class of probability measures (called
Gibbs equilibrium measures) on the invariant set J given by the closure of lim,_,_J:

dpg(x)=lim X dx6(z,— %) |g"(z,) ", (3.6.9)
ziEJ(")

where B8 = D, picks up the uniform measure. A moment of reflection shows that the characteristic
Lyapunov exponent A® computed by an average over the measure du, is:

Aitp) = {Injg ()1, = | diy() nlg 00 (36.10)
It corresponds to an internal energy U(B) defined as:

_ . 1dnZ(B) _dp
UB)==lim > —4g  ~dp"

Let us note that the Pesin equality is not satisfied if D <1 since one has [LM85, G86b]:

K(p)=A(p) Dy(n), (3.6.11)

and D(u) =< Dy for any measure p. Nevertheless, for the uniform measure where D, = D, we can
extend relation (3.4.7) [BPTV87], which becomes

K,\n=—L(=De-q)/q. (3.6.12)

Let us also discuss the limit of infinite temperature 8 — 0, which picks up the maximum entropy
measure (3.6.5) such that K, = h; =max, K,(p) and K, = h, for all g. Relation (3.6.5) now gives the
number A(n) of unstable fixed points of period n. In the limit n— o we find that:

In N(n)

hy = lim =~ lim B F(8) = P(0). (3.6.13)
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We finally note that (3.6.6) can be extended to a generical g value in the case of the uniform measure
[BPTV87] and of the maximum entropy measure [LPC87,T86,F87] to P(Dyq)=(1-¢)K, and
P(—¢(q)) = (q + 1)h, respectively.

3.7. Partial dimensions and entropies

The introduction of dimensions and entropies related to the different eigendirections of the
linearized flow allows to find some relations linking Renyi dimensions to Renyi entropies and to

generalized Lyapunov exponents, even if its applicability seems rather questionable as noted in section
3.2

Let us assume that a small box centred around a point x; of the trajectory is stretched along the kth
eigendirection by a factor

m,(x;, t) xexp{y(x,)-t}  for large t (3.7.1)
where one can easily recognize from the definition (3.2.30) that
(m)xexp{l,(q)-t}, (y)=4a, forlarget. (3.7.2)

In the same spirit, Grassberger [G86] proposed to assign a ‘partial dimension’ D (k) to each
eigendirection. The Renyi dimensions are given by the sum of all the partial dimensions:

F .
d,= Zl D, (k). (3.7.3)
The attractor is thus decomposed in the direct product of continua (directions with D, = 1), discrete
points (D, =0) and Cantor like sets (D, <0).

Following ref. [BP87a] with slight modifications, let us define a (generalized) volume contraction rate
of order g around a point x;:

F
Vg, 1) = kﬂ mgr® (3.7.4)
=1
The average volume conservation then implies the relation:
}LIE (V(g, ) ") =1. (3.7.5)

This is a constraint on the choice of the proper dimension list of the D, ’s. In the limit g—0,
condition (3.7.5) becomes:

é D,(k) A, =0 (3.7.6)

and it is possible to show [G86a)] that the Kolmogorov entropy is given by:
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+)

K, = 2( D, (k) A, (3.7.7)

where the sum £ runs over the directions with positive A,. The Pesin relation (3.3.2) is recovered if
all the expanding directions have dimensions D, =1 as it is the case of axiom A systems [ER85].
Furthermore, for g =0 the partial dimension must satisfy the constraint

0=D, =<1. (3.7.8)

The simplest choice compatible with (3.7.5) and (3.7.8) is given by the assumption that the attractor is
Cantor-like only along the (j + 1)th direction, where j is the largest integer for which £, _, A, =0. We
have D (k)=1 for k=j, D (k)=0 for k>j+2 and D (j+1)#0 as well as #1. This choice
maximizes the estimation of the information entropy and gives the Kaplan-Yorke formula [KY78]:

j
d1=i+k§_:1 Ak/l)\,-H!- (3.7.9)

Equation (3.7.9) is in general an upper bound but it has been proved to be exact for two-dimensional
diffeomorphisms [Y82]. Analogous upper bounds can be obtained for d_., with g >0. However, in the
case of maps with more than two degrees of freedom, one needs to assign several trial values of D, ., in
order to determine the right ones by interpolation. It was proposed [BP87a] to decrease the dimensions
D (k) starting from the largest possible list (D, =1 for k=1,2, ... F) until the requirement (3.7.5) is
satisfied. In this procedure one always imposes that only one direction, say j_, is Cantor-like where j,_ is
the largest integer for which:

Ig

~-1/q
lim % ln<k11 mk(t)‘q> =0. (3.7.10)

In this way, we obtain D (j, +1) from (3.7.5) and thus an upper bound for d,. Only in the case of
two-dimensional maps with constant Jacobian, the equality d, = j, + D_(j, + 1) can be explicitly solved
[BP87a).

Nevertheless, it is possible to perform a perturbative expansion of eq. (3.7.10) defining the
generating function g:

<Ik] mik>ocexp{g(zl, Zyy o Zp)), (3.7.11)

for large ¢.
The average conservation of the volume (3.7.5) implies that {G86b]:

8({z, =D, (k)-q})=0 (3.7.12)
with:

1
8z, 25, - 'ZF)=ZZiAi+ 5 %ZiQikzk+"' (3.7.13)

noting A, = <’)’,<> and Q,, = <(7: - )‘i)(yk - )‘k)>‘
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The generalization of the Kaplan-Yorke formula (3.7.9) is then given by inserting eq. (3.7.13) into
eq. (3.7.12) so that:

S Dpi(k) =3 2 Dy () QuDy (k) +- (3.7.14)

It is also possible to find the analogue of relation (3.7.7):

(+) (+)
q .
K= 2 A ) kzj D, (k) Qi ; Dyii(f) (3.7.15)

which in the limit of axiom A system reduces itself to a Pesin-like equality:

(1)( q)
g

(+

Kpo=2 )A ——2 Qk,+0( )= (3.7.16)

We must finally discuss the connections with the thermodynamic formalism. As the conservation laws
(3.7.5) involve both Renyi dimensions and Renyi entropies, Badii and Politi [BP87b] argue that the
function H(a) is related to the analogous S(vy), respectively defined in egs. (1.2.9) and (3.5.9). Indeed,
under the hypothesis that to each singularity a corresponds a given local expanding parameter vy, we can
identify the factor e around a point x; of the trajectory with the scaling of the measure /°. It follows
that:

exp(~7 ¥(x,)) « 1°*? (3.7.17)
and the probability of finding a singularity « in the range [a, @ + de]
P(a) « " « exp(—ry H(a)/a)

should scale as the probability P(y) «exp{—S(¥) 7} of finding a LEP €[y, y +dy].
This implies that

H(a)la=8(y)/y . (3.7.18)

The appearance of discontinuities in the Renyi functions can be analysed in terms of partial dimensions.

If the index j_, at which D_,,(j,)#0 and #1, is not fixed but jumps by one unit at g., we should
expect an edge in the Renyl dimensions. In this case, the partial dimension associated with the
Cantor-like direction for q > g, decreases with increasing ¢ and vanishes for g = g.. The preceding
dimension D, ,(j, —1) which is equal to 1 for g < g, begins to decrease with g, at the same time.

This involves a kind of first-order phase transition in the function d_,, (regarded as a free energy at
the inverse temperature 8 = q) corresponding to vanishing of the contribution of the multiplier m; to
the generalized volume (3.7.4) at q.. We can correctly speak of transition if the ‘Kaplan—Yorke’ choice
for the list of D, is not only an upper bound but coincides with the real D ’s. Otherwise the transition
can be related to the change in the rule used to define the partial dimensions.

We have described a mechanism which can explain the appearance of ‘phase transition’ just for
systems where each eigendirection has its own individuality. On the other hand, in generic systems, like
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the Henon map, an expanding direction can coincide with a contracting one when it is computed at
different points. For g larger than g a transition can occur because of an exchange of two multipliers.

This second mechanism is not yet fully understood and we refer the reader to [BGP87] for more
details.

4. Replicas of disordered systems as multifractal objects
4.1. Introduction

The techniques developed for the characterization of the temporal intermittency are quite useful for
the study of disordered systems. Indeed, in some systems, the sample to sample fluctuations of the
physical observables can be described in terms of the generalized Lyapunov exponents related to the
product of appropriate transfer matrices whose elements are random variables. We have here to note
that the random matrix product is a rather interesting problem also in dynamical systems where it is
often used as a model of the chaotic behaviour of quasi-integrable Hamiltonian systems [B84, PV86a).

In this section we want to show how the different realizations of the system with respect to disorder
correspond to trajectories generated by iterating the transfer matrices.

It is thus possible to define a multifractal object in the ‘replica ensemble’: in this sense the
fluctuations induced by the disorder are an intermittency phenomenon.

We must however stress the peculiarity of this sort of intermittency. In a time evolution the
characterization of the degree of chaos variations has a great practical relevance. One is interested in
the knowledge of the (chaotic) signal as function of time and not only in the ‘global’ behaviour. On the
other hand, the fluctuations around the average value in a disordered system are rather less important
since they decay exponentially with volume in the thermodynamic limit which is always reached in a
real sample.

The multifractal formalism becomes in this case just a fluctuation theory which is quite analogous to
that introduced by Einstein in the canonical ensemble. .

Let us in fact consider a large number of different samples of a usual equilibrium system with N
particles. A sample can of course be regarded just as a ‘small’ part of a larger system. Each sample is
then characterized by its energy per particle, say x, and we can group all the realizations with energy
per particle between x and x + dx in the same set {}(x). The number H_ of realizations belonging to
Q(x) is assumed to increase exponentially with N like:

H_ ~exp(s(x)N), (4.1.1)

where s(x) is the microcanonical entropy per particle corresponding to the energy x.
We can now compute the partition function of the Gibbs distribution integrating over x:

Zy(B)= f H e ™ dx~ j MW A gy (4.1.2)

In the limit N— « only one set gives a relevant contribution to Z,,. By means of the steepest descent
method one in fact gets:
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Zy(B)~exp(=B f(B) N) (4.1.3)

with

B f(B)=min [Bx ~ s(x)] = Bu ~ s(u)
where the minimal condition in the Legendre transformation (4.1.3) implies:

Ll (4.1.4)

dx |x=u
The probability of finding a sample with x # u vanishes for large N like:

Py(x)=Zy" e ™" H ~exp(- BN[4;(x) ~ f(B)]) (4.1.5)

where ;= Bx — s(x) = f and f is the free energy per particle of the system. We have derived these
well-known results in order to point out that the hierarchy of sets {}(x) can be investigated by varying
the temperature. The same approach can be used for characterizing the finite volume fluctuations in
disordered systems by means of the replica formalism.

We shall explicitly consider two models: the Schroedinger equation with a random potential and the
Ising model with random couplings, analysing respectively the localization length and the free energy.
A short discussion will finally deal with the possibility that there exist ‘phase’ transitions in the diagram
L(gq) versus q.

4.2. The one-dimensional Anderson model

A first simple model of the conductivity in a disordered medium is given by the Schroedinger
equation with a randomly distributed potential V;. We shall consider a discrete version of the Anderson
model [AS58] defined on a one-dimensional lattice. One can write the finite difference equation:

Uit o WV = Ey, (4.2.1)

where i labels the site of the lattice, i, is the amplitude of the eigenfunction at the site i, V, a random
potential and E + 2 the energy.

In the following each V; is uniformly distributed on the range [—1/2, 1/2] and is uncorrelated from
one site to another:

(V)=0, (VV)=A%, (4.2.2)

with A>=1/12.

It is well known that whenever w#0 the eigenfunction is exponentially localized [DLS85]. This
means that if we have assumed periodic boundary conditions (i.e. ¢, =¢_,) an eigenfunction
{¢,|-N = n< N} exponentially decreases (with probability one) at large distances around its maximum
(say for n=0):
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|| =< [y exp(—const. |n]) (42.3)

The localization length is then usually defined as

1

= lim - — 4.2.4
& |,l,1|I—nm |n| (lnwfnl) (4.2.4)

where the average is taken over disorder.
On the other hand Mielke and Wegner [MW85] have recently considered:

¢ = lim - iln(|(/1n|) . (4.2.5)

inse |
Let us generalize (4.2.5) introducing ¢, [PV87b]:

L1
= lim ——
L Il |n| ¢

In|y,|™) . (4.2.6)
A direct numerical computation of £, is a hard task since it is rather difficult to calculate the exact
eigenvalue and eigenvector of (4.2.1) for large chains.

Let us show that the problem can be reduced to the calculation of the generalized Lyapunov
exponents associated with a product of random matrices. Equation (4.2.1) can in fact be written in the
recursive form:

26 +1) = A_(i) Z(i) 4.2.7)
where
a,0=("" 7). Z(i)=(‘”:;1). (4.2.8)

One has a product 11, A, (i) of random symplectic matrices which relates Z(N) to Z(0).
It is useful to introduce the ‘response’ after n sites whose value depends on the starting site m:

R, (n)=|Z(m + n)|/|Z(m)| . (4.2.9)

The generalized Lyapunov exponents L(q) are then given by the asymptotic behaviour of the moments:
1 M
(R(N)?) = lim - > R, (N) ~exp{L(q) N} for large N . (4.2.10)
—® m=1

It is easy to recognize that £, is the maximal Lyapunov exponent Ay

L nrvyy =& (4.2.11)

-1 _ = 1 =
Eo ")‘1 11/1—120N dq g=0
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We have seen that a linear behaviour L(g) = A,q indicates that there are no fluctuations of R (i.e. no
intermittency). By comparing (4.2.10) with (4.2.6) one has, since R, (n)~ |, |/|¥,,..|:

¢, =L(g)q. (4.2.12)

Let us emphasize that the sequence {Z(m + i) with 0 < i < N} generated by iterating the transfer matrix
is not an eigenfunction {¢,} on the lattice because it does not take into account boundary conditions.
Nevertheless, if eigenstates at the chosen energy exist, then the Lyapunov exponent A, coincides with
the inverse of the (average) localization length &,. On the other hand, the localization length fluctuates
around ¢, with varying realizations of disorder. Let us therefore define a local expansion parameter
LEP y by the relation:

R_(N)~exp{y(m) N}  for N large. (4.2.13)

v is a random variable which depends on the starting site m and with average value A, whose
probability distribution P(y) coincides with the distribution of the localization lengths among different
realizations of disorder.

At this point we can apply all the multifractal machinery of the previous section by grouping in the
same subset all the trajectories {Z(m + i), 0<i < N} which have a LEP in the range [y, vy +dy].

It is quite reasonable to assume that after N sites the probability P(y) of having a response with a
given LEP has the following form:

dPy(y)=dp(y) exp{=S(y)N}. (4.2.14)
The ansatz (4.2.14) is necessary in order to obtain an exponential behaviour for the moments ( RY(N))

and is similar to the hypothesis made for the singularity structure in turbulence and in other strange
sets. We can now calculate the average over the disorder by the average over the y-distribution:

(RI(N)) f dp(y) exp{[vq — S(v)IN} xexp{L(q)N} . (4.2.15)
A saddle point estimation of (4.2.15) gives:

L(q)=max[yq - S(v)] = ¢¢," . (4.2.16)
From eq. (4.2.13) all the ¢, ’s must be positive implying y > 0: when all the potentials V, are equal one

recovers the pure system and this corresponds to the minimal value of the LEP y,, . More generally
one can see from eq. (4.2.16) that:

lim &' =Y, lim &'=y,=0 ' (4.2.17a)

g—® g—>—©

0= S(y)=max[S(¥pax)» S(Vmin)] - (4.2.17b)

Let us recall that S(y=A,)=0 while S(y # A,) is positive in the S-definition range [0, v, ]. The
fluctuations around A, therefore decay with N as exp(—S(y)N). The existence of this thermodynamical
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limit corresponds to the Oseledec theorem [O68] on the existence of the Lyapunov exponent A,. The
absence of fluctuations is analogous to a non-intermittent chaotic behavior. If the response is obtained
as the product of independent random variables, the lognormal distribution is a good approxnmatlon
and S(y) is a parabola truncated at y_._ = 0 and at v,,,. The corresponding form L(g) = A,q + (u/ 2)q"

is then valid only for not too large g values (see appendix B).

4.3. Anomalous scaling laws at the band edge

For a pure system (w =0) the energies of the Hamiltonian (4.2.1) are concentrated within a band
-2=E=2.

In the sequel, we shall limit ourselves to the case (V,) = 0 since it is always possible to include the
average value of the potential in the definition of E. Let us concentrate on the band edge E =2 of the
pure system where the generalized Lyapunov exponents have a particularly interesting scaling be-
haviour with respect to the disorder amplitude w [PV87b]. The weak disorder expansion of the
Lyapunov exponent is non-analytic and one finds [DG84|:

A =Cw"?,  C,=0.28934"". (4.3.1)

On the other hand it is quite simple to extend a perturbative calculation of Parisi and Vulpiani [PVu86)
for computing L(2) in our case:

LQ2)=2Cw*" (4.3.2)

with C, = A**2"%2~=0.62994%" .
One can therefore estimate the variance u by assuming that for low disorder L(q) = A,q + (r/2) ¢°
has a parabolic shape up to g >2:

w=L(2)/2— A, =0.34064>"w*" . (4.3.3)
Figure 16 shows the plot of L(gq)/(C,w*’q) for different values of w in the case of V, uniformly
distributed in the range [—1/2, 1/2]. We observe a linear behaviour L(q)/q = A, + (/2)q for g < q(w)
which breaks down for larger ¢’s and then saturates to the plateau L(q)/q = v,,,, for g > q(w).

The maximal LEP can be estimated by a rather naive (but stringent) argument. The maximal
eigenvalue of a random matrix A, (i) is I(V,) =1+ V/wV, + O(w). It follows that the maximal LEP is
obtained for a disorder realization such that V, are typically of the same order of max{V,} = }:

Y EW' (4.3.4)
for small w.
This result is in good agreement with the numerical extrapolation of L(q)/q in the limit of large g
(see fig. 17).

The value of g(w) can easily be obtained by matching the asymptotic behaviour L(q) = w'’? with the
lognormal one for small g, i.e. L(q) /q A, +(u/2)q. One thus obtams G(w) < w™"'® These two kinds
of behaviour for L(q) (i.e. L(q) = w’" for small ¢ and L(g)x w'’* for large g) implies a crossover for
the scaling law of £, when q is very large (see eq. (4.2.12)).
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Fig. 16. Numerical calculation of L(gq)/[C,w*"q] at different values of the disorder amplitude w. The full line is the parabolic behaviour

L(q)iqg=A +(n/2)q.

A
10 Ymax

v

-3 -2 =1 0 Inw

Fig. 17. ¥,,, as function of w; the line has slope 1/2.

In fact one sees that for large g there is a value w(q) = g~ ° such that:
gaw it wzw(g) (4.3.5)

while the “true” scaling law £, « w™>"* holds for very small w(<1(q)). Note that the value of w(q) goes
quickly to zero when g goes to infinity.

In fig. 18 we show S(7y) vs. y as obtained via a Legendre transformation from the direct numerical
calculation of L(g). Note that for y <v,,., S(v) is close to a parabolic form because the probability
distribution of R(N) is nearly lognormal for R(N) <(¥,,,)" and zero otherwise. The maximum is found
at y = A, since A, is the most probable value of the LEP.

Moreover the probability distribution of the response R(N) is close to a lognormal distribution with
parameters A, and u (see appendix B for a detailed discussion).
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Fig. 18. S(¥) vs. .i (8= 8/(C,w*”) and 7 = y/(C,w*")) for w=0.9 (a) and w = 0.04 (b). The dashed lines indicate the lognormal approximation;
the dots are obtained by a Legendre transform from the numerical calculation of L(q) shown in fig. 16.

In our case we obtain u/A, =1.17 > 1 which implies that the R(n) fluctuations, due to intermittency,
are relevant also from a qualitative point of view.

In the case u/A, > 1 the intermittency cannot be neglected in the correction to the ‘mean field” which
takes into account only the maximum R of the probability distribution, since it gives a quite different
qualitative behaviour. In fact for N— o, R(N)— 0 while (R(N))— = (see section 3.2).

Let us remark that the above behaviour of L(q)/q (i.e. linear for small g and then a saturation to
Yoar & W''?) is not peculiar to the probability distribution of V, but is typical of all cases with (V') =0
and V. <V_. <, ie. it does not depend on the probability distribution of the V,’s considering that
the distribution of V, is concentrated on a finite interval with a zero mean value.

In the case (V) =a#0 and E =2 (or equivalently (V) =0 and E =2 — wa) it is easy to show that
A cw'’? L(1)cw'? y o« w'’” Therefore it follows that the crossover phenomenon is peculiar to the
band edge.

Bouchaud et al. [BGHLMS86] have calculated the set of the L(q) in the case of the potential wV,
distributed according to a Gaussian distribution of variance o and mean value v. They define L(q) as:
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L(g)= [5112 % ln<<Tri1i Aw(i))q> (4.3.6)

and they use the equality:
N q N
<<Tr II Aw(i)) > = Tr<H Aw(i)®"> =Tr( A®7)" (4.3.7)
i=1 i=1

where A®? denotes the direct product of A, ® A, ®---® A,,, q times. One has to estimate the
highest eigenvalue A, of the 2% X 27 matrix (A®?) which can be reduced to a (g + 1) X (g + 1) matrix
using symmetry considerations [P82].

The calculation inside the band except for v =2, gives:

L(@)=Ag+inqg® for g even (4.3.8)
with A, = o/[2v(4 - v)].

At the band edge v =0, no perturbation theory has yet been applied but for g =2 and g =4 one
obtains respectively:

A ._1 B ﬁ . (42)1/3
/3 — 2 4
qo

(4.3.9)

where the L(2) value agrees with the [PVu86] result.

Moreover for g integer >2 the o> behaviour was shown to always hold in the limit of weak
disorder, at difference with the case of a bounded potential where at fixed w a “transition” to the
behaviour (4.3.5) appears for g>gxw™ """,

We finally recall that some features of the multifractal nature of one-dimensional localization can be
obtained by considering a simple multiplicative process [PS86, PSTZ87]. The random matrices product
problem is reduced to a scalar product (i.e. a random number multiplication, see appendix B) in the
framework of a random phase-like approximation.

4.4. Free energy fluctuations in spin glasses

In the statistical mechanics of disordered systems the fluctuations of the free energy among different
replicas can be regarded as the analogue of the temporal intermittency in a chaotic signal. Let us, e.g.,
consider a spin model on a D-dimensional lattice with Hamiltonian:

H{(I))=~ 2 Jo0, (4.4.1)

where g; = =1 is the value of the spin on the site i and the coupling J,; is an independent random
variable distributed according to a probability distribution P(J;;). Given a coupling realization {J,;}, the
partition function of an N spin system is the trace of the Boltzmann weight exp(—BH,):

Zy(B, {J;}) = g} exp{—BH,[{J,}]} . (4.4.2)
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The free energy per spin then is in the thermodynamic limit N — c:
F(B)= Lim - <a (ln Zy)= llm - J’ P(J)dJ;In Z\(B, {J,}) . (4.4.3)

In order to compute this quenched average one usually applies the so-called replica trick. One namely
computes the free energy per spin of ¢ non-interacting replicas:

#(q) = lim - NB In(Z3,) . (4.4.4)

The results obtained at integer positive ¢q are then extrapolated at g =0:

IR Y N
F—ggr})]l]g NBq —(lil_ng*(q). (4.4.5)

Even in the mean field approximation of infinite range couplings, this procedure encountered great
difficulties due to the replica symmetry breaking [see e.g. SK75, HP79] which were finally overcome by
the famous mean field Parisi solution [P79].

We do not want to enter into this problem but just show how the %(q) are interesting by their own.
Indeed, they allow to reconstruct the probability distribution of the partition function among the
different realizations with respect to disorder [DT81, P86).

The multifractal approach can be easily extended to spin glasses. It is sufficient to introduce the free
energy per spin of a coupling realization {J;} of an N-spin system:

g =L
Ev= " ng P Zu(B ) - (4.4.6)

In the thermodynamical limit almost each sample has to have free energy F and we thus recover the
selfaveraging of Z:

F= }lvl_xg g, . (4.4.7)
This is an ergodicity hypothesis since we are assuming that the ensemble average (4.4.3) and the spatial
average (4.4.6) are equivalent.
In a unidimensional system with first neighbour interactions and uniform field #, we can write the
partition function (4.4.2) as the trace over 2 X 2 random transfer matrices product. The Hamiltonian is
now H=-X, (J,0,0,,, + ho;) so that one has:

M, = ( exp(BJ; + Bh) exp(—BJ, + Bh)) .

N
Z,=Tr E M, ~\exp(—BJ, - Bh) exp(BJ; — Bh)

(4.4.8)

The maximal Lyapunov exponent is thus related to the free energy while the generalized Lyapunov
exponents to the #(q):

L(q)=-BF(q)q, A =-BF. (4.4.9)
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Derrida et al. [DPV78] have, e.g., found the expression of A, in the limit of vanishing temperature for
any value of the uniform field if P(J,) is the sum of two delta functions and their method can be
extended to the calculation of L(q).

The reader can identify — 8=, with the LEP vy (see definition (3.5.5)) whose probability distribution
is reconstructed by the knowledge of the generalized exponents L(g).

We can however use the multifractal approach without having recourse to the transfer matrix
formalism in a generic dimension.

Let us group all the N spin system realizations with free energy in the range [5, 5 + d5] into the
same subset {}(5'), as usual. If we want a finite free energy per spin and per replica %(q), then we must
assume that the probability II(Z) that a realization belongs to (&) decays exponentially with N for
E#F:

H(E)xexp{—S(Z)N} (4.4.10)

where S(Z) =0 and S(F) =0. The moments of the partition function can be estimated as an integral
over the spectrum of the possible free energies [ 5

Ermin> Bmax):

(Zy(B)) af II(5)dE exp(-BEgN) . (4.4.11)
We thus have in the limit N — o:

qgBF(q)= main [BEgq + S(5)]. (4.4.12)

Let us note that the Oseledec theorem corresponds to the self-averaging (4.4.7) as in the previous
section.

Let us conclude with the remark that if the J, are bounded (i.e. |J | < C), it is possible to give a
rough estimate on the minimal value of the free energy g ... Itisin fact given by the free energy of the
pure system J;, = C for each couple of neighbours i, j.

5. Multifractal structures in condensed matter systems
5.1. General remarks

In this section we briefly review some critical or critical-like phenomena in the study of which the
multifractal method appears as a powerful tool. The usual attitude is to assume that the relevant
features of a system near the critical point are determined by a finite number of relevant operators.

It is therefore natural to ask whether this idea is in agreement or not with the existence of anomalous
scaling and of multifractal structures.

Fourcade et al. [FBT86a, FBT86b] have shown that the anomalous scaling is compatible with a finite
number of relevant operators even if an infinite set of irrelevant operators (irrelevant in the usual
technical sense used in critical phenomena) are also important. They are related to the Renyi
dimensions d, with n >0 and give a complete characterization of the statistical properties of the system.

Let us, e.g., consider the case of a lattice whose bonds are occupied by a resistor with probability p
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or by an insulator with probability 1 — p. In these random resistor networks, close to the percolation
threshold p_, the measurable quantities of interest have the form

>y
k

where y, is the power dissipated in the branch k. Now we define the exponent x, (analogous to d,) as
follows:

<§k: yZ>§’L°CL‘”", L—o (5.1.1)

where (-),, refers to the average over the sample realizations, L is the system size L < ¢ and
§x(p—p.) is the correlation length. In analogy with the critical phenomena we introduce the joint
probability for £, y;, . yi,.. ..

P@yg,;y;,...,g,],)
and we assume the following finite-size scaling behaviour:
P(Z [DOR L) = N P(Z yﬁ/;r*o, > y;/A‘XI, o €N, L/A) (5.1.2)
k k k k

where A is a rescaling parameter.
No check of the scaling (5.1.2) has appeared yet. However it has been numerically verified [ARCS5]
and in some cases proved [SW76] that partial distribution functions

P,,@ " / A7 oo, 1) = ,I;[n d(E vl / L"‘f) P(Ek: ¥ / L7 ..., 1) (5.1.3)

k

do scale as predicted by eq. (5.1.2). We remark that eq. (5.1.2) implies

<(§k: yz>m>g,L w L™ (5.1.4)

i.e. powers of a given U, =L, y; obey to a gap scaling but different U, scale in an anomalous way.
One can see [RTT85] that there is a relevant operator, controlled by p — p_, while there is an infinite
set of irrelevant operators because x, — x, <0 for n>0.
A similar result has been obtained in a ¢* theory: an infinite set of irrelevant operators associated
with | dx ¢"(x) is necessary to give a complete characterization of the distribution function of the field
¢ [FBT86a].

5.2. Multifractal wavefunction at the localization threshold

We want here to dicuss further the Anderson model by considering the structure of the wavefunction
at the localization transition. The universal properties near the localization threshold can be investi-
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gated by an expansion in the difference between the spatial dimension D and the lower critical
dimension which is commonly believed to be two [AALR79]. It was in fact argued that even the
presence of weak disorder induces a (marginal) localization of all the quantum states of independent
electrons in two dimensions. Wegner [W79, W80] showed how the localization problem can be handled
by means of e-expansion techniques applied to the non-linear o-model.

He determined [W80, W86] the exponents of the moments P, of the wavefunctions for the Anderson
localization defined as:

P(E)=(S WnPeE - £) / 65) (s52.)

where y, is the amplitude of the localized wavefunction |A) with energy E, at site r and j is the density
of states.
The average is taken over realizations of the disorder. P, vanishes near the mobility edge E. like:

P(E)x(E—E) o™ (5.2.2)
As before, £ is the localization length which scales as
E)x(E-E,)". (5.2.3)

The value v =1/ + O(¢’) evaluated in the e-expansion is often considered exact [KS83, H83].
The critical exponents in (5.2.2) have been obtained [W86] up to the third order in &:

II,=Dv(q—1)-v{,

524
©, 2
4

fy =g -D[1 (¢~ g+ 1] +0)

with {(3) =1.2020569.

Castellani and Peliti [CP86] related the anomalous scaling of P, to the multifractal structure of the
wavefunction near the localization threshold.

They assumed that just one typical wavefunction ¢, gives a significant contribution to the moments
P (E) for E=E,.

It follows that it is possible to define a coarse grained probability density, ‘a mass’, p,(/) by
integrating |o.|> over a box A, of size I:

p)= [ lenl ax. (525)

Its support is the whole space of dimension D = d, which is not fractal of course, but can be regarded as
multifractal with respect to the scaling of p,(/).

On the other hand, we can estimate the moments P_(E) for E = E_ integrating |@g|* over a box of
size ¢ since ¢, rapidly decays for scales larger than ¢:
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Hq/v

P(E)= 2 p()'= (5) - (5.2.7)

{boxes A;}

Near the critical point we can however evaluate P_ by means of the coarse grained probability density
p:(I) because of the scaling invariance.

With the standard assumptions, the relevant scaling parameter for the rescaled system made of boxes
of size [ is £/] and one has:

P(E)=~ 2 p)ix (f) " (5.2.7)

{boxes A;}

A direct comparison of (5.2.7) with (5.2.6) shows that

o(q)=d,q=1_,/v. (5.2.8)

The singularities of the measure !(pE('Jr)l2 dx with respect to the Lebesgue measure can then be
characterized by means of the Renyi dimensions computed with field theoretical techniques. One
namely finds to fourth order in &:

{3

d .= “(q+1)+ v e (@ +2¢7+2g+1). (5.2.9)

g+1

We can write (5.2.9) using the estimate »~' = ¢ + O(¢’) [H83] and noting D =2+ ¢:

dyi=D,- 2 g() ¢ (24 + ¢°) + O(e) (5.2.10)
where:

D, = 5(3) £ +0(¢) (5.2.11a)

%=E(1 Q) s )+0( ). (5.2.11b)

This result indicates that the wavefunction has a multifractal structure since the information dimension
differs from the space dimension d,= D

We are interested in the three-dimensional case where we have to extrapolate formula (5.2.10) up to
¢ =1 to obtain the information dimension:

d =23 (5.2.12)

Let us recall that ¢(q) is a convex function of g (i.e. d, is non-increasing).

Moreover, ¢(q) is non-decreasing if one excludes the possibility of negative measure singularities a.
At £ =1 we can therefore trust the e-expansion result (5.2.10) only up to g =1.25 corresponding to
d, ,s=2.24, see fig. 19.
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Fig. 19. The Renyi dimensions d, vs. g for the wavefunction at the localization threshold in three dimensions. Line (a) indicates the ¢-expansion
result at first order, line (b) the fourth order result (5.2.10) and line (c) the Borel resummation (5.2.15). The dot is the numerical result for d, with
the error bar [SE84]. The little arrows indicate the ¢ value for which the function d (g — 1) = ¢(q — 1) has zero derivative. For larger ¢ one has
negative derivatives which corresponds to unphysical negative singularities.

On the other hand, Soukoulis and Economou [SE84] have numerically calculated the correlation
integral at the mobility edge:

A(L)=fdx|¢(x)|2fdx' [y(x + x| (5.2.13)

which should scale as L%
The correlation dimension d,, called by them ‘fractal dimension’ (of the measure), is thus estimated
to be

d,=1.7%03. (5.2.14)

A comparison between this value and the result of Wegner d,=3—2¢+ } {(3) &' =2.8 makes no
sense because the fourth order e-expansion gives d_ increasing with g for ¢ =1.25 at e =1.

However, we can try to improve the ¢-expansion result by means of a Borel resummation of the
Pade’s approximant of (5.2.4):

©

Cy =f eydy
qg(g—1) (1+ Be%y?)

0

(5.2.15)

with B={(3) (¢’ — g +1)/(4-4!). In three dimensions, we thus get d,=2.14 and d, =1.51 in good
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agreement with the numerical estimate (5.2.14). Figure 19 shows the results for the Renyi dimensions
obtained to first order in &, at the fourth order in & (5.2.10) and by the Borel resummation (5.2.15).
In our discussion we have implicitly extended the results (5.2.4) for I, to non-integer g-values. It is
then possible to apply the usual Legendre transformation to obtain either f{a) or H(a)= —f(a) + a
which characterize the singularities « of the measure.
It is rather useful to write H(a) in powers of D= D, —a=2-a+({3)/4)e" +0(e):

H(a)=%[ %Z) b+ 2{(:’)D+O( )] (5.2.16)

Let us stress that a first-order calculation [CP86] gives d ., =2—¢eq and the parabolic shape
H(e)=(2- @)’/(2p) with D, =2 and pu =2¢. In this case, the ‘relevant’ (in the information theory
sense) part of the critical wavefunctlon would cover a bidimensional structure in any space dimen-
sionality D =2.

The function H(a) is defined in a bounded range [, >0, @, ] as discussed in the first section.

min > “'max

Near the critical point, the probability P(«) of finding a box for which p,(/) ~ [® should scale like:
Pla) o £

This means that at fixed /, the probability of finding a singularity which differs from the information
dimension vanishes as a power of ¢ as E tends toward E_, the mobility edge. In the limit E = E_ only the
singularity @ = D, survives.

In this sense we have a hierarchy of critical exponents d_ in contrast with usual critical phenomena.
The larger is H(a), the less important is the corresponding exponent a. At the top of the hierarchy
there is the information dimension for which H reaches its minimum value H = 0.

5.3. Growth probability distribution in kinetic aggregation processes

The diffusion limited aggregates DLA were introduced by Witten and Sander [WSS81] for the
description of growth phenomena. In this model the growth on a lattice starts from an initial seed. At
each step a diffusive particle is released from infinity. When it strikes the aggregate cluster, it becomes
part of the cluster.

It is simple to generate such an aggregate on a two-dimensional lattice by a numerical simulation.
One thus obtains a fractal object with D =1.7 which has a highly ramified structure since particle
deposition is favoured at the tips. This implies practically full screening of the bulk.

The relevant properties of these clusters can be characterized by the site growth probability
distribution. We have namely to consider the probability p(r) dr that a random walker lands on the
boundary of the cluster dI' between the points r and r + dr.

p(r) is the harmonic measure which can be defined for the boundary dI" of the cluster as the normal
derivative d,g of the Green’s function g(r) for the Laplace equation Ag=0 with the boundary
conditions g(«) = constant and g(éI') = 0. The singularities of p(r) were first characterized by means of
the multifractal approach by Halsey et al. [HMP86]. The coarse grained probability over a box A, of
size [ and centre r, is:

p.-(l)=fp(r) dr. (5.3.1)
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Using the properties of the Green’s function [HMP86] one can show that the information dimension of
the harmonic measure is:

d =1 (5.3.2)

for the DLA as well as for any connected set in two dimensions. The Renyi dimensions are given by the
scaling of the moments:

N()

(p(1)") = 2 p(1)" xexp(qd,,,)

where N(!) is the number of intervals of size / necessary to cover the boundary. The fractal dimension
of oI is thus d,. Moreover heuristic arguments [TS85] indicate that:

d.,=a,,=d,—1=0.7. (5.3.3)
The Renyi dimensions can be computed by a direct simulation sending many particle probes toward the
aggregate to estimate p,(/). By this method it is however difficult to calculate the negative moments, for
which very improbable events are relevant. On the contrary, Amitrano et al. [ACL86] used the
electrostatic analogy between DLA and dielectric breakdown [NPW84] to compute the whole set of the
Renyi dimensions. Their results are shown in fig. 20 where we plot ¢(q —1)=4d (g — 1) vs. g. They
solved the discretized version of the Laplace equation for an electrostatic potential ¥(x) on the DLA
considered as a conducting cluster. One thus has

p(x) = K[d, y(x)]" (5.34)
with 7 =1. Other values of n allow to describe different models (e.g. » =0 corresponds to the Eden

model and n =« produces one-dimensional clusters).
Let us stress that in the spirit of the scaling approach to critical phenomena it is reasonable (see e.g.

(Q'l) dy

-204
_30_._

40+

Fig. 20. Renyi dimensions of the harmonic measure on DLA obtained by numerical simulations [HMP86, ACLS6).
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[C86]) that the probability that a particle lands on an [-size interval of an aggregate of gyration radius L
should scale like:

pP (D= (IL)" . (5.3.5)

L then plays the role of the correlation length ¢ in critical phenomena. The hypothesis (5.3.5)
corresponds to assume that the growth probability is scale invariant for //L small enough with a
hierarchy of scaling indices a(i). The asymptotic limit L — « is a sort of ‘critical point’. In the numerical
calculations one usually increases L at fixed lattice constant /. There is nevertheless another subtle point
worth stressing. Indeed, one studies the moments

Y pleL TV (5.3.6)

i€al(L)

where p; is not given by (5.3.1) but by the probability that the site i on the surface of the cluster
becomes part of the aggregates. The dimensions d, and the standard ones d, are assumed to be equal.
This is true only if the aggregate is a homogeneous fractal with respect to the point density, i.e. if each
interval A; of the boundary contains approximatively the same number of points #,(/) so that:

N()

> (1) PFD (5.3.7)

i=1

In this case the aggregate is a multifractal object with respect to the harmonic measure but not to the
‘natural measure’ given by the point density. With this warning, the numerical calculation [ACLS86]
shows that ¢(q) is essentially linear for ¢ >1 and ¢ < -2 and the result a , =0.7 agrees with the
‘theoretical’ prediction a,,, = D — 1. On the other hand, ¢(gq) is highly non-linear around the value
g = —1 corresponding to the fractal dimension d, = —¢(—1). The derivative

de/dgl, o =1 (5.3.8)

is in agreement with (5.3.2) while the fractal dimension d,=1.5 is slightly different from the
independent result Dy =1.7. This fact is attributed by the authors of ref. [ACL86] to the existence of a
non-screened part of the perimeter (where (r) is neither zero nor exponentially decreasing with L)
which should scale with an exponent d; < Dp.

It is easy to obtain the fractal dimension f(a) of the set S(«) on which is concentrated the measure
with singularity « by means of the usual Legendre transform, see fig. 21.

Let us briefly recall the first phenomenological theory on the multifractal structure of the surface
layer of DLA proposed by Halsey et al. [HMP86]. They assumed that the measure can be described in
terms of two singularity values:

ao,=D/=1, o,=a,, =07. (5.3.9)
It follows that there is one adjustable parameter f(a,) since f(«,) = f(D;) =1 by definition.

Recalling that ¢(¢)=min, [aq + H(a)] we thus see that the relation (5.3.9) corresponds to a

function ¢(g) which is a piecewise linear function of g:
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Fig. 21. fla) vs. a for DLA obtained by a Legendre transform of the d,’s shown in fig. 20.

{¢(q)=a1q+H(a1)=qu=q, for g<q. 5.3.10
#(q)=a, g+ H(a,) = (Dy ~1)(q + 1)~ flay), for g>q, (3.3.10)

where H(D,) =0 and H(a,) = f(a,) — a,.
The knowledge of g, is equivalent to that of H(a,) since by matching the two lines one gets:

.= H(e,)/(1- a,). (5.3.11)

These results agree quite well with the direct calculation of the moments for positive g =1 using the
value f(a, =0.71) =0.42, i.e. ¢, = 0.74. On the other hand the formula (5.3.10) is inconsistent with the
result for the fractal dimension since it implies D = —¢(—1) = 1 which is much smaller than the value
Dg =1.71 assumed for estimating a,.

5.4. Multifractality in percolation

The critical behaviour of random resistor networks is a percolation problem which can be studied by
means of the multifractal approach [ARC85, RTBTS85].

Let us consider a lattice of size L where each bond is conducting with probability p or insulating with
probability 1 — p. In the limit of infinite L there is a percolation threshold p, above which there is an
infinite cluster of conducting bonds.

At the critical point p_ one isolates the set of bonds carrying a non-zero current from the rest of the
infinite cluster. This set is called the backbone and is a fractal object with dimension:

DP® =Inny,(L)/nL  for L> (5.4.1)

where nyp(L) is here the number of bonds belonging to the backbone of a system of size L.

Let us stress that this is not the box-counting definition (0.1). The backbone is made of singly
connected bonds (links) and of multiply connected bonds (blobs) in a selfsimilar way. The fractal
dimension of the set of the links is 1/» where v is the connectedness length exponent [C81].

Let us now consider the backbone as a random resistor network each bond having a unit resistance.
A unit voltage is then applied to the opposite boundaries of a box containing the percolating cluster.
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Each bond can thus be characterized by the voltage drop across it. Let us define the strength a(i) of a
bond i as:

Vo L7 (5.4.2)

The minimum value of « is associated with the links since they carry the total current I which is equal to
the conductance of the system R~ and.to the maximal value of the voltage V,_, :

—a. _
Vmax x L e ’ amin - {R/V

where { is the resistance exponent defined by R « L*%””. The number of bonds N, (L) with a voltage
drop V~L “is:

N (L)~ L"® (5.4.3)
where D(a) is a sort of fractal dimension. One can compute the scaling of the moments

(Vi) = 2 Vi [ a1,
in terms of D(«) with the multifractal machinery and the saddle point method:

(¢-1)d, =min(aq - D(a).

Note that d,= D",

Also in this case we must repeat the warning done in section 5.3: D(a) can only be considered as a
fractal dimension under certain assumptions. ‘

De Arcangelis et al. [ARC85] computed the exponent d, on a simple hierarchical model which
describes the backbone properties for any spatial dimension. They found a reasonably good agreement
with the existing numerical data.

The model is obtained by successive iterations starting from a single bond of unit resistance. As
shown in fig. 22 at each step n of the construction the bonds are replaced by two links in series with a

blob.
1 1 1

Fig. 22. Hierarchical model for the backbone of the infinite cluster near the percolation threshold.
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It is easy to check that there are 4" bonds and 2" links, so that one identifies L with 2", This model is
given by a multiplicative process and d, can therefore be computed by a simple direct computation. For
example, taking in the first step of the construction in fig. 22 the single link potential V = 2 and the blob
potential V=1 (values suggested by phenomenological considerations) one has:

W(q-1)d,=1+In,[(5)" +(5)"]

in good agreement with the numerical data in two dimensions.

We finish this section by recalling that anomalous scaling laws have been found in many condensed
matter systems. It is impossible to analyse all these cases and we must limit ourselves to recall some of
them: depletion of a diffusing substance in the vicinity of an absorbing fractal [CW86], random
superconducting networks [ARC85], some properties of Laplacian walks [EL87].

6. Conclusions

The existence of continuous spectra of independent exponents arises as a common feature of the
scaling laws in many physical systems. Table 1 indicates the main multifractal objects introduced up to
now. ‘

The popularity of the multifractal approach is due, in our opinion, to its usefulness in the
interpretation and organization of theoretical as well as experimental results in a simple and unique
scheme.

Table 1

Phenomenon

Mass density

Fully developed turbulence
in three dimensions

Chaotic attractors

Temporal intermittency
Metal-insulator transition
in 2 + ¢ dimensions
Anderson localization in
one dimension
Aggregation phenomena

Conduction on percolative
clusters

Spin glasses

Density of energy
dissipation

Density of points
distributed according to
the natural measure

Density of trajectories
in ‘history’ space

Square modulus of the
wavefunction

Replicas of the systems
with the same localization
length

Growing probability

Voltage on the bonds of
the cluster

Replicas of the systems
with the same free energy
in the realization space
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However, one must use proper techniques for each particular situation in order to reach a deeper
understanding of a phenomenon. A typical example is given by the Anderson localization in one
dimension where the calculation of the generalized exponents have been done following some methods
developed in the context of disordered systems [BGHLMS86, PS86, PV87b]. The opposite situation is
fully-developed turbulence where a theory on the structure of the Navier Stokes equation singularities is
still far from being formulated. Nevertheless, the analysis in terms of multifractals is a first useful tool
and allows to give a qualitative description by means of phenomenological models.

We think that one of the most interesting future developments will be given by understanding the
link between the renormalization group and generalized exponents. An open problem is the consistence
of the usual scaling with a finite number of relevant operators and multifractality. Some authors have
shown that the two aspects are compatible at least in some cases [FBT86a, FBT86b]. Moreover there is
not yet a clear comprehension of the mechanisms which lead to ‘phase transitions’ (in the generalized
exponents varying the moment order) which have been numerically observed in some dynamical
systems and aggregates [BP87b, BGP87, ACLS86].

Appendix A. The Kolmogorov-Obukhov lognormal model for intermittency in turbulence

Kolmogorov [K62] and Obukhov [O62] modified the K41 theory assigning a key role to the statistics
of the spatial distribution of the energy density dissipation in order to take into account some of the
early evidence on small-scale intermittency. Essentially in the new modified theory K62 the first
hypothesis of K41 (see section 2.2) is replaced by assuming that in the range r <L the n-variate
probability distribution of u(x + r) — u(x) only depends on £, (r) = (1/r") ooy 89 d’y, r and ».

The second hypothesis remains the same one as in K41.

Evidently these two hypotheses are quite general and common to all phenomenological cascade
models. To obtain explicit results one needs further assumptions on the statistics of &(x), of course.

Kolmogorov and Obukhov supposed that £, (r) is distributed according to a lognormal in the range
n<Lr<L.

By dimensional analysis the first two hypotheses give for structure functions:

(JAV(N)?) ~ PP (&) . (A1)

Note that (A.1) holds also for fractal or multifractal models. According to the third hypothesis on the
lognormal distribution, one has [GY67]:

(|AV(r)|") ~ rP/3+(1/18)#p(3—p) (A.Z)
i.e.
§p=p/3+(1/18)p,p(3—p) (A.3)

where u is given by the fluctuations of £,(r):

b= (0 E0) = (in 60 (A4)
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Kolmogorov and Obukhov postulated the lognormal distribution without any justification. It is however
not difficult to introduce an argument for it. We briefly repeat the derivation due to Gurvich and
Yaglom [GY67]. Let us call ¢, the quantity ¢ (r,) with 7, =27"L, we then obtain ¢, as the product of
independent random variables

€= & e, ¢ =&lg . (A.5)
i=1
Taking the logarithm of (A.5) one has

Ing, =Ing,+ > @ . (A.6)

i=1

Assuming that all the variables In ¢, have finite mean value and finite variance (meaning that the event
@ = 0 has probability zero) we can apply for large n (r < L) the central limit theorem. ¢, is therefore
distributed according to a lognormal characterized by two parameters:

1 s \ 1 _ 2
) (=7 and In(L/7) ((Ing,—(Ing,))).

Since (¢,) must depend on n, because of the constancy of the forward energy transfer rate, just a
relevant parameter survives: the variance given by (A.4).

We remark that in the Gurvich—Yaglom derivation there is the basic assumption that ¢, vanishes with
zero probability. This hypothesis is not made in the fractal (or multifractal) model where there are
cubes with &, =0 (non-active fluid) [N69, N70, NS64, M74, FSN78, FP85, BPPV84]. This is the most
remarkable difference between the two approaches.

Let us note that, at least formally, the lognormal model is a limiting case of the multifractal one,
assuming a parabolic form for d(h) with a maximum at D =3 and no restriction on the possible /
values. One then obtains Dy =3, D, =Dy — u/2=3— u/2, D*= Dy — u =3~ u. The energy dissipa-
tion is concentrated on a three-dimensional support which is therefore not fractal. All the fluid is active
but the ‘measure’ given by £ (r) is fractal since D, <3.

{, in eq. (A.3) has a parabolic form with a maximum at p* = 3(2+ u)/u and {, becomes negative
for large values of p.

This odd feature is due to the fact that the lognormal model gives no restrictions on the possible
values of ¢,. This is clearly an unphysical feature of the model. Indeed, we have seen that plausible
bounds exist for the values of the singularities # (and therefore for ¢,).

The lognormal distribution, however, is a good approximation for a large class of phenomena but it
gives uncorrect values for the moments (see appendix B), since they grow too rapidly with p and thus
violate the Carleman’s criterion [C22] which has to be satisfied for determining a probability distribu-
tion from its moments. This leads to unphysical consequences. If it is not possible to determine the
probability distribution by moments of a quantity satisfying some evolution equations, then the initial
values of all the moments do not allow to determine uniquely the values of the moments at future
times. Orszag [O70b] showed that the non-uniqueness of the moment values at positive times is
compatible with the uniqueness of the solution of the evolution equations.
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Appendix B. Multiplicative processes and lognormal approximation

Multiplicative processes are the simplest way to get an approximate description of multifractals. Let
us recall the random B-model for turbulence (section 2.3) or its equivalent for chaotic attractors [PV84,
BPPV84], the response function for temporal intermittency (section 3) or random matrices (section 4).
In this appendix we briefly discuss the multiplicative processes and the lognormal approximation in a

general context.
Let us consider a variable x, given by a product of n > 1 random variables:

x,= I1 a (B.1)
i=1

where the a’s are positive independent random variables distributed according to the same distribution
of probability laws. Moreover we assume that

amin < ai < amax . (B2)
The probability distribution of x, is close to the lognormal distribution:

exp[—(In x, = An)7(2un)] (B.3)

P(x,)= P y(x,)= x,(2mun)

where A and p are given by

1

A= . Inx, = {In a}
and
p= (Inx,-Inx, ) ={(lna-{lna})},
where () stands for the average on different realizations [a,, . .. a,] and {(-)} means average given by

the probability distribution of a: {(:)} = | P(a) () da.
Note that the logarithm of x, is given by a sum of independent random variables

Inx,=> Ing,. (B.4)

i=1

Because of the inequalities (B.2) and the independence of the 4, we can apply the central limit theorem.
Therefore the probability distribution of the variable y, =1In x, is close to a Gaussian with mean value
nA and variance nu. Equation (B.3) follows from a change of variables.

In spite of the fact that the lognormal distribution is a good approximation, its moments are not close
to the right ones.

Using eq. (B.3) one has
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x_?. = f X1 Piy(x,)dx, = exp{n g (q)}
0
with

gin(@)=Ag+ipq’. (B.5)

It is trivial to see that (B.5) cannot be valid for large gq. Indeed one can compute x, directly by (B.1):

xI=e" 89 with =In{a?} (B.6
n 8\q

and because of (B.2) one has:

qIn(a,;,)<g(q)<qln(a,,,) | (B.7)

Equation (B.5) is not therefore a good approximation for large g. On the contrary, writing x, =
exp(¢ In x,) and expanding in series to the second order in ¢, we see that for small g, g(q) = g, x(9)-
This apparent paradox (a probability distribution close to the lognormal whose moments do not follow
(B.5)) is related to the fact that the moments of the lognormal distribution grow too fast [C22, O70b,
M72].

Without invoking complex mathematical arguments one can convince oneself that the origin of the
trouble resides in the tail of P y(x,). Indeed, the true probability distribution P(x,) is zero for
x, > (a,,,)", while for large g the greatest contributions to [; x? P, o(x,) dx, come from a region where
P(x,) =0. This becomes evident by computing the value £*? for which x? P, (x,) takes its maximum.
One in fact finds for large ¢

%9 ~ exp(const.- n- q)>(a,,.)" .

We conclude by noting again that a lognormal approximation for moderate values of g (i.e. a parabolic
shape of f(a) for a around D)) is rather good, while for large g bounds like (B.2) have to be taken into
account.
For example if we repeat the considerations of this appendix for fully developed turbulence, we get
an approximate expression for ¢, since the random 8-model involves a multiplicative process for £(r).
Let us remind (eq. 2.3.15) that in the random B-model one has

avirry~ {1 o).

i=1
One therefore obtains, considering the lognormal approximation for the variable IT_, 8;:
{,=p/3+Dy(1-pi3)+(p/2)(1-p/3) (B.8)

for | p — 3| not very large.
Note that in (B.8) there are two independent prameters D, and p while only one is involved in K62.
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We have in fact considered the multiplicative process on the fractal and the constraint ¢; = 1 is imposed
automatically by the model.
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