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Abstract:
Anomalousscaling laws appearin a wide class of phenomenawhere global dilation invariancefails. In this case,the descriptionof scaling

propertiesrequiresthe introduction of an infinite setof exponents.
Numerical and experimentalevidence indicates that this descriptionis relevantin the theory of dynamical systems,of fully developed

turbulence,in the statistical mechanicsof disorderedsystems,and in somecondensedmatterproblems.
We describeanomalousscalingin termsof multifractal objects.They aredefinedby a measurewhosescalingpropertiesarecharacterizedby a

family of singularities,whichareidentified by a scalingexponent.Singularitiescorrespondingto thesameexponentaredistributedon a fractalset.
The multifractal objectarisesas the superpositionof thesesets, whose fractal dimensionsare relatedto the anomalousscalingexponentsvia a
Legendretransformation.It is thus possible to reconstructthe probability distributionof thesingularity exponents.

We reviewthe applicationof this formalismto the descriptionof chaoticattractorsin dissipativesystems,of the energydissipatingset in fully
developedturbulence,of someprobability distributions in condensedmatterproblems.Moreover,a simpleextensionof the methodallows us to
treat from the samepoint of view temporalintermittency in chaotic systemsand sampleto samplefluctuationsin disorderedsystems.

We stress the phenomenologicalnatureof the approachand discussthe few casesin which it was possible to reach a more fundamental
understandingof anomalousscaling.We point out theneedof atheorywhichshouldexplainitsorigin andpavethewayto amicroscopiccalculation
of the probability distributionof the singularities.

Jo fingo esuppongoche qualchecorpo si muovaall’ insi~secondola notaproporzioneet orizzontal-
menteconmotoequabile...
Sepoi lepalle di piombo,di ferro, di pietra, non osservanoquella suppostadirezione,SUO danno: fbi

diremo che non parliamo di esse.

I feign andassumethat somebodiesmovevertically accordingto the knownratio, andhorizontally
by uniform motion...
If balls madeof lead, iron or Stone do not comply to thisrule, it is all to their disadvantage:for weshall
say thatwe are not talking of them.

EvangelistaTorricelli

0. Introduction

Scaling invarianceplaysa fundamentalrole in many naturalphenomenaandis often relatedto the
appearanceof irregularforms which cannotbedescribedby the usualdifferentialgeometry.A classical
exampleis given by the Brownianmotion the studyof which led JeanPerrin [P06,P13] to understand
the physical relevanceof non-differentiablecurvesand surfaces.

Thenecessityof introducinga new classof geometricalobjects,the fractals,hassubsequentlyarisen
in various different problems.Indeed,someaspectsof ‘fractality’ werealreadypresentin the ideasof
someScientistsat the beginning of this centurylike Perrin himself, Besicovitch,Hausdorff, Wiener,
Richardson,but the concept of ‘fractal object’ was explicitly formulated and madepopular in the
scientific communityin recentyearsby Mandeibrot.

The main ideaconsistsin the characterizationof the scalingstructureof an objectby meansof an
index, the fractal dimensionDF which coincidesfor ‘ordinary’ shapeswith the usual (topological)
dimensionDT. Indeed,the dimensionalityof objectscan be definedin differentways. Onecan defineit
as a topological conceptby counting the numberof independentdirectionsin which one can move
around any given point (for a rigorous definition see,e.g., [ER85]). One can call this notion the
topologicaldimension.On the otherhand,wecan definethe fractal dimensionas a ‘capacity’ measure
by consideringthe numberN(l) of hypercubesof edgeI necessaryto coveran objectembeddedin a
D-dimensionalspacein the limit l—+0:

N(l)c~~l’~. (0.1)
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It follows that DF ~ D and the objectis called fractal if DF> DT.
The fractal dimensionis purely geometrical,i.e. it only dependson the shapeof the object. In

general,one hasto assignto the physical object a suitableprobability measuredis, accordingto the
particular phenomenonconsidered.

The measured~tshouldscalewith the resolution length. Let usdefine a coarsegrainedprobability
density

p~(l)= f d~(x) (0.2)

as the ‘mass’ of the hypercubeA~of size 1, With = 1, 2,. . . N(l). The scaling rate is given by the
information dimensionD1 definedby Balatoni and Renyi [BR56]:

N(l)

p, ln(p1) D1 ln(l). (0.3)

One can easily show that D1 ~ DF where the equality is valid only for a uniform distribution
p~= 1IN(l)ccl’~for eachbox A1.

D1 is a more interestingindex thanDF. It must be noted, in fact, that the numberNR(l) of boxes
containingthe dominantcontributionsto the total mass,andthusthe relevantpart of the information,
is:

NR(l) (0.4)

as consequenceof the Shannon—McMillantheorem (seee.g. [K57]).
If D1 < DF, then the measureitself is called fractal [F82] since it is singular with respectto the

uniform distributionp~ i.e. p2 Ip ~can divergein the limit of vanishing1. The supportof the measureis
in this sensean inhomogeneousfractal object.

The principal aimof this reviewis to characterizedifferentphysicalsystemsby meansof the analysis
of the probability measuresingularities.The understandingof thejr structurecan be actually achieved
by extractingfrom experimentsor simulationsthe ‘mass’ momentscaling

N(1)

~~(l)~) p(j)~l+l ~ (0.5)
The dq are the Renyi dimensionswhich generalizethe information dimensionD1 = d1 as well as the
fractal dimensionDF = d0. If the fractal is homogeneous,thenone can extractq out of the average
operationin (0.5) and the Renyi dimensionsare thereforeall equalto the fractal dimension.On the
contrary, if the dq ‘s arenot constant,one speaksof anomalousscalingand, as the orderq varies, the
amount of the difference dq — DF gives a first rough measurementof the inhomogeneity of the
probabilitydistribution. Suchabehaviourarisesin many differentsystemsandwas first pointedout by
Mandelbrot[M74] in fully developedturbulence.SubsequentlyParisi andcoworkers[FP85,BPPV84]
introduced the conceptof multifractal object in the samecontext, realizing that the moment scaling
indicescanbe relatedto thescalingof the probability distributionof the singularities The objectcan be
regardedin this approach,further developed~y Halseyet a!. [HJKPS86,JKLPS85],as an interwoven
family of differenthomogeneousfractal setsS(a) on which the measurehasa singularity of typea (i.e.
p2(l) ~ l’~for boxesA, belonging to S(a)). It is possibleto relate the Renyi dimensions(which can be
directly measuredin experiments)to the fractal dimensionsf(a) of the setsS(a) (or equivalentlyto the
probability of picking up a singularity a with resolutionscale1) via a Legendretransformation.
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This is the heartof the methodwhich hasbeenalso appliedto the studyof the momentsof generic
observablesA computedon scale1:

(A(l)~) i~.

Despiteits name,anomalousscaling,i.e. a non-linearshapeof the functiong( q), is the morecommon
situation even if it contrastswith the standard ideas about critical phenomenawhere one usually
considersonly a finite numberof scaling exponents.

Moreover the same object can be a multifractal with respect to a certain observableand a
homogeneousfractal with respectto anotherone. The readercan find an explicit exampleof such a
featurein section2.

Up to now we havelookedat multifractality as the manifestationof the spatial fluctuationsof the
observables.Nevertheless,temporal scaling featuresappear of great importance in the chaotic
evolutionof deterministicdynamicalsystems.In thesecasesoneusuallyobservesstrongtime variations
in the degreeof chaoticity. This intermittencyphenomenoninvolvesan anomalousscalingwith respect
to ‘time dilations’ identifying the parameterexp(—t) with the parameter1 used in spatial dilations. A
measureof the degreeof intermittencyrequiresthe introductionof infinite setsof exponentswhich are
analogousto the Renyi dimensionsandcan be relatedto a multifractalstructuregiven by the dynamical
systemin the functional trajectoryspace.

In section1 we introducethe multifractal formalismin the contextof dissipativedynamicalsystems.
We define the Renyi dimensionsof the naturalmeasuregeneratedby a deterministicevolutionlaw

on a chaotic attractor and describethe numericalalgorithms for their calculation. Indeed, typical
chaoticattractorscan be regardedas multifractal objects.We discussin detail how the scalingof the
probability that a point of the attractor(representativeof the stateof the dynamicalsystem)belongsto
S(a) is determinedby the fractal dimensionalityf(a) of S(a)andwe point out that thereis asingularity
hierarchythe top of which is given by the information dimensionD1.

If the attractor is homogeneous,the natural measureis not fractal and has only a singularity
a = DF = D1 with respectto the Lebesguemeasureand dq = DF, Vq.

In section2 we apply this approachto the study of the statisticalpropertiesof fully developed
turbulencewhere there is spatial intermittency of the energydissipatione(x) implying anomalous
scalinglawsfor the momentsof thevelocity differences,the so-calledstructurefunctions.Intermittency
can be reproducedby modelsassumingthat s is concentratedon fractal structureswith DF ~ 3.

One may thenconsiderr as a mass densityand a non-homogeneousdistribution correspondsto
anomalousscalinglaws as in chaoticattractors.This allowsus to extendthe resultsof section1 to the
characterizationof the singularitiesof s.

We introducea multiplicative process(random/3-model) for building-upa propermultifractal object
andthusobtaina good fit to the experimentaldata with only one adjustableparameteron the basis of
phenomenologicalassumptions.

We also emphasizethat the multifractal nature of turbulencedoesnot affect in a substantialway
somephenomenalike the separationof particlepairswhereasit is relevantin determiningthe number
of degreesof freedominvolved.

Section3 showshowthe degreeof temporalintermittencyof the chaoticityin adynamicalsystemcan
be measuredby indiceswhich areextractedeither by an experimentalsignal (the Renyi entropiesKq)
or by numericalcalculations(the generalizedLyapunovexponentsL(q)).

The multifractal approachcan be extendedto the study of ‘temporal inhomogeneities’with slight
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modifications and it allows to reconstruct the probability distribution which rules the temporal
fluctuationsaroundthe averagedegreeof chaoticitymeasuredby the Kolmogorov entropyK1 andthe
characteristicLyapunovexponents.We alsogive someexamplesof numericalcalculationsof the L( q)’s
in dynamicalsystemswith few degreesof freedom.

We finally discussthe caseof one-dimensionalchaoticmapswhichhighlights the relationbetweenthe
multifractal methodand the thermodynamicformalism introducedfor hyperbolicsystemsby Bowen,
Ruelle, Sinai andWalters. In this framework we show that the appearanceof edgesin the Renyi
entropiesis an indication of phasetransitions.

In section4 the techniquesdevelopedfor the characterizationof the chaoticbehaviourof dynamical
systemswill be usedin the studyof the trajectoriesgivenby the productsof randomtransfermatrices.
They can,e.g., describethe localizationof the wavefunction of the Schroedingerequationin a random
potentialor the partition function of spin glasses.Themultifractal approachis in thiscasethe analogue
of the usual statistical theory of finite volume fluctuations of the physical observables(we shall
respectivelyconsiderthe localizationlengthandthe free energy)amongdifferent replicasof the same
systemwith respectto disorder.The calculationof thegeneralizedLyapunovexponentsthereforegives
the possibility to reconstructthe scaling propertiesof the probability distribution of the observables.
The massdensityis the densityof replicascharacterizedby the sameobservablevaluecorrespondingto
trajectorieswith the samedegreeof chaoticity, andin this sensethereplicasdefinea multifractal object
in the realizationspace.

In section5 we analysesomecritical phenomena(localizationtransitionand conductionin random
resistornetworks at the percolationthreshold)as well as somegrowth phenomena(diffusion limited
aggregation)wherea hierarchyof differentexponentsappearsas a new interestingfeature.We stress
the fact that, approachingthe critical point, the probability of finding scalingexponentsdifferent from
that correspondingto the information dimensiontendsto zero as a power of correlationlength.

In section6 the readerwill find someconcludingremarks.

1. Chaotic attractors as inhomogeneousfractals

1.1. Whystudyattractors’ dimensions?

Recently,it hasbeenshownthatdeterministicevolutionlawsmayleadto chaoticbehavioursevenin
absenceof externalnoise [LL83, ER85]. This phenomenon,called deterministicchaos,is essentially
dueto a sensitivedependenceon initial conditionsand hasagreatrelevancein the descriptionof many
physicalsystemswhose dynamicscan be modelledby ordinary differentialequationsor maps:

dxldt =f(x(t)) , x(i + 1) = g(x(i)) (1.1.1)

with x,f, gER’~.
One of the first exampleswas given by Lorenz [L63] who showedthata dynamicalsystemof just

threedifferentialequationscan be chaotic.
In this sectionwe limit ourselvesto the studyof the attractorsof dissipativesystemsbut manyresults

can also be applied to genericchaoticsignals.Indeed,after a transient,a dissipativesystemusually
evolvesin the neighbourhoodof a setcalled attractor(for a rigorousdefinition see,e.g., [ER85]).

The conceptof dimensionis relevantfor the dynamicsbecauseit providesa preciseway to estimate
the numberflf of independentrelevantvariablesinvolved in the evolution.
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To be explicit, let us consider fixed points, limit cycles, tori, where n~is the dimensionof the
attractor.

A trivial exampleis given by a dynamicalsystemwith astablefixed point x0, wherefor largetimes
x(t)—s~x0 (fig. la). The attractoris a zero-dimensionalsetand flf = 0. On the otherhand,a limit cycle
(fig. ib) is a one-dimensionalset and flf = 1 since x(t) asympoticallyevolves on a line. Generally
speaking,for a quasi-periodicmotion with n incommensuratefrequencies, the attractor is an n-
dimensionaltorus and flf = n < F.

On the contrary, the spatial featuresof deterministicchaosare much more complex as numerical
experimentsindicatethat the pointsgeneratedby the time evolution(1.1.1)cover a strangesetwith a
selfsimilar structure(see fig. 2). This chaoticattractorusually is a fractal object [M82] in the phase
space.What is in this casethe effectivenumberof degreesof freedom?The fractal dimensionDF of the
attractorgives a first estimateof n~since onehasthe lower bound:

� [DF] + 1 (1.1.2)

where [(S)] is the integerpart of (S).

a) __

Fig. 1. Exampleof a stable fixed point (a) andof a stablecycle (b).
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Fig. 2. Structureof the attractorof theHenonmap[H76},with a = 1.4 andb = 0.3. (b), (c) and(d) showsuccessiveblow-upsof theregionsinside
the box of theprevious figure.

We havedecided hereand in the following, to usethe term fractal dimensionin the senseof the
definition (0.1) insteadof the term HausdorifdimensionDH [H19]which involvesthe evaluationof the
extremumamongdifferent non-uniformpartitionsinto hypercubesof edge� I. OnehasDH ~ DF, but
in typical casesthe equality holds.

Let us briefly discussthe procedureto computeDF. The analysisof the practicaldifficulties will in
fact leadto introduce,in a quite naturalway, an infinite setof generalizeddimensions.

Remarkthat we areassumingthat the dynamicalsystemis ergodicandmixing sothat it is possibleto
extractthe’ statisticalpropertiesby a time averageon a single trajectory.

Following the definition of DF (0.1) the most direct computationalmethod is the box-counting
[RHO8O].One generatesthe seriesx, = x(ir), i = 1,. . . M ~‘ 1 anddividesthe region of RF wherethe
motion evolvesin hypercubesof edge1.
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Namelylet us considerthe numberN(l) of F-dimensionalhypercubesof size 1 necessaryto cover the
attractor(i.e., containingat least onepoint x.), in the limit M—~m:

N(1)ccl’~ for l—tO. (1.1.3)

With this definition, DF of a regularattractoris the usual (topological)dimension.
The box-countingmethodis ratherdifficult to be appliedwheneverF~ 3 becauseof the consuming

of computer memory. Other methods have therefore been introduced for estimating the fractal
dimensionof chaoticattractors.

GrassbergerandProcaccia[GP83a]havedefinedacorrelationdimensionv by consideringthe scaling
of the correlationintegral:

C(l)=hm —~-i~~0(l—Ixt—x1l) (1.1.4)
—‘=M ,

where0 is the Heavisidestepfunction. C(1) is thepercentageof pairs(x,, x~)with distance x, — � 1
and in the limit l—~0 one has:

C(l) l~. (1.1.5)

If eachbox hasthe samedensityof points, v is equalto DF. Typical chaoticattractorshoweverare

inhomogeneousfractal and one can showthat in general
x1�DF. (1.1.6)

v is a more ‘relevant’ scaling index than DF since it is relatedto the point probability distribution
generatedby (1.1.1)on the attractor(‘natural’ or ‘physical’ measure,see[ER85])while DF cannottake
into accountan eventualinhomogeneityin the visit frequencies.The correlationdimension ii in fact
measuresthe scalingpropertiesof the averagedensityof pointseven if it gives no information on the
densityfluctuations.

Indeed,let us definethe numberof points in an F-dimensionalball of radius1 and centrex1

n~(l)= lim
1M— ~ ~ 0(1 — x

1 — x11) (1.1.7)
M—~oc~

in order to write down the correlationintegralas the averagenumberof points in the ball:

C(1) = (n(l)) (1.1.8)

where (f) = limM.,~,M - ~ f(x,), by ergodicity. On theotherhandthe fluctuationsof n, are ruled
by a probabilitydistributionwhich canbe reconstructedby knowledgeof themoments(n(l)~)[PV84].

We must thereforeintroducea whole set of generalizedscalingexponents[BR56,G83, PV84]:

(n(l)’~) lirn ~ ~ n.(i)~o~i”~-~ (1.1.9)
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where4(1) = ii. In a homogeneousfractal ~( q) = DF q andthe deviationsfrom this linear law area
measureof the degreeof inhomogeneity.In fig. 3 4(q) vs. q is shownfor the Henon map [H76].

If we considera uniform partition of the phasespaceinto boxesof size lit is convenientto introduce
the probability Pk(I) that a pointx~falls into the kth box.

In this casethe momentsof Pk can be estimatedby summingup the boxes:

N(1)

= Pk(l) ~q.dq+i (1.1.10)

The exponentsdq are calledRenyi dimensionsand a momentof reflection showsthat

4(q)Iq=dq~1 (1.1.11)

becauseof the ergodicity n,(l) —~Pk(l) if x, belongsto the kth box and since one can useeither an
“ensemble”average(weightedsumover the boxes)or a‘temporal’ average(sum of the time evolution
x(l)).

The fractal dimensionis obtainedby relation (1.1.11)for q = —1:

DF = d0 = —4(—1) (1.1.12a)

while the correlationdimensionis:

~.‘=d2= 4(1). (1.1.12b)

-5—4 —3 -2 —1

4 ~

Fig. 3. 41(q) vs. q for the Henonmap[H76l with a = 1.2 and b = 0.3. The dashedline indicates41(q) = D1q.
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Onecan alsoshow that q5(q) is a convexfunction of q by a generaltheoremof probability theory [F71]
anddq consequentlydecreasesas q increases.

A numericalcomputationof the Renyi dimensionshasto be performedfollowing the definition
(1.1.9) instead of (1.1.10). It is in fact easy to generalizethe Grassberger—Procacciamethodfor
computingthe momentsof n,(l) with atime-consumingof thesameorderas thatfor computingv, while
the memory-consumingproblemsof the box-countingmethodare escaped[PV84].

Other ways exist for introducingan infinite set of dimensions;Hentscheland Procaccia[HP83a],
e.g., proposedthe following characterizationof the attractors.Let usdefine:

C
0(1) = lirn [numberof n-tupletsof points (x,, x,,. . . x~)

whosedistances x, — xJ are lessthan 1 for all i~,i~] (1.1.13)

which should scaleas:

C~(l)ccl” forsmalll (1.1.14)

with v2 = i.’. Note that the direct computationof i~,following the definition (1.1.13)requiresa CPUtime
increasingas M~.Howeverit is easyto recognizethat

v~=(n—1).d0, n=2,3,4 (1.1.15)

The relation (1.1.15)is obtainedby the fact that in the ith box the distributionof pointsis essentially
uniformimplying

C~(1) = [numberof n-tupletsof points (x1,. . . x,) contained
in the ith box with all — xJ � 1] cep~(l)’

1M~. (1.1.16)

(1.1.15) follows from (1.1.10),(1.1.13)and (1.1.16)sinceC~(l)= lim(1IM) ~ C~(l).

1.2. Characterizationof chaoticattractors as multifractal objects

It is intuitively reasonablethat the dimensionsdq give a measureof inhomogeneityin the distribution
of pointson the attractor.Let us nowshowhowthis inhomogeneitycan berelatedto the existenceof a
spectrumof singularitiesof the naturalmeasure.

Let us cover the attractorwith N(l) boxesof edge1 and define the probability p.(l) that a point
belongsto the ith box A,(1)

p~(l)= f d~(x). (1.2.1)
A~(1)

d~(x)is the naturalmeasuregiven by the dynamics. In practice,in a numericalexperimentp,(l) is
given by ~k (I) defined in (1.1.7) with ‘k centredin A.(l). In the limit of a homogeneousattractor,
p,(l) ~ ~ while this doesnot happenin a genericcase. Let us thereforegroup the boxeswith the
singularity i E [a, a+ da]:



158 G. Paladin and A. Vulpiani, Anomalousscaling laws in multifractal objects

p,(l)r,~la for small 1 (1.2.2)

into a subsetS(a) of the attractor. Roughlyspeakinga is a ‘local massdimension’.
The numberof boxesdNa(l) neededto coverS(a) should behavein the scaling hypothesislike:

dNa(l)= dp(a) ~ (1.2.3)

wheref(a) arethe different fractal dimensionsof the setsS(a)upon which the singularitiesareof kind
a. Essentiallywe aredescribingthemeasureon the attractorby interwovensetseachwith singularityof
kind a andfractal dimensionf(a).

Now we can relatef(a) to dq by computingthe quantities(1.1.10)as an integralon a. Following
equations(1.2.2, 1.2.3) one has:

N(1)

~ ~(l)~ f dp(a)l~. (1.2.4)

The integral can be computedfor small 1 by the saddlepoint method:

dq = (q -1) m~n(aq -f(a)). (1.2.5)

If we knowf(a), thenwe can find dq and, alternatively,givendq, we obtainf(a) inverting (1.2.5). In
the limit caseof homogeneousattractorsf(a) is defined only for a = DF implying f(DF) = DF and
dq = DF, Vq.

The meaningof (1.2.5) is quite obvious:dq is detectedby aparticularvalueof ã(q) determinedby
the extremumconditionsof (1.2.5):

df/daL~= q(i) (1.2.6)

and

1 — —

dq = (q —1) [cia —f(a)]. (1.2.7)

One has the obvious inequality f(a) ~ DF becauseNa(1) ~ N(l), while the information dimension
D1 = d1 satisfiesthe relation

D1=f(D1). (1.2.8)

We can repeatthe above computationsfor the exponents(1.1.9) by a summationover the points
insteadof over the boxes.Thisdescriptionis exactlyequivalentbut allows to emphasizecertainphysical
aspects.Let us introducethe percentageof pointsXa(l) which belongsto the boxesof size 1 suchthat
(1.2.2) holds:

dXa(l) ~ dNa(l) l~~dp(a) lH(~ (1.2.9)
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with

H(a)a—f(a)�0. (1.2.10)

By (1.1.9) and (1.2.9) it follows

(fl(j)q) ~fdp(a) /aq+H(a)

and one obtains

~(q) = qdq~
1= mm [aq + H(a)]. (1.2.11)

For q = 0, we selectthe informationdimensiond1 = d4ildqIq.~0correspondingto the singularitya =

for whichH = 0. In the limit 1—~0 all the pointswith a~ D1 cannotbe detectedsinceXa vanisheswith I

for positiveH(a). This situationis well knownin theframeworkof informationtheory. Indeed,we gain
an information1(l) = —~ p,(l)ln p,(l) in a measurementof the systemstatewith precision1. The
Shannon—McMillantheorem [K57] assuresthat the number NR(l) of boxeswhich give the leading
contributionto 1(1) should scalelike i’d’ D1 is thereforethe mostprobable‘local massdimension’, if
we pick up the points accordingto the naturalmeasure.This fact haspracticalconsequencesin the
analysisof experimentalsignalswhereoneusually computesthe correlationdimensionson a small set
of points, let usdefine ~ as

~=ln(-~ kl nk(l))/lnl

whereonechoosesM pointsXk at randomamongthe M pointsx1, x2,. . . XM of the temporalsequence
[ER85]. If M is much smaller than M, then i~is closer to D1 rather than to v. We think that
experimentalistsshould take into account this warning for the estimationof the dimensionof an
attractor.

The Legendretransform becomessimple also in the limit q—~ + ~ where the minimum condition
picks up the extremevaluesof the singularities:

amax = q

1!~oodq; amjn = q~r~
0,dq~ (1.2.12a)

For q large enough(say q> q1 >0, q< q2 <0), the function 4(q) reachesits asymptoticbehaviour:

~(q) a~j~q+ H(~mjn)for q > q1
(1.2.12b)

+ H(amax) for q < q2.

Let us notethatf(a) can be negative.In thiscasethefractal dimensionof the correspondingsetS(a) is
zero,of courseandS(a) is called ‘volatile’ fractal [M82].Negativef(a)’s indicatehow fast the number
of boxesnecessaryto coverS(a) convergeto zero in the limit of vanishingsize 1.

Analytical calculationsof some featuresof f(a) have been performedjust on particular scale-
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invariant structures(such as the 2-cycle of period doubling,mode-locking structures,quasi-periodic
trajectoriesfor circle maps) [HJKPS86,K86].

In numerical (or real) experimentsit is possible to computethe dq’5~e.g., via the generalized
correlationintegrals(1.1.9). Onecan thenobtainf(a) by meansof the Legendretransformation(1.2.5)
as shown in fig. 4. f(a) usually approximatesthe typical parabolicshape,given by a lognormal
distribution:

f(a)a_~~(a_Di)2

(1.2.13)
H(a)

Ht1L1s~DIl./l: ~

(a)

S

05— I

~U.8 1 0
1a 1.5 a

-M -

Fig. 4. H(a) (a) andf(a) (b) vs. afor theHenon map[H76l with a = 1.2 andb = 0.3. The full linesindicatetheparabolicapproximationsgiven by
eq. (1.2.13).
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and ~ is given by

= lim (ln2(n(l)) — (ln(n(l)))2) (1.2.14)
Iln l~

We shall discussin the appendixB the limits of this approximation.However, for small q one hasin
general:

dq+i=d
1~~ILq. (1.2.15)

1.3. Other characterizationsof attractorsand experimentalproblems

The methodsdevelopedin sections1.1 and 1.2 arerelatedto the statisticalpropertiesof p,(1) in the
limit of infinite numberof points (M—+ co). Thereareotherpossiblecharacterizationsof the attractor,
of course.We briefly dicussone of theseapproaches,due to Badii andPoliti [BP84, BP85],which can
be easilyusedin a numericalanalysisandallows to give a gooddescriptionof the inhomogeneityof the
attractor.

The method is basedon the statisticalanalysisof the minimal distanceS~(M)betweenx, and the
other M — 1 points,

ô~(M)=rninIx,—x11.
J5~I

In the homogeneouscaseonehasfor each i

M_U~~~ (1.3.1)

but for a genericattractorwe could expectthat (1.3.1)doesnot hold. In order to computeDF (or D1
and the other dq) one thereforeneedsto perform suitableaveragesof ~ (M). Let us introducethe
momentsof ~(M) and the ‘dimension function’ D(y):

~ ~~(M)M~’~. (1.3.2)

It is clear thatD(y) is a monotonicnon-decreasingfunction. Moreoverthe scalingbehaviourof the
distributionof pointson the attractorcan be obtainedby varying y.

Badii and Politi [BP85]havein fact provedthat the Renyi dimensionsarerelatedto the D(y) by:

D(’y=(1—q)dq)=dq. (1.3.3)

We want finally to point out the problemswhich arisein the computationof thefractal dimension(or in
generalof the dq ‘s) from the analysisof the chaoticsignals.Somepracticaldifficulties arecommonto
computeror real experimentswhereone always handleswith finite time series,noise and so on. A
typical puzzle is the choiceof the ‘meaningful range’ (Ia, I~)which hasto be consideredin order to fit
the data. The noiselevel andthe finite numberof pointsplay of coursea role in the question,andthe
choiceof a good scalinginterval essentiallyfollows by practical ‘good sense’.
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Moreover, the evolution equationsare explicitly known only in computerexperiments.On the
contrary,in realexperiments,oneworkswith just few signals(usuallyone). Themost relevantproblem,
at leastfrom aconceptualpointof view, is thusthe constructionof the pointsin phasespace(which is in
generalinfinite dimensional)by anexperimentaltimeseriesu(1), u(2),. . ., correspondingto measure-
mentsregularly spacedin time (t = T, 2r, . . .). One thereforehasto introducethe pointsy~m)in Rm:

y(m) =(u(i), u(i+ 1),... u(i + rn—i)) (1.3.4)

for computingv(m) definedby

(fl(m)(l)) ~ (1.3.5)

wheren~m)(l)is given by (1.1.7) replacingx by y(m)

Oneexpectsto obtainz’ in the limit of largevaluesof m: v(m)—~ ii. The abovemethodis not entirely
justified from a mathematicalpoint of view but it seemsrather reasonable.It howevergives the
possibility of characterizingan experimentalchaoticsignal at least on heuristicgrounds [MABD83,
C85].

We shallseein section3 that similar problemsarisein the estimationof the Kolmogorov entropy
from experimentaldata.

2. Intermittency in fully-developed turbulence

2.1. Basicconceptson fully-developedturbulence

It is well knownthat atlow Reynoldsnumbers(Re) anincompressiblefluid behavesin a laminarway

(i.e. roughly speakingthe evolution is regular and stable). On the contrary, at very large Reynolds
numbersthere is a highly chaotic and irregular behaviour. The regime Re~ Rent is called fully
developedturbulencewhereRcrit is the valueof Re at which the onsetof turbulenceappears,i.e. there
is a transition from laminar to chaotic flow. We underlinethat for Re� Rent there are often only
temporal chaosand highly spatialcoherentstructures.In the limit Re~ Rent the chaoticbehaviour
involves fluctuationson a so small scaleof spaceandtime thatit seemspossibleonly a descriptionin
terms of the staticalpropertiesof the flow. An ideaof the increasingchaoswith Re is given by fig. 5.

Turbulentflows are very commonin nature and they areof greatinterestin applicationsfor their
ability to transfermomentumor heat.Other relevantpeculiaritiesof turbulentflows areunstabilityand
unpredictability:a smallperturbationat a certaintime t

0 may rapidly leadto a strongdistortionof the
(unperturbed)flow pattern [MY75].

In principle one could build up the statistical mechanicsof turbulence on the basis of the
Navier—Stokes(N—S) equations:

1 1

lv.u=o p (2.1.1)
+ initial and boundary conditions

whereu is thevelocity field, p the density,p thepressure,v the kineticviscosity andfan externalforce.
Unfortunately,eachanalyticaltheory of turbulence,i.e. an approachwhich makesuseof eq. (2.1.1),
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~

Fig. 5. Schematicpicturesof the behaviourof a fluid arounda cylinder at different Reynoldsnumbers.

unavoidablyencountersclosureproblems.If, e.g.,one triesto write down an equationfor correlation
of secondorder((ui (x) u.(y))), thenthird-ordercorrelationtermsappear,andso on. Thesedifficulties
aretypical of all non-linearequations.An analogoussituationis presentin the gas kinetic theorywith
the B-B-G-K-Y hierarchy [U59]. We do not considerin this review theseapproaches(for a general
referencesee [L73]).

However,an approximateunderstandingof a largenumberof statisticalproperties(at leaston small
scales)doesnot requirea direct useof the N—S equationssincethe identificationof the fundamental
physicalmechanismis sufficient.

Richardson [R22,R26} was the first who put forward some penetratingideas on the physical
mechanismactingat largeRe. In his assumptionthe fully developedturbulence consistsessentiallyin a
hierarchyof ‘eddies’ (i.e. turbulentstructuresor disturbances)on differentscales. ‘Eddies’ of acertain
scaleare the resultof the unstability of larger ‘eddies’ at a larger scale,and in their own turn, they
generatesmaller ‘eddies’ by their unstability. One has, in this scenario,a cascadeprocessof eddy
breaking-downin which thereis a transmissionof energyof the overall flow to motions of smallerand
smaller eddiesup to the smallestscale ~ wherethe fragmentationprocessis stoppedby dissipation.

This physicalpicture is nicely expressedin the following rhyme ([R22], p. 66):

Big whorls havelittle whorls;
Which feed on their velocity;
And little whorls havelesserwhorls;
And soon to viscosity
(In the molecular sense).
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Let us recall that theseconsiderationsarerelatedto the three-dimensionalcasesincein the bidimen-

sional situationsa quite different phenomenologyappears[PV86CIas discussedin section2.5.

2.2. Kolmogorov theory and the intermittencyproblem

The qualitative and generalideasof Richardsonhavebeenfurther developedandformulatedin a
morepreciselanguageby Kolmogorov [K41].

Kolmogorov madean addition to the assumptionson the cascadeprocessby noting that, becauseof
the chaoticnatureof the energytransferamongthe eddies,the orientingeffectof the meanflow must
be weakenedwith eachbreakingdown. Consequentlyit is naturalto expectthatat spatialscalesmuch
smaller than the externallength L (i.e. the typical length of the meanflow) and time scalesmuch
smallerthanthetypical time of the meanflow, the velocity fluctuationsarehomogeneous,isotropicand
quasi-steady.At sufficiently small-scalethe turbulenceis thuscharacterizedby the meanflux of energy
~ (from the overall flow to thesmallesteddy) andby thedissipation.Moreover,if the scalelength is not
too smallit is naturalto assumethat the viscosityplaysno role, becausethedissipationtermin the N—S
equationsis negligible.

We can summarizeall the aboveconsiderationsin fig. 6. In a more quantitativeway Kolmogorov
formulatedthe two following hypotheses:

1) The n-variate probability distributions of the velocity difference i~V(r)= u(x + r) — u(x) are
universalisotropicfunctiononly of r, v and ~, in the case r ~ L.

2) If L ~ r ~‘ ~j (the so-calledinertial range) the probability distributionsareindependentof i.’.

The two hypothesesleadimmediately,by dimensionalanalysis,to anexplicit form for the moments
of ~V(r)~for r in the inertial range:

(4V(r)V) cc(~r)”~ (2.2.2)

where (~) now denotesa spatialaverage.Moreover the dissipationlength(i.e. the scaleat which the
dissipationis able to competewith the non-lineartransfer) is

= (3/)1/4 R~31~L. (2.2.3)

0~Q ~ TRANSFER

Q ~7O

o a 0 0 0 0 0 0 000

D)SS)PAT)ON

Fig. 6. Schemeof theenergycascade.The readermust think that successiveeddiesareembeddedone within eachother.
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Independentlyalso Onsager[045, 049] obtainedthe sameresultsas Kolmogorov.
Let us stressthat the basic assumptionin the K4i theory is that ~ should be the only relevant

parameterin the cascadeprocess.This hypothesisis reasonableonly if the energytransfer(or the
energydissipationdensity) s(x) doesnot stronglyfluctuatewith varying x andoverascaler which one
is looking at. The assumptionon the smooth behaviour of s(x) seemsto be not satisfied since
experiments [BT49] evidence strong intermittent bursts, both in space and time. For details on
experimentalstudiesseerefs. [GM72,KC71, KC72, VP72]. Figure7 obtainedby adirect simulationof
the N—S equations[S81]showsthat e(x) is concentratedin a tiny region of the space.

Thepresenceof intermittency,as first pointedout by Landau[LL71], leadsto a contradictionin the
K41; the statisticallaws at smallscaleshaveto dependnot only on ~but alsoon the fluctuationsof r(x).

Experimentsat large Reynoldsnumber[GM72, VP72, AGHA84] show scalinglaws in the inertial
range:

(I~V(r)V) ~ (2.2.4)

but with ~ ~ p13. Thedisagreementbetweentheexperimentalvaluesof ~‘s andthe K41 predictionsis
small for not too large p(~4—5)and increaseswith p. In the following we shall comparethe
experimentaldata with the estimatesobtainedby fractal andmultifractal models.

Theseconsiderationson small-scaleintermittencyled Kolmogorov andObukhov[K62,062, Y66] to
modify the K41. In their approach(called lognormalmodel) the fluctuationsof energydissipationare
distributed accordingto alognormaldistribution. We discussit in appendixA, sinceit is not directly
relevantto our purposeandbecauseof the peculiarity of the lognormal distribution[M72].

a

/

S

S

Fig. 7. Numericalsimulation $81jshowsthestructureof thezonescontainingtheenergydissipation.95% of theenergydissipationis concentrated
in the dark regions.
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2.3. Fractal and multifractal modelsfor intermittency

The K41 theoryassumesthat eachpoint x of the fluid hasthe same‘singularity’ structure:

~V1(r)csrh, h—i. (2.3.1)

It is easyto seethat (2.3.1) is equivalentto assumethats(x) is smoothlydistributedin a regionof R
3.

Let usdefine the eddyturn-overtime and the kinetic energyper unit massat scaler:

1(r) —~rI~V(r) (2.3.2)

E(r)—i~V(r)2. (2.3.3)

The transferrate of energyper unit massfrom the eddy at scaler to smaller eddiesis thengiven by

~(r) = E(r)It(r) -= ~V(r)3Ir . (2.3.4)

Since s~(r)= (1 1r3) .fA(r) r(y) d3y (A~(r)is a cubeof edger aroundx), one hasby (2.3.4)and (2.3.1)

J r(y)d3y~r~.
A~(r)

A simple way to modify the K4i consistsin assumingthat the active turbulent structurescover a
homogeneousfractal S (with DF <3) on which e(x) is uniformly distributed.

Let us remark that in turbulencewe do not usethe word fractal in the exact mathematicalsense.
Indeedin the ‘true’ limit r —~ 0 becauseof the dissipationone probably finds no singular structures.
r —*0 means r in the inertial range and the regions containinga large part of e(x) are a ‘physical’
approximationof a fractal structure. In this approach(called absolutecurdling [M74] or f3-model
[FSN78I)one replaces(2.3.5a)with

1 3 IrF ifxESj s(y)dyx~ 0 ifx~’S (2.3.5b)
A~(r)

or in an equivalentway:

Irh ifxES

~V~(r)x
10 ifx~’S (2.3.6)

with h = (DF — 2)13. Since at scaler thereis only a fraction

— numberof cubesof edger in S r~r — numberof cubesof edger in the fluid r
3

occupiedby the ‘active’ eddies,we havein the inertial rangethe following behaviourfor the structure
functions
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(Iz~V(r)V)c r~r31~= rip

D — 2 (2.3.7)( F ).P+(3DF)

In the limit DF = 3, we recoverthe K41 results.In this approachDF is a free parameterandcannotbe
obtainedwith simple arguments.In this approache(x) is not distributedover all the fluid as in K41,
since by (2.3.5b)one seesthat e(x) hasa singularstructure.We shall discussagainthis model in the
following. In fig. 8 we report the experimentaldata [AGHA84] of vs. p andthe implicationsof the
homogeneousfractal model (eq. (2.3.7)).A linear fit leadsto agood agreementwith the experimental
datafor p ~ 7, while for largervalues of p oneobservesa non-linearbehaviour.

Thehypothesisof the existenceof a wholespectrumof singularitiesallows to justify thenon-linearity
of ~,. The model can be improved by considering the set on which the energy dissipation is
concentratedas amultifractalset, following the lines introducedin section1 for chaoticattractors.Let
usnamely defineS(h) as the setof points for which in the inertial range

indicating with d(h) the fractal dimensionof S(h). It is easyto compute~ noting that the fractionof
cubeswith edger in the setS(h) is proportionalto r _d~Ir~ = r3 d~• Thereforeonegets

(~V(r)j~)f dp(h) rPh r3~ ~ (2.3.8)

and by the steepestdescentmethod:

~~=min{ph+3—d(h)}. (2.3.9)

Fig. 8. vs. p. Dots andcirclesareexperimentaldata[AGHA84]; thefull line is thea-modelresult(2.3.7)with DF = 2.83 andthedashedline is
therandom$-model result (2.3.16)using the distribution(2.3.22)with x = 0.125.
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Equation(2.3.9)showsthat at a givenvalueof p, ~, dependson aparticularvalueof h. Hencethekind
of instabilitiesneededto set up the setsS(h) arepicked up by differentmoments.

We haveworked out the multifractal approachin termsof singularitiesof L~V~(r) only becausein the
literature of turbulence the moments (I~V(r)i”) are usually involved. However it is simple to
emphasizethe explicit correspondencewith chaoticattractors.Let usnote that

J r(y)dy~r
3~(r) ~r3~2 (2.3.10)

A~(r)

so that the analoguesof the exponenta andf(a) are 3h + 2 and d(3h + 2).
The homogeneousfractal caseis the limit of the multifractal one when d(h) is defined only for

h=(DF—2)13 andd(h)=DF.
Up to now we haveremainedat a rather descriptivelevel in the problemof intermittency. d(h)

containsall the relevantfeatures,but cannotbe obtainedby a first principle calculationbasedon the
N—S equationsingularities.

2.3.1. The p-model(absolutecurdling)
A pictorial scenarioof theenergycascadecan be givenin termsof multiplicative processes(absolute

and weightedcurdling) [M74], see fig. 9. We think that the detailsof the model [FNS78]and of the
random model [BPPV84] are useful to give a more direct idea of the fragmentationprocessesin
turbulence.We want hereto remindthat all ‘modern’ fractal andmultifractalcascadeapproacheshave
beenoriginatedby ad hocmodelsinvolving particular structures,as vortex sheetsor vortex tubes,for
the region containingthe energydissipation[C62,T68, S70]. Theexplicit ideaof the f3 -modelis dueto
Novikov and Stewart [NS64,N69, N70] and to Kraichnan[K74].

Let us considerthe scales1,, = 2 ~ where l~= L is the scaleat which energyis injectedand the
scaling factor 2 betweenIn and 1,,~ is conventional. Let us call Vn = ~V(l~)the typical velocity

—~ N

b)Ø~Jj~

Fig. 9. Schematicview of the13 -model(casea) andof therandomfl-model(caseb). Thedashedareasaretheactive zonesduringthefragmentation
process.
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differenceacrossa distanceI,, in an activeeddy. In orderto takeinto accountthe intermittencyFrisch
et al. [FSN78]introducedthe coefficient /3 =

2DF equalto the fraction betweenthe volume of the
daughtereddiesat scalei,~+ andthe volume of the mothereddyat scale1,. The transferenergyfrom
the eddyat scale in to that at scale ln+1 is

En ~ U~Iln

Sincethe energytransferrate is constantin the cascadeprocessone has

Sn = /3~n+1’ v~II~/3 v~+1Ii~+1. (2.3.11)

Iterating (2.3.11) one thenobtains

l3(I~II~)F_3~3 (2.3.12)

i.e. eq. (2.3.6) with h = (DF — 2)13.
In the previousmodeloneessentiallyhasa two-valuedmultiplicative process:eacheddy at scaleI,, is

divided into eddies of scale
1n + 1’ in such a way that the energy transfer for a fraction /3 of eddies

increasesby a factor 1//3 while it becomeszero for the other ones.

2.3.2. The random /3-model(weightedcurdling)
Let usgeneralizethe p-model. We namely assumethatat scale1n thereareNn active eddies,each

eddy In(k) (k labelsthe ‘mother’ eddyandk = 1,. . . Pin) generatesactiveeddiescoveringa fraction of
volume 13,,+

1(k). Since the rate of energytransferis constantamongmother and daughters,we get:

Un(k)
3/in = /3n+i(k)Vn+i(k)311n+i . (2.3.13)

The iteration (2.3.13) of On gives an eddy generatedby a particular ‘history’ of fragmentations

Vn i~3(fJ13~)h/3~ (2.3.14)

Let us remarkthat the fraction of volume occupiedby an eddygeneratedby [13k,. .. /3~]is 1~1 /3,, 50

from eq. (2.3.14) it follows -
(~v(l~)I~)i’~f fi d/3, pdl~3)p(p

1,.../3,,). (2.3.15)

Assumingno correlationamongdifferent stepsof the fragmentation,i.e. P(~ fan) = P( /3,),
oneobtainsfor -

~ =p/3 —ln2{/3~”
3~} (2.3.16)

where{ } standsfor the averageoverthe distributionP(/3). If /3, is a constant(
2(DF

3)) onerecovers
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the results of the /3-model. The knowledge of the probability distribution P( /3) is related to the
understandingof thenatureof the N—S equationsingularities.Howeverthis problemis far to besolved
at present.The fractal objectgeneratedby therandom/3-model(ormoregenerala multifractalobject)
hasno more globaldilatation invariantproperties;evenif, onecan still computethe fractal dimension
DF as:

(2.3.17)

whereN,, is thenumberof activeeddiesat thenth stepof the fragmentationand(~)is an averageover

an ensembleof cascades.It is easyto show that

DF = 3 — ~o (2.3.18)

which in the random/3-modelis given by:

DF = 3 + 1n2{13}. (2.3.19)

Moreoverthe analogueof d2 is D * definedby:

D*=i+~6 (2.3.20)

andin termsof the random/3-model

D*=3_ln2{/3~} . (2.3.21)

Let us recall that D * is relatedto the scalingof energydissipationdensity correlation[FSN78],

(s(x+ r) 5(x)) cc r
3~

and that in the experimentalliterature the fractal dimensionis usually estimatedby D * evenif in
generalDF > D ~ DF = D * actuallyholds only for homogeneousfractals.

We haveperformeda simple fit of the experimentaldatachoosingfor P( /3) the form

P(/3)=x~(/3-0.5)+(1-x)~(/3-1); (2.3.22)

the value x = 0.125 gives good agreementwith the experimentaldata (see fig. 8). -There is no deep
reasonto choosethe form (2.3.22);we havesimply followedsomephenomenologicalideasconsidering
two possible kinds of fragmentation:an activeeddy can generateeither vorticity sheets(/3 = 0.5) or
spacefilling Kolmogorov-like eddies (/3 = 1). With the fit (2.3.22)we get DF = 2.91 and D* = 2.83,
with a small but significant difference.There exist somephysical argumentsto give a bound to the
valuesof h. In thesetS(h) thelocal Reynoldsnumberat scaler is Re(r, h) = r’ r”Iv cc ~ Thereforein
orderto stop the turbulent cascadeonemust requirethat R~(r,h) decreaseswith r implying h> —1.
Let us notehowever,that it is reasonableto assumeh � 0 becausefor negativeh onecouldhavepoints
for which ~V~(r)Iincreaseswhen r decreasesand this seems quite unrealistic. Note that in the
distribution (2.3.22)we havetakenhmjn = 0 (correspondingto /3mm = ~).
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Mandeibrot [M76b]conjectured,using Taylor’s frozen turbulenceassumption[T38],that fractal
structurewith a fractal dimension <2 cannotbe detectedin a realexperiment.

However, Mandelbrot’s remark is valid only in the (mathematical)limit ~ = 0 while in real
turbulence,becauseof the existenceof a finite minimal scale for the active region, one hasjust an
approximationof the fractal object. The shapeof d(h) obtainedwith the fit (2.3.22)shownin fig. 10 is
thereforenot selfcontradictory.

The approachesto thestatisticaldescriptionof turbulence(K41, fractal,multifractal, lognormal)do
not directlyusethedynamicsgiven by the Navier—Stokes(andEuler)equations.However,theprevious
phenomenologicalargumentsas well as some closure approximations[AL77] imply that the N—S
equations,in the limit of zero viscosity,leadto a singularity in a finite time (see,e.g.,[F76J).For finite
small v we expect that the singularity is smoothedby the dissipativeterm. In our phenomenological
model theanalogueof thesingularity is thehierarchyof eddiesdown to thedissipativescale.Thereare
some numericalevidencesfor thesesingularities[MOF8O,BMONMF84]. Perhapsthe most relevant
point is the ‘fractal’ spatialnatureof thesesingularities.Their mathematicalexistenceis unprovenand
controversial,but if they exist, thenthey mustbeenormously‘sparser’[P74,S76,K76] andtheir spatial
‘fractality’ is a plausibleconjecture[M76a,M76b].

Recently someother non-fractal modelsfor the descriptionof intermittencyhavebeen proposed
[SL84,NN85, N86]. Theyarealternativeto thescenarioof this section.Wedo not discussthem,butwe
want just to note that they imply ~ = p13 for P<p~= 5—6.

We think that this is in strongdisagreementwith all experimentalresults.Even if one could think
that for largevaluesofp(~8)the experimentaldatafor arenot enoughaccuratein order to prefer

d(h)

2~ I

0.1 0.2 0.3 -~-

Fig. 10. d(h) vs. h given by the Legendretransformof (2.3.16)usingthe fit (2.3.22)with x = 0.125.
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definitively a model or another,all the recent experimentsneverthelessgive values for ~ and ~

respectivelylargerandsmallerthan 2/3 and 4/3 obtainedby the K41 (e.g. ~2 = 0.70±0.01).

2.4. Remarksand consequencesofmultifractaiiiy in turbulence

The conceptof ‘multifractal’ is relatedto the propertiesof thedistributionof ‘mass’ (in turbulence
thedensityof energydissipation,in a chaoticsystemthedensityof pointson theattractor)andnot to
‘geometrical’ properties[M86,BPPV86].

For examplethereis no anomalousscaling law for the numberof activeeddiesN,,:

N’7 (N)’7 cc çDF~ (2.4.1)

where (.) means the averageof an ensemble of cascades.Equation (2.4.1) is a quite trivial
consequenceof the law of largenumbers.For sakeof completenesswe considerthe random/3-modelof
section2.3.2 where the numberof active eddiesat scale in is

N~=23n{IB~ (2.4.2)

with

B~=’ ~ /3~(k). (2.4.3)
k=1

In the limit of largen (i.e. )V~~‘ 1) one has(largenumbertheorem):

the probability distribution of N~has thereforea very narrow peak around 2~”{ ~ n = DF so that
(2.4.1) holds. Equation (2.4.1) can easily be proved for positive integer values of q by direct
computation[BPPV86].

2.4.1. Irrelevanceof multifractalityfor relative diffusion
Let us now showwhy the multifractalstructureis not relevantfor therelative diffusion of particle

pairs [CPV87].
Indeed,the growthof themomentsof the relativedistanceRbetweena pairof particlesscaleswith

time as:

~

12q v(q) (2~4.4)

(~ is nowan averageover a largenumberof pairs).We foundthat for eachq, v(q) = v and v is only

relatedto the exponent~:
(2.4.5)
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Let us consider M ~ 1 pairs of particlesat positionsr~’~and ~~2) (i = 1,. . . M). The interparticie
distanceis R, = (r~’~— r~2~)and the relativevelocity bV~= u(r~)— u(r~2’)= (dldt)R

1.Let us compute
the time derivativeof R

2:

~R2=2lim~ >~V~(R
1).R~

=2lim~ >~V,(R~)R~cosO, (2.4.6)

where0, is the anglebetweenR, and~V,(R1).In the caseof isotropic turbulencethe relative positions
andvelocitiesareuncorrelated[MY75 section24, C69, 070a],moreovercos0 is positive anddoesnot
dependon R [C69,070]. Thereforethis one has

dR
2Idt= 2 (~~) ~V(R)R. (2.4.7)

In order to computeM’ . ~ W,(R~)R,= M7(R) Rwe grouptogetherall then(a) pairswith thesame

valueR(a) of the interparticledistancein sucha way that oneobtains:

~ W,.(R,)R, = E [—~—-~ ~Vk] R(a). (2.4.8)
i=1 a n(a)

The sum ~,, is over the -set of different valuesof R(a) and Ek is over the n(a) pairswith Rk = R(a).
Note that for large M (and n(a))

~ 8V~-~(~V(R(a))~)ccR(a)’1 (2.4.9)

n(a) k

therefore

dR2IdtccRl+u1. (2.4.10)

It is trivial to repeatthe samecomputationsfor R2’7:

dR2’7/dtccR2’7~”1. (2.4.11)

Now it is easyto see that v(q), as definedin (2.4.4), mustbe constant.In fact by (2.4.11)and(2.4.1)
onehas

f2q—l+~
1\

2qv(q)—1=(2q—i+~1)’v~ 2

moreoverv(q) doesnot increasewhen q increases[F71],thereforeoneobtains:

r.’(q)=v1I(1—~1), Vq.

Let us remarkthat the multifractal structureinducesonly a (slight) correctionto the Richardsonlaw
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= ~[R26]and in the diffusion processthereis no anomalousscaling.The scalinglaws (2.4.4,2.4.5)
are parametrizedby a single exponent~ the sameresult holds for a homogeneousfractal [HP83b]
(with ~ = (7 — 2DF)/3) or a multifractal.

2.4.2. Theproblemof the numberof degreesoffreedom
It is clear thatasatisfactorydescriptionof turbulentfluids needsaresolutionup to scaleof the same

orderof thedissipativeKolmogorovlength~qat which themolecularfriction is ableto competewith the
non-lineartransfer.Onehas:

= (3/)1/4 (2.4.12)

where s is the rate of the energydissipationfor unit massandtime (assumedto be constantin K41).
If L is the systemcharacteristiclength at which the external energyinput is pumpedthen the

adimensionalratio Re = (sL4)1/
3/v is theReynoldsnumber.The numberof grid points for unit volume

necessaryto obtain a resolutionup to i~ is thus

N(Re)-= (LI’q)3 cc R’4. (2.4.13)

This argument(due to Landauand Lifschitz [LL71])hides the centralassumptionthat all the fluid is
‘active’, i.e. that the energydissipationdensity field is smoothly distributedon a three-dimensional
region.

Kraichnan[K85]hasrepeatedthe Landau—Lifschitzargumentby making the hypothesisthat the
energydissipations(x) is concentratedon a homogeneousfractal with non-integerdimensionDF <3.
The dissipationscale ~j can be now determinedby imposingthat the Reynoldsnumberrelatedto an
eddyof length scale1 is of order one:

?im~V(’1i)lv-.-O(i). (2.4.14)

This is equivalentto requirethat thedissipative(linear) termof the N—S equationis ableto compete
with the non-lineartransferterm.

Insertingeq. (2.3.6)in eq. (2.4.14)we obtain:

(2.4.15)

It follows that:

N(Re) (LI~)~cc RF/+D~ . (2.4.16)

Let us remark that someother variablesarealso necessaryfor describingthe non-activeregionsof
the fluid but their number doesnot dependon Re~If the /3-model assumptionswere correct, eq.
(2.4.16)would give (in principle) the scaling law for N(Re).

The numberof degreesof freedomnecessaryfor describingthe multifractalof turbulencemustbe
definedwith muchmorecarefulness[PV87a].In fact, for eachsingularity h a different dissipativelength
i
1(h) is pickedup by condition(2.4.15): ~(h)ccR~.

Sincethenumberof eddiesat scale1 with singularityh is proportionalto I - d(h) onededucesthat the
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numberof grid points which haveto be consideredfor resolvingthe setS(h) is:

Nh(Re) (LIi~(h))~cc ~ (2.4.17)

We thus get the total numberof degreesof freedomby integrating(2.4.17)over

N(Re)= f dp(h)Nh(Re) R~ (2.4.18)

where ö canbe estimatedby the steepestdescentmethodin the limit of largeRe

8 = max[d(h)/(l + h)]. (2.4.19)

A fit of the experimentaldata [AGHA84] gives the value 6 2.2 which is closeto the valuegiven by
eq. (2.4.16).

The results(2.4.16)and(2.4.18,19) areneverthelessquitedifferentfrom aconceptualpoint of view.
We muststressthat the estimate(2.4.18,19) hasjust a theoreticalrelevancesinceit is ratherdifficult

in acomputersimulationto locate the grid pointson the setsS(h) (which alsoevolvesin time). Indeed
oneusually works with a fixed grid or with a pseudo-spectralmethod[P071].It follows that the only
relevantparameteris theminimal scale1mjn consideredwhich is boundedfrom below by thedissipative
length relatedto the strongestsingularity:

lmmn ?l(hmin)cc R +hmii,) (2.4.20)

The estimate1min = fl(’t2min) assuresthat all the setsS(h) (i.e. evenvery improbableevents)aretaken
into account.

The numberof equationswhich allows us to get such a fully accuratedescriptionis thus:

N (Llimjn)3 cc R~~~”m1f1). (2.4.21)

Equation (2.4.21) is in agreementwith rigorous bounds[R82, CFMT85]. On the other hand, if one
decidesto neglect the rare events a resolution 1 ~‘ ~ is sufficient; just the relevant featuresof
turbulenceare reproducedloosing somedetails. In this case the numberof equationsis reducedto

N*~=(L/i)3

This scaleI can be estimatedby the dissipativelength ~(h) relatedto an effective singularity h.
Let us define an ‘effective’ mass dimension D of the object on which the energydissipationis

concentrated,by:

h=(ñ—2)13.

Mandeibrot [M76b]has, e.g., assumedD = D
1, the information dimension, and from the data

[AGHA84]one has D1 2.87. This assumptioncorrespondsto select a h = d~~Idpj~,30.29 and,
roughly speaking,1 is thus the smallestscaleon which in averageactive eddiesare still present.

On theotherhand,someheuristicarguments(seesection2.3) aswell asthe fit of experimentaldata
shownin fig. 10 indicatehmjn = 0. It follows that:
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NccR~ and N*ccR3/()ccR23

Let us emphasizethat N~.is much greaterthanN* which is close to the estimateof the numberof
degreesof freedom obtained respectively in K41, in the /3-model and in the framework of the
multifractal approach.

2.5. Two-dimensionalturbulence

Two-dimensionalfluids havea relevantinterest,apartfrom a mathematicalpoint of view, because
they idealizegeophysicalphenomenain the atmosphere,oceansandmagnetosphereand area starting
point for understandingthesephenomena(seefor a generalreview [KM8O]).

The motion of fluids in two dimensions has many remarkable regularity propertieswhich are
essentiallydue to the fact that the vorticity of eachfluid elementis constantif viscosity and external
forcing areabsent.Forthis reason~ dependson viscosity andthereis no forwardenergycascade[077].

Nevertheless,quite reasonablearguments[K67, B69] allow to repeat a K41-like approachby
assumingthe meandissipationenstrophy~ = — (d / dt) ((rot u)2) as the relevantparameter(insteadof
~) andthusa forwardcascadeof enstrophy(insteadof energy).Oneobtainsby dimensionalanalysis,in
the inertial range:

(IAV(r)V)ccr’P, =p (2.5.1)

andfor the energyspectrum

E(k) k3. (2.5.2)

There exist numericalevidencesfor an energyspectrumin strong disagreementwith (2.5.2), i.e.
E(k)cc k0, a —4 to —6 [BLSB81, M84]. Some authorsarguedthat this differenceis related to
intermittency[BLSB81].

Let usbriefly showthatin two-dimensionalturbulencea K41-like theory givesthe exactscalingfor
(i.e. ~ =p) which is not affectedby the ‘intermittency’.

One could naively think that either the fractal or multifractal approachcan be repeatedfor
describingthe enstrophycascade.This is not true becausein the two-dimensionalEulerequation,as
consequenceof the vorticity conservationfor eachfluid particle, onecan prove [RS781:

~V(r)~<const.r Rn rI . (2.5.3)

The inequality (2.5.3) also holdsfor the N—S equationsso that

(2.5.4)

Moreover mustbe convex[F71Jand ~ = 3, in order to haveaconstantforwardenstrophycascade.
All theseconstraintscompelus to concludethat:

(2.5.5)

which implies theapparentlysurprisingresult that the K4i-like theory prediction~ = p also holds in
presenceof intermittency.

It is easy to see that a two-dimensional/3-model (or random /3-model),whenever/3,, ~ 1 gives a
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wrong result for the enstrophycascade.Indeedif we repeatthe considerationsof section2.3 for the

three-dimensionalcaseimposinga constantenstrophytransferrate we get, insteadof eq. (2.3.13):

v,,(k)
3/l~= f3,,~

1(k)v~~1/1~~1. (2.5.6)

This equationgives a convexfunction ~, (if f3~(k) ~ 1). The apparitionof singularitiesin the velocity
field follows by the Bernoulliannatureof the fragmentationprocess(/3,, is independentby /3,,-1).

However, the random/3-modelcan be modified assumingthat

/3n+1 =1 if (v~I1,,)~> ~max~ (2.5.7)

Equation(2.5.7)correspondsin somesenseto a “Markovian” assumptionin the fragmentationmodel
becausethe stepsof the cascadeare no longer independent.The constraint(2.5.3) is now satisfiedin
this Markovian random/3-model,but the enstrophyis concentratedin regionswith fractal dimension
equalto 2, which cover a non-decreasingareafor decreasingscalelength.

Let us notethat unlike the three-dimensionalcase,wecan reachno conclusionson the shapeof E(k)
from ~. The naivedimensionalcounting gives E(k)cc k- with a = 1 +

This is wrong if ‘2 � 2 [BBS84Iand one can just derive from the bound(2.5.3):

a � 3. (2.5.8)

Therefore,neitherthe avaluenor the structurefunctions(since~, = p) give us informationabout the
‘intermittency’ in two-dimensionalturbulence. Numerical experiments[BPPSV86Jconfirm that the
fragmentationis space-fillingon the small scales(but largerthan the viscosity dissipationones).The
intermittency should be regardedas a somewhat“macroscopic” phenomenarelated to coherent
structures.

The enstrophycascadeindeedseemsto be inhibited in some highly organizedstructureswhich
dominatethe energyspectrum.Moreover the turbulentfield seemsto be decomposedin two parts:a
backgroundwith an energyspectrumk

3 in the inertial rangeanda finite numberof vortices(coherent
structures)which advectthe backgroundfield.

3. Temporal intermittency in chaotic dynamical systems

3.1. General remarks

One of the relevantfeaturesof chaotic systemsconsistsin their unpredictability.Essentiallyone
observesthatnearbytrajectoriesdivergeexponentiallyin time. However, thereexist time variationsof
the ‘chaoticity’ which appearin all genericalsituationsand consequentlythe meanexponentialgrowth
of the uncertaintyon the initial statedoesnot exhaustall the typical behaviours.

One can, e.g., observea regularmotion in phasespacefor long times, interruptedby randomly
distributed bursts of strong chaoticity. This phenomenon,called temporal intermittency, plays an
important role. For example intermittency has beenshown to be [PM8O]one of the fundamental
mechanismsfor the transition to turbulence.
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A quitesimpleexampleis the one-dimensionalmapx,, = g~(x,,-1) whereg6 (x) hasfor s = 0 a tangent
contactwith the line x,, = Xn .~. For small s the statex, spendsa largenumberof iterations(~~~1/2) in
the ‘laminar’ phase,i.e. nearthe bisectrix.Neverthelessx,, is finally expelledout and a chaoticburst
destroyscorrelations,see fig. 11. This behaviouris displayedalsoby non-trivial dynamicalsystemsas
the Lorenz model at r ~ r~ 166.07, wherethere are regular oscillations interruptedby randomly-
distributedburstswhich becomemoreandmorefrequentas r increases.

We shall use the word ‘intermittency’ in a broader sensethan that used in the transition to
stochasticityvia tangentbifurcation. Evenweakvariationsof the chaoticitydegreeareincludedin the
classof intermittentbehaviours.

Let usremarkthatquantitiesas the Lyapunovexponentsandthe Kolmogorov entropycannotgive a
characterizationof the intermittency. Indeedthey give ‘global’ indicationson the meanexponential
divergenceof nearbytrajectoriesandcannotmeasurethe variationsof the ‘chaoticity degree’along a
given trajectory.

Our purposeis to characterizethe intermittencydegreein the sameway the Lyapunovexponents
andthe Kolmogorov entropydo for the ‘global’ chaoticitygiving aquantitativecriterion whichallows to
discriminatebetweenweakand strong-intermittency.

We want to showhowto reachthesegoalsby meansof a generalizationof the Lyapunovexponents
andof the Kolmogorov entropywhich leadsto introducesetsof exponentsquite analogousto the Renyi
dimensions.

The intermittencywill thenappearas a manifestationof the multifractality with regardto the time
dilations in the trajectoryspace.This approachstressesthe link betweenchaoticdynamicsystemsand
the equilibrium statisticalmechanics,relatingthe new setsof exponentsto a kind of free energy. We
can thuspick out the analogueof the thermodynamicalstatefunctionsextendingto a first roughlevel
the rigorous resultsof Bowen,Ruelle, Sinai andWalters.

xn —xi,~i

n

Fig. 11. x~— vs. n for a mapnearthetangentbifurcation.The valuescloseto zeroarerelatedto iterationsinside the ‘channel’ andthepeaks
are relatedto chaoticburstswhenx~goesout of the channel’.
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3.2. GeneralizedLyapunovexponents

A practical tool for characterizingthe global degreeof chaos in dynamical systemsconsistsin
considering the set of Lyapunov exponentsbecausethey can be computed by means of simple
algorithms [BGS76,BGGS8O]. Moreover they are linked to other stochasticity indicators like the
Kolmogorov entropy [P77]and the information dimension[KY78].

Let us define the spectrumof the Lyapunov exponentsA1 � A2 � . � A~of the flow T: R’~—s’R’~
generatedby the setof differentialequationsi = 1(x) by consideringthe linear evolutionof the tangent
vector~:

t~=~ J~1 (3.2.1)

where is the matrix af,IdXJ~X(~).
Onecanintroducethe Lyapunovexponentsalsofor adiscretemapx(n) = g(x(n — 1)) by considering

the correspondingevolutionfor ~(n):

A~1(n-1)~~(n-1)with A,1(n)= ~9g~/oxJJ~(,,).Oseledec[068] provedthat for almostall initial conditionsx(0) thereis abasis {i,} in R’~suchthat:

~(t) =±J~(°)Ic~1, exp(A1t) (3.2.2)

for largeenoughtimes.
Roughlyspeaking,(3.2.2) tells us that in the phasespacea sphereof radius s and centrex(0) is

deformedwith time into an ‘ellipsoid’ of semi-axess~(t)= sexp(A,t) directedalongthe 1, vectors.
In the next section we shall show that the Oseledectheorem correspondsto the existenceof a

thermodynamiclimit of infinite volume in a statisticalmechanicslanguage.
The positive maximal Lyapunov exponent A1 measuresthe growing of an error on the initial

- condition knowledge.A small incertitude6x(0) is exponentiallyamplified alongI~with characteristic
time A~.To be more specific eq. (3.2.2) implies that for A1 > A2:

&r(t) — &x(0)~ê1 exp(A1t)[1+ O(exp{—(A1 —

This relationleadsus to introducethe responseR to a perturbationin x(r) after a time t by the error
growth rate:

Rr(t)_= IIC(t+ r)~I/J~~(i)JlH~x(t+ T)I/16X(T)J . (3.2.3)

The maximalLyapunovexponentcan be definedby averagingthe logarithmof the responseover the
possibleinitial conditionsalong the trajectory:
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= lim (in R(t)) (3.2.4)
r+T

where (.) denotes~ (lIT) $~ dt.
In the same way we can define the other Lyapunov exponentsby the divergenceof a small

n-dimensionalpoint volume in phasespace.
Let us namelyconsidern different tangentvectors~ ~ ~.(n)The rate of an n-dimensional

volume is thenmeasuredby an n orderresponse~ definedas:

~ — 1 ~(l)~ + T) A ~~
2~(t + r) A A ~~(t + r)M (3 2 5)(t) - C~()A ~(2)() A A

where A denotesthe vectorialproduct.
The sum of the first n Lyapunovexponentsis [BGGS8O]:

A
1 = lim (ln R~”~(t)). (3.2.6)

Let usalso remarkthat, in the caseof continuousflow, at leastoneof the Lyapunovexponentshasto
be zero since ~(t) cannotgrow exponentiallyin time aiong the direction tangentto the flow.

3.2.1. Characterizationof intermittency
The Lyapunov exponentsdo not describe the degreeof intermittency becauseof their global

character. Equation (3.2.4), e.g., defines the averageof the characteristictime scale on which
correlationsare lost but it does not give any further information about the fluctuationsaroundthis
average.Indeed,we muststill consideranon-uniformdistributionin timeof the ‘chaoticity degree’,i.e.
of the responseR.

The reconstructionof the probability distribution of R can be achievedby the analysisof the
moments(R~).

Let us thereforeintroducethe function [F83,BPPV85]:

.1
L(q) = lim -~ ln(R(t)~). (3.2.7)

L(q) is called generalizedLyapunovexponent(of orderq) since:

A1 =dLIdq~q...0 (3.2.8)

and in the absenceof fluctuations

L(q) = A1q (3.2.9)

while in the generalcaseL(q) is concavein q [F71].
The deviationsfrom this linear law give a first rough indication on the intermittencydegreein the

sameway that the set of ~q)’s is used to characterizethe spatial inhomogeneitywith regardto the
point density(seesection1.1).
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Equation(3.2.9) correspondsto long rangecorrelationswhich inhibit fluctuations.However if the
correlationsare weak enough the responseat time Nm~tcan be consideredas the product of
independentrandomvariablesR, = R~+1.~~(iXt):

R~(t=Nat) = H R1(At). (3.2.10)

As consequenceof the central limit theorem, the probability distribution of R~is thereforewell
approximatedby the lognormal:

~(R) = 1 1/2 ~ exp{_ (ln R — Ait)
2} (3.2.11)

(2i~tt) R 2~st

where js = ~ t’[(ln R(t)2) — (A
1t)

2].
If (3.2.11) is exact thenthe generalizedLyapunovexponentsare:

L(q) = A
1q + ~j~q

2. (3.2.12)

It is thus natural to conjecturethat, in the general case,L( q) is boundedbetweenthe linear form
(3.2.9) (strongcorrelations)and the parabolicone (3.2.12)(weak correlations).

Let ushoweverrecall that at largeq the momentsdeviatefrom (3.2.12)evenif the lognormal is a
good approximationbecauseof the pathologiesof this distribution (seeappendixB).

In (3.2.11)the fluctuationsarefully characterizedby the secondcumulantj~and it is easyto show
that the value ~ IA~= 1 delimits the borderlinebetweenweak and strongintermittency. To be more
specific let us remark that~P(R)reachesits maximum for

R(t) = exp(A
11(1 — ~IA1)). (3.2.13)

It follows that for large times:

R—*0 if ~aIA1>1 (3.2.14)

R—s.cc ifp.1A1’(l.

The equations(3.2.14)give, in the phasetransitionjargon,a meanfield resultand it is interestingto
analysetheeffects of the corrections.For p.1A1<1 the fluctuationscan beneglectedata first level since
they just slightly modify the characteristictime on which the ‘average’ responsediverges from
A~(1— 1slA1)~to A~

1.

On the contrary,the meanfield picturefully breaksdown for ~ IA
1 > 1 whereit predictsa ‘laminar’

stable phase (R—*0) instead of the ‘turbulent’ chaotic one characterizedby a positive maximal
Lyapunovexponent.

We have performed a series of numerical computationsof L(q) for the Henon—Heilesmodel
[HH64], the Henonmap[H76] andthe Lorenzsystem[L63] (seefig. 12). The Henon—Heilesmodel is
consistentwith L(q) as doneby eq. (3.2.12)with /.LIA1 near1. Onthe contrary,the Henonmapandthe
Lorenzmodelfor r near166.07(thecritical valueof intermittencytransitionto turbulence,see[PM8O])
show strong deviationsfrom the lognormalprediction.
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A 1(q)

A L)q)

*

A 1(q)

Fig. 12. ~L(q) = L(q) — A,q vs. q
2 (a) for the Henon—Heilesmodel [HH641with initial condition on the chaotic regionat the energysurface

E= 0.125; (b) Henonmap[H76]with a = 1.2andb = 0.3; (c) Lorenzmodel[L63] with r = 166.3. Thefull line indicatestheparabolicapproximation
‘.~L(q)= (js/2)q2.

3.2.2. Conceptualrelevanceof the intermittencyin the definition of chaos
The introduction of the set of the generalizedLyapunov exponentsis relevantfrom a conceptual

point of view sincetheyallow to clearout whena systemis chaotic.Indeed,it is commonlystatedthata
systemwith negativeA

1 is stableunder smallperturbations.The relation(3.2.7) evidencesthat evenin
this casesmallperturbationsmight causelargeresponseswith finite probability: if L(q) arepositivefor

q> q,~It is clear that the smaller is q,~,the larger is the probability of having chaoticbursts in the
frameworkof a regularbehaviour.A simple exampleis useful to stressthis importantpoint.
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Let uscomputeL( q) in the caseof the Langevinequation:

= —dVldx+ ~ (3.2.15)

where~ is a white noise, i.e. a randomGaussianprocesswith zero averageand covariance:

(~(t) ~(t’)) = ô(t — t’) . (3.2.16)

We considertwo trajectoriesx(t) and1(t) = x(t) + s(t), both satisfying eq. (3.2.15) with the same
realizationof noise.We define:

R(x(0), rI,i) = ~ (3.2.17)

which is of coursea functional of ~. The function L( q) is then:

L(q) = lim ln J d[~]P[~] R’7(x(0),iiii) (3.2.18)

whereP[~] is the Gaussianprobabilitydistributionfunctional. Let us remarkthat the definition of the
Lyapunovexponentsfor stochasticequationsis a subtlemathematicalpoint; we haveherefollowed the
naive standardprocedure(seee.g. [CFU82]). Usual argumentsimply that L(q) doesnot dependon
x(0). Our aim is to evaluateL(q). We first notice that:

R(x(0), Tl~) = exp[—J V”(x(t)) dt] (3.2.19)

wherethe dependenceon ~ comesthroughthe dependenceof x(t) on i~.Let us evaluate:

(R’7(r)) Jd~[x]rexp(_qfV11(x(t))dt) (3.2.20)

whered~[x]Tis the measureinducedon the trajectoriesby the stochasticdifferentialequation(3.2.15).
It is well knownthat (see for example[G78]):

d~[x]T= exp(_Jdt {~(t)2 + ~1(x(t))}) d[x]T

= exp(_J~(x(t)) dt) dP[x]T (3.2.21)

wheredP[x]’~ is the usualWienermeasureon the trajectoriesandwe haveneglectedboundaryterms
(i.e. termsdependingon x(0) andx(r)). The function ~l/is given by:
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~l(x)= ~(dVIdx)2— ~d~VIdx~. (3.2.22)

The Feynmanpath integral representationfor quantum mechanicsat imaginary time implies that
[FH63]:

JdjL[x]T —* exp(—r E
0(O/l)) (3.2.23)

wherewe haveneglectedthe prefactorand E0(~ll)is the groundstateof the Hamiltonian

I = — ~ d
2Idx2 + °/l(x). (3.2.24)

ConsistencyrequiresthatE
0(~U)= 0, which is indeedtrivial to check. We can now write:

(R~(r)) J d[x]
T exP(_/dt[~i(t)2 + ~(x) + q V”(x)])

ccexp(—rE
0(q)) - (3.2.25)

whereE0(q) is the groundstateof the Hamiltonian

l~(q)= —~ d
2/dx2+ t~/l(x)+ q V”(x). (3.2.26)

It is clear that

L(q) = —E
0(q). (3.2.27)

Equation(3.2.27)gives a methodto computeL( q) in anapproximateway. A few exact solutionsare
available:for exampleif V= x

2 we haveL(q) = —2q. In the generalcasewe remarkthatlimq~,.L(q)I
q = _L* is easyto computeandit is given by L* = mini V”(x). This meansthat, althoughL(q) can be
negativefor smallq andthe systemis stablein theusualsense,the systemcan beunstableundera small
perturbationas soonas V”(x) is negativesomewhereas previously discussed.

We remarkthat this situationis somehowsimilar to what happensin the caseof a multifractal set in
both fully developed turbulence and chaotic attractors: the strongest singularity dominates the
behaviourof the high momentsfor the structurefunctions [BPPV84];for a similar casein different
contextsee [B77, B82].

3.2.3. GeneralizedLyapunovexponentsof higher order
A more accuratedescriptionof the chaoticity in a dynamicalsystemcan be achievedby taking into

accountthe fluctuationsin the divergenceof volumesin phasespaceunderthe dynamics.Toward this
goal, we can definea setof generalizedLyapunovexponentsof ordern which generalizethe relation
(3.2.7) [PV86b]:

= Jim ~ ln(R~-”~(t)’7) (3.2.28)
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whereL”’(q) = L(q). It is theneasyto verify that:

~ A, = . (3.2.29)
dq q=O

The wholespectrumof the Lyapunovexponent{ A1, A2,... AF } hasnow found its counterpartbut it
seemsratherartificial to distinguishthe contributionof eacheigendirectionê, in the fluctuationsof the
exponentialdivergenceof an n-dimensionalvolume. One is of coursetemptedto define:

l,(q) = L~’~(q)_qL(~~
1)(~) (3.2.30)

with F�i�2 and I
1(q)=L(q)Iq.

This definition is howeverjustified only by the trivial fact that l,(O) = A,. Moreoversomepreliminary
results[G86a]indicatethat it cannotbe correct for systemswhich are not hyperbolicwherethe stable
andunstablemanifoldscan mix eachotherunderthe dynamics.The measurablequantitiesarejustthe
L~ andwe can repeatfor them all the considerationsdonefor L(q).

We want to stressthatL~(q)as well as L(q) cannotbe extractedby an experimentalsignal while
they can be easily computedfrom the numericalanalysisof a dynamicalsystemevolution using the
methodsdevelopedby Benettin et al. [BGGS8O]evenif someprecautionsmustbe takenin order to
avoid computeroverflows due to the fastdivergenceof R’7.

3.3. The Renyi entropies

The Kolmogorov entropy is relatedto the sumof the positive Lyapunovexponentswhich measure
the divergencerate along the expandingdirections. IndeedPesin [P77]proved that for an ergodic
measurewith a compactsupport

K1 � A~ (3.3.1)

wherep is -thenumberof exponentsA, >0. In manyinterestingsituations,for examplethe Hamiltonian
systems,(3.3.1) becomesthe identity [ER85]:

dL~’~
K1 = ~ A. = (3.3.2)

1=1 uq qO

which we shall assumevalid in the following.
On the other hand, temporal intermittency correspondsto fluctuationsin the predictability time

which can be describedby a set of generalizedentropiescalled in the information theory Renyi
entropies[R70].

Let us give their definition in a simpleconstructiveway which can be mademore rigorouswithout
excessivedifficulties, seee.g. [CP85].Take a recordof measuresof a signal x(t) atuniform spacingr:

x,=x(ir) withi=1,2,...M~1 (3.3.3)
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considering,as usual,a partition of the phasespaceR’~into a grid of boxesof size1. A trajectoryis thus
specifiedup to a time Td with resolution I andT by a sequenceof boxesi1, ~ i~(seefig. 13). The
joint probability P1(i1, i2, . . . i~)that x1 falls into i1, x~into i2, and so on, definesa ‘massdensity’ in the
trajectory space RFd, whose momentsgive a possible characterizationof intermittency. The Renyi
entropyof order q is:

Kq+i = —lin~~in~~im ~ ln(P~) (3.3.4)

wherethe averageis now takenover the different historiesof the system:

~ (~)P1(i~,i2,. . . ii). (3.3.5)
{i1,z2, - . -

It is simple to show[F71]that Kq � K~.if q> q’ andthat Kq is constantin absenceof intermittency.
The Kolmogorov entropy is obtainedin the limit caseof vanishingq:

K= —limlim lim —~— (lnP1) lim K . (3.3.6)
~-~O l—.0 d-~oord q-1 q

K gives the averageloss of informationfor unit timewhich is independentof 1. On theotherhand,K0 is
the topologicalentropyhT:

lnXdhT=hmllmllm =K0 (3.3.7)
TO 1—~Od—~= dr

whereXd is the numberof differentsequences{i1,. . . id} which haveto beconsideredup to a time rd
knowingthe initial stateof the systemwith resolution1 and ‘r. hT is atopologicalinvariant [ER85]which
doesnot requiretheintroductioneither of a metricor of a measurein thetrajectoryspaceatdifference
with the otherentropiesKq~

x (t)

— ~ — ~.:.

~ ---~-~~

-

Fig. 13. Partitionof ‘space-time’with resolution I and r. Dots arethe systemstatesx~= x(iT).
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It is evident that the topologicalentropy is the analogueof the fractal dimensionas well as the
Kolmogoroventropyof the information dimension.The probability P1(i1,. . . i,~)is deducedfrom the
(chaotic)temporalevolutionof the systemand,in this sense,the entropiesreferto the naturalmeasure.
A more refineddefinition requiresan extremumover the possiblepartitionsof space-timebut it goes
further than the purposesof this paper[W86, CP85].

Grassbergerand Procaccia[GP83b]havefirstly proposeda methodfor the computationof ~ (a
lower boundof K) which is quite analogousto that for the computationof d2. This numericalalgorithm
hasbeenextendedto the calculationof K [CP85]as well as of the whole setof the Kq ‘s [PV86b].

It is worth noting that the Renyi entropiescan be extractedby an experimentalsignal while the
generalizedLyapunovexponentscannot.Indeed,let us estimatethe average(3.3.4) by a recordof M
measuresat uniform spacing‘r. The joint probability P1(i1,. . . id) is thengiven for M largeenoughby:

n~(l)= M~1 ~ o(i — x~,,— ~ (3.3.8)
( )j+i ni

In the limit d = 1, n~(l)becomesthe densityn.(l) of pointsin aball of centrex, andradiusI definedin
eq. (1.1.7).

Increasingthe time thisdensitydecreasessincemanypointswhich areinitially in the ball of centrex,
do not remainin the ball around‘i+d (the d-iteratedpoint of x,). The Kolmogoroventropymeasures
the inverseof the averagecharacteristictime of thisexponentialdecay.We can howeverdefine for each
momentthe quantity:

C~(I,q) -~- ~ (n~(l))’7 (P7). (3.3.9)

The correspondingentropyKq+ 1 is thusgiven by the d-asymptoticvalueof the ratio:

1 / C~’l \ \
limlim lim —ln( d ~ q, (3.3.10)
T-.0 i-.0 d—. ‘rq \ C~+1)(i q) /

3.4. Relation betweenthe generalizedLyapunovexponentsand the Renyientropies

We can find a simple relationbetweenentropiesandgeneralizedexponentsunderthehypothesisthat
the Pesinidentity K = E ~= A. holds.

As a starting point it is convenient to define the concept of ‘mass’ M in the trajectory space.
Following Grassberger[G86b], let us focus on a given trajectoryx(t) and the trajectorieswhich stay
within a distance�l from x(t) for all the time in the interval [t*, ~ + At]. One defines a domain B:

B {y(t): y(t) — x(t)~� 1, VtE [t*, t~’+ At]) . (3.4.1)

Let us denoteby M1(x(t*), At) the measureof B. Then, this massdecayswith At since thereare
expandingdirections(at least ‘in average’)correspondingto thej~positiveLyapunovexponents.Let us
assumethatthe numberof contractingdirectionsdoesnot change,i.e. definingp � + 1 as thenumber
of non-negativeLyapunovexponents:
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L~’1~(q)< L~”~(q), Vq >0; L~’~1~(q)>L~(q), Vq <0. (3.4.2)

This inequality plays a fundamentalrole when relating K~~
1to L~”~(q).It is probably satisfiedin a

hyperbolicsystemand some argumentsindicatethat in generalit remainsvalid only up to a certain
valueq,~abovewhichp maychangewith a unity [BP87b].If (3.4.2) holds, we see that for eachpoint
x(t) the massshould decayas:

M1(x(t),At) — n~(l)IR,~’~(At) (3.4.3)

as schematicallyillustratedin fig. 14. The scalingof the massis thusdueto that of the response~ and
eq. (3.2.28) implies for the moments:

(M7) cc (n(l)~)exp{At-~L~’~(—q)}

cc ~ exp{At. L~(—q)}. (3.4.4)

On the otherhand,thejoint probability P~(i1,i2,. . . id) is given by the masspart factorsof orderone:

M1(x(t),At = rd) P1(i1, i2, . . . ~d) . (3.4.5)~ 7

\\ ~-::;\

Fig. 14. Tubeof trajectoriesy(t) which stayat adistance~l from thetrajectoryx(t) betweent~andt~+ ~t. TheshadowedregionB definedby eq.
(3.4.1) decaysexponentiallyin t.
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We can thereforeestimatethe averagein (3.4.4) by a weightedsum over the possiblesequencesof
boxes{i1, ~ . id}:

(M7) = ~ P~(i1,i2,.. . i~)’7~
1ccexp(_rdqKq~

1). (3.4.6)
{‘1.~2’- - - ‘d}

It follows, by comparing(3.4.6) and (3.4.4), the relation [PV86b]

L~(—)

Kq±1= —q (3.4.7)
Equation(3.4.7)becomesthe Pesinidentity in the limit q—*0 while hT, the topologicalentropyK0, is
equalto L P)( 1), the exponentwhich rules the exponentialdivergence,in average,of a p-dimensional
volume underthe chaoticdynamics.

3.5. Multifractality in the trajectory space

We can regardthe set of trajectories(box sequences)of an intermittent systemas a multifractal
objectwith regardto the mass definedin eq. (3.4.1).

Let us namelycall historyX~the finite sequenceof measurementsof the signal x(t):

(xk, Xk+1, . X~_~) (3.5.1)

wherex,, = x(kT).
x~representsapoint in the history spaceRF ® R’~ ® RF (d times). We also introducea metric

by defining the distancebetweentwo trajectoriesas:

— y(d)) = sup Xk+J — Y,,+i~. (3.5.2)

Oajad—1

Aroundeach historyX~thereis a tubeT of trajectoriesY~suchthat:

~ d) = {Yk: ~(y~J) — X~)~ 1) . (3.5.3)

A naturalmeasurein the spaceof historiesis introducedif the initial statex, is distributedaccordingto
the invariant naturalmeasureon the attractor.We can thusdefinethe probability P1(X~)that a given
history falls within the tubeT1 aroundX~.Suchaprobability can be estimated[GP83a,GP83b]if we
know a greatnumberX of historiesX(1N) (or a very long record of consecutivestatesof the system,
which is then brokenup into historiesof lengthN). One has:

P1(X~)—~~ 0(1—~(X~ —x~)). (3.5.4)

This probability decreasesexponentiallywith a characteristictime y 1 which dependson the particular
initial conditionx,,.
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P1(X~)cc eT~~ for large times. (3.5.5)

The temporal intermittencyis thuscharacterizedby the fluctuationsof theselocal expansionparame-
ters, LEP, y. It is not difficult to apply the multifractal approach[EP86, PPV86, SSS86] to the
distributionof ‘y in the sameway as the distributionof a for the phasespacehasbeencharacterized.

It is convenientat this point to divide the spaceof historiesinto boxesof linear size I. The ‘history’
boxesare thenthe cartesianproduct (for 1 <j < d) of the ‘phasespace’ boxes.The time evolutionof
the systemis thusgiven by a particular history box I = (i1,. . . id) as we haveseenin the section3.3.
The joint probability P1(i1,. . . id) is the probability P~(I)that a historyX~belongsto the box I.

We now considerthe set f2(y) of historieswhose LEP belongs to the interval [y, y + dy]. The
number.N’7 of boxesnecessaryto coverthis set will increasewith d accordingto the law:

.N’~(d)ccexp(rd h(y)) (3.5.6)

whereh(y) is the topologicalentropy of the set fl(y), with the warning that if h(y) � 0, thenthe
topologicalentropy is zero. We haveby definition h(y) � hT.

Let usnow showthat h( ‘y) and Kq arerelatedto eachotherby aLegendretransformanalogousto
(1.2.5).

Indeed,the partition of the (multifractal) set of the historiesinto the setsQ( y) allows to compute
the averages(3.3.4)as weightedsumsoverthe boxesI, by groupingtogetherall the boxeswhichbelong
to the same(1(y):

(P~(I)’7~)=~ P1(Iyl
{I}

cc Jdp(y)exp(—dT(qy — h(y))) (3.5.7)

wheredp(’y) is a smoothmeasure.
A saddlepoint estimationof the integralyields in the limit of large rd:

K~(q— 1) = mm (q’y — h(y)). (3.5.8)

The term exp(—dr) is herethe scaling parameterin the history spacelike 1 in the phasespace.
Let usemphasizethat the probability that a trajectory (i.e. a box I) belongsto a set fl( y) scalesas:

~P(XE.Q(y))ccexp(—S(y)rd) (3.5.9)

with S(y)�0.
Argumentsquite similar to thosewhich leadto eq. (1.2.11)showthat:

(P7) = f ~(XEfl(y)) ~rdyq dy (3.5.10)

andso:
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K~~1q= mm (qy + S(y)). (3.5.11)

It follows by comparing(3.5.8) and (3.5.11)that:

S(y)=—h(y)+y. (3.5.12)

The equalityS = 0 holdsonly for y = K1 implying that in the asymptoticlimit t—* cc one hasvanishing
probabilityof finding a trajectorywith LEP differentfrom the Kolmogorov entropy.Eachq peaksup a
particularvalueof the LEP by minimizing (3.5.8) or (3.5.11):

q = dh/dy~(~) and q = —dSIdyI~(~). (3.5.13)

In the limit q --* ±ccthe Legendretransformbecomestrivial andone finds the extremabetween
which y is bounded:

Ymin~K= and 7max=K~. (3.5.14)

At q = 0, j = K* (and ~ = K1) whereash attainsits maximum:

h(y= K*) = K0. (3.5.15)

S hasits minimumat K1: S(K1)= 0. It is easyto showthat h (and— S) areconvexfunctionsdefinedon
the interval [K,~,K_,,j; S hasa quadraticminimum implying for y K1 the parabolicshape:

S(y) = (y — K1)
212b. (3.5.16)

Let usnotethath(y) is also approximatedby a parabolaaroundK
1 andnot aroundits vertexK*. For

smallenoughq we thenhave:

- Kq±i=Ki~~bq (3.5.17)

whereb is the second-ordercumulant:

b = lim lim lim —k— [(ln
2 P

1(I)) — (ln P1(I))
2] . (3.5.18)

r-.0 1—~0d—.oc rd

For a lognormal distribution of the ‘mass’ in the trajectory spacethe relations(3.5.16) and (3.5.17)
remainvalid for all the q values.

The relationbetween— S(y) andKq+ 1 is reminiscentof that linking theentropyto thefree energyin
thermodynamics/3 F( /3) = U( /3) — .9°(/3). The role of the inverseof the temperature/3 is playedby the
momentindex q, F(/3) by ~ U by j and .9°(/3)by —S(~(q)).

Let us limit ourselvesto considerthe branchof positive temperatures(i.e. q >0). As q—~ cc (i.e.
vanishingtemperature)the systemis found in the stateof minimal energyYmin and minimal entropy
~S(Ymin).

A typical phasediagramof Kq vs. q is shownin fig. 15.
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~‘ifl

N
N

N

Fig. 15. Typical shapeof Kq*j vs. q (full line). The dashedline indicatesthe lognormalapproximationK,~,= K~— (b/2)q.

Onemayalsospeculateon the possibleexistenceof ‘phasetransitions’whichwould appearas edges
in the Kq vs. q curveat a critical valueq,~.Let us,e.g.,supposethat the linking of the largeq behaviour
Kq = y~,qwith the ‘high temperature’expansion(q ~ q,~)Kq = ~, c,q’ is not smoothenough.In this
caseone should have a discontinuity in the n-order derivative of Kq at q~implying a continuous
transitionbetweenthe intermittenthigh temperaturephaseand the non-intermittent(‘ordered’) low
temperaturephase.

3.6. A thermodynamicalformalismfor unidimensionalmaps

We want to discussherehow the statisticalmechanicsfor spin systemson a lattice can be appliedto
chaoticone-dimensionalmapsg [R78, B75, R76a,b],

Xk+l = g(x~)

For a systemof n spins the partition function Z,, is given by a sum over all configurationsof the
Boltzmannweightexp(— /3H,,) whereH,, is the configurationenergyand~31 the temperature.The free
energyper spin is thengiven in the thermodynamiclimit by:

F(/3)=—1im--~lnZ,,.

Such a thermodynamicalapproachcan be rigorously usedonly for a particular class of dynamical
systems(seee.g. [R78]) but its generalizationis possibleat leaston heuristicgrounds.

For “typical” unidimensionalmapsbefore chaoseachinitial point is attractedinto a periodic stable
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orbit suchthat Xk = g~(x~)whereg~is the nth iterateof g. The evolutionbecomeschaoticwhereas
all the orbits becomeunstable.Nevertheless,the statisticalpropertiescan still be characterizedby these
unslableperiodic orbits [B79].

A global degreeof instability is measuredby the Lyapunovexponents[MR82]:

A=limfd~L,,(x)lnIg’(x)I (3.6.1)

whereg’ = dgldx anddp~is an invariant measurewhich convergeswith n to the invariant ergodic
measured~t(x).

Kai and Tomita [KT82] suggestedthe following form for p~,:

X(n)

~ a.6(x—z,) (3.6.2)

where z~are the X(n) unstablefixed points of period n (i.e. z~= g”(z1)), the set of which will be
denotedby J(’~)•Its cardinalityX(n) is proportionalto exp(hTn)by definition.

The weighta, for measureswhich are absolutelycontinuouswith respectto the Lebesguemeasure
[L81] is:

a = c,,I~g°’~(z~)’~with ~ a, = 1. (3.6.3)

We can thus define a partition function following Takahashiand Oono [TO84]:

Z,,(g, /3) = ~ exp{—/3~ (3.6.4)

The fluctuation of the degreeof chaoscan be characterizedvarying /3 by the generalizedLyapunov
exponents.Let us in fact call R~(z) = (g~(z))’J the responseafter n iterations of the map to a
perturbationin z, unstableperiodic solution of ordern.

The partition function (3.6.4) becomes:

Z,,(g, /3) = ~ exp{—/3 ln R,,(z~)} (3.6.5)
z1EJ

1”t

which can be estimatedby a time average in the chaotic phase. Moreover, let us recall the
Bowen—Ruellerelation [B75]:

F(g, /3=DH)=0 (3.6.6)

whereDH is the Hausdorffdimension.The definition of Hausdorifdimensionrequiresa minimumover
the possiblepartitions into boxes of size si for l—* 0. We haveescapedthesetroublesconsidering
uniform partitionsinto boxesof size I. If theseproceduresareequivalent(which is often true), thenthe
Hausdorffdimensionis the fractal dimension.

For measureswhose support is fractal, the ansatz (3.6.3) suggests to assume the weight
a, cc g~(z

1)’ ~ which correspondsto a “uniform” measurefor which 4(q) = ~ q [BPPV85].
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The partition function (3.6.5) can be - estimated by an ensemble average (.) =

~z
1EJ(”~ ~ for large n:

Z~(g,/3) = (R~~F)= R~P+DF (3.6.7)

where (~) is a time average.
ThegeneralizedLyapunovexponentscomputedwith respectto the uniform measurethereforeallow

one to determinethe free energyF( /3) by the relation:

P(/3) = —/3F(g,/3) = L(q = (DF — /3)), (3.6.8)

wherewe haveintroducedthe so-calledtopologicalpressureP( /3).
The Bowen—Ruelleformula (3.6.6)now simply follows from the trivial identity L( q = 0) = 0.
It is useful to note that the temperatureparametrizesa whole classof probability measures(called

Gibbs equilibrium measures)on the invariantsetJ given by the closureof lim,,...~00J~”~:

d~(x)= lim ~ dx 6(z, — x) ~ , (3.6.9)
ziEJ (~)

where /3 = DF picks up the uniform measure.A moment of reflection shows that the characteristic
LyapunovexponentA~

ti~computedby an averageover the measure~ is:

A(~)—~(ln~g’(x)~ usJdi~(x)ln~g’(x)~. (3.6.10)

It correspondsto an internalenergyU( /3) definedas:

U — F 1 dlnZ~(/3) — dpH n—~fl d/3 d/3~

Let us notethat the Pesinequality is not satisfiedif DF < 1 sinceone has [LM85,G86b]:

K
1(i) = A(~t)~D1(~), (3.6.11)

and D1(~) � DF for any measure~. Nevertheless,for the uniform measurewhereD1 = DF we can
extendrelation (3.4.7) [BPTV87],which becomes

Kq+i = —L(—DF~q)Iq. (3.6.12)

Let us also discussthe limit of infinite temperature/3 —*0, which picks up the maximumentropy
measure(3.6.5)suchthat K1 = hT = max~K1(p~)andKq = hT for all q. Relation(3.6.5)now givesthe
numberX(n) of unstablefixed pointsof period n. In the limit n—* cc we find that:

hT=lim lnX(n) =-lim/3F(/3)=P(0). (3.6.13)
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We finally notethat (3.6.6)can beextendedto a genericalq value in thecaseof the uniform measure
[BPTV87] and of the maximum entropy measure[LPC87,T86,F87] to P(D~q)= (1 — q)Kq and
P(—çb(q)) = (q + 1)hT, respectively.

3.7. Partial dimensions and entropies

The introduction of dimensions and entropies related to the different eigendirectionsof the
linearized flow allows to find some relations linking Renyi dimensions to Renyi entropiesand to
generalizedLyapunovexponents,evenif its applicability seemsratherquestionableas notedin section
3.2.

Let usassumethat asmallbox centredarounda point x1 of the trajectoryis stretchedalongthe kth
eigendirectionby a factor

mk(xl, t) cc exp{yk(x,)~t} for large t (3.7.1)

whereonecan easily recognizefrom the definition (3.2.30)that

(m~)ccexp{i~(q).t}, (yk)=Ak forlarget. (3.7.2)

In the same spirit, Grassberger[G86] proposedto assign a ‘partial dimension’ Dq(k) to each
eigendirection.The Renyi dimensionsaregiven by the sum of all the partial dimensions:

dq=~Dq(k). (3.7.3)

The attractoris thus decomposedin the direct product of continua (directionswith D1 = 1), discrete
points (D1 0) and Cantorlike sets (D1 <0).

Following ref. [BP87a]with slightmodifications,let us definea (generalized)volume contractionrate
of orderq arounda point x,:

~(q, t) = ~ (3.7.4)

The averagevolume conservationthenimplies the relation:

urn (V(q, t)~) = 1. (3.7.5)

This is a constrainton the choice of the proper dimensionlist of the Dq +i’s. In the limit q—*0,
condition (3.7.5) becomes:

D1(k) Ak = 0 (3.7.6)

and it is possibleto show [G86a]that the Kolmogorov entropyis given by:
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(+)

K1=~ Dl(k)Ak (3.7.7)

wherethe sum ~ runsover the directionswith positiveAk. The Pesinrelation(3.3.2) is recoveredif
all the expandingdirectionshavedimensionsD1 = 1 as it is the case of axiom A systems [ER85].

Furthermore,for q � 0 the partial dimensionmust satisfy the constraint

0:SDqSl. (3.7.8)

The simplestchoicecompatiblewith (3.7.5) and(3.7.8) is given by the assumptionthat the attractoris
Cantor-like only alongthe (j + 1 )th direction, where j is the largest integer for which E = 1 Ak � 0. We
have Dq(k) = 1 for k ~ j, Dq(k)= 0 for k>1 + 2 and Dq( I + 1) ~ 0 as well as �1. This choice
maximizesthe estimationof the information entropyand gives the Kaplan—Yorke formula [KY78]:

d1 =j + ~ Ak/~AI+IL (3.7.9)

Equation(3.7.9) is in generalan upperboundbut it hasbeenprovedto be exactfor two-dimensional
diffeomorphisms [Y82]. Analogous upper bounds can be obtained for dq+1 with q >0. However,in the
case of maps with more than two degrees of freedom, one needs to assign several trial values of Dq+ 1 in
orderto determinethe right onesby interpolation.It was proposed[BP87a]to decreasethe dimensions
Dq(k) starting from the largest possible list (Dq = 1 for k= 1, 2,. . . F) until the requirement(3.7.5) is
satisfied. In this procedure one always imposes that only one direction, say Jq’ is Cantor-likewhereJq is
the largestinteger for which:

1 j ~—1/q
lim — ln(,fl mk(t),) �0. (3.7.10)
~ k=1

In this way, we obtain Dq(Jq + 1) from (3.7.5) and thus an upperbound for dq. Only in the case of
two-dimensionalmapswith constantJacobian,the equalitydq = Iq + Dq ( Iq + 1) canbe explicitly solved
[BP87a].

Nevertheless,it is possible to perform a perturbative expansionof eq. (3.7.10) defining the
generatingfunction g:

~flmkk)ccexp{g(z1, z2,. . . zF)t}, (3.7.11)

for large t.

The averageconservationof the volume (3.7.5) implies that [G86b]:

g({zk=Dq+l(k)~q))=0 (3.7.12)

with:

g(z1,z2,. . . z~)= ~ z~A1+ ~ z1QjkZk + (3.7.13)

noting A1 = (y1) and QIk = ((~— A~)(~— Ak)).
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The generalizationof the Kaplan—Yorkeformula (3.7.9) is thengiven by inserting eq. (3.7.13)into
eq. (3.7.12) so that:

~ Dq+i(k) Ak = ~ ~Dq+i (i) QikDq+l(I~) ~ (3.7.14)

It is also possibleto find the analogueof relation (3.7.7):

(+) (+)

Kq+i = ~ A,, — ~ Dq+i(k) Qk,
1Dq+i(j) (3.7.15)

which in the limit of axiom A systemreducesitself to a Pesin-like equality:

(+) (+) L~’~
Kq+1=~ Ak—~~ Q~,J+o(q

2)= q~ (3.7.16)

We must finally discussthe connectionswith the thermodynamicformalism.As the conservationlaws
(3.7.5) involve both Renyi dimensionsand Renyi entropies,Badii and Politi [BP87b]arguethat the
functionH(a) is relatedto theanalogousS(y), respectivelydefinedin eqs. (1.2.9)and(3.5.9). Indeed,
underthe hypothesisthat to eachsingularity~ correspondsagivenlocal expandingparameter~,we can
identify the factore aroundapoint x, of the trajectorywith the scalingof the measurel~.It follows
that:

exp(—r y(x
1)) cc I°~’~ (3.7.17)

andthe probability of finding a singularitya in the range [~, i + da]

~P(~)cc l’~~cc exp(—r~H(ii)I~)

should scaleas the probability P(j~)ccexp{—S(~)T} of finding a LEP E [~, j + d’y].
This implies that

H(a)Ia = S(y)/y. (3.7.18)

The appearanceof discontinuitiesin the Renyi functionscan be analysedin termsof partialdimensions.
If the index ‘q’ at which Dq+i(Jq) � 0 and ~1, is not fixed but jumps by one unit at q~,we should

expect an edge in the Renyi dimensions.In this case, the partial dimensionassociatedwith the
Cantor-like direction for q > q, decreaseswith increasingq andvanishesfor q � q,~.The preceding
dimensionDq+i(Jq — 1) which is equalto 1 for q � q~begins to decrease with q, at the sametime.

This involvesa kind of first-orderphasetransitionin the function dq+ 1 (regardedas a free energyat
the inversetemperature/3 = q) correspondingto vanishingof the contributionof the multiplier rn to
the generalizedvolume (3.7.4)at q,~.We can correctly speakof transitionif the ‘Kaplan—Yorke’ choice
for the list of Dq is not only an upperboundbut coincideswith the real Dq’S. Otherwisethe transition
can be relatedto the changein the rule used to definethe partial dimensions.

We have describeda mechanismwhich can explain the appearanceof ‘phase transition’ just for
systemswhereeacheigendirectionhas its ownindividuality. On the otherhand,in genericsystems,like
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the Henon map, an expandingdirection can coincide with a contractingone when it is computedat
differentpoints. For q largerthanq~a transitioncan occurbecauseof an exchangeof two multipliers.

This secondmechanismis not yet fully understoodand we refer the readerto [BGP87] for more
details.

4. Replicasof disorderedsystemsas multifractal objects

4.1. Introduction

The techniquesdevelopedfor the characterizationof the temporalintermittencyarequite usefulfor
the study of disordered systems. Indeed, in some systems, the sample to sample fluctuations of the
physical observables can be described in terms of the generalized Lyapunov exponents related to the
productof appropriatetransfermatriceswhoseelementsarerandomvariables.We havehereto note
that the randommatrix product is a ratherinterestingproblemalso in dynamicalsystemswhereit is
often usedas amodelof the chaoticbehaviourof quasi-integrableHamiltoniansystems[B84, PV86a].

In this sectionwe want to showhow the different realizationsof the systemwith respectto disorder
correspondto trajectoriesgeneratedby iterating the transfermatrices.

It is thus possible to define a multifractal object in the ‘replica ensemble’: in this sensethe
fluctuationsinducedby the disorderare an intermittencyphenomenon.

We must however stressthe peculiarity of this sort of intermittency. In a time evolution the
characterization of the degree of chaos variations has a great practical relevance. One is interested in
the knowledgeof the (chaotic)signal as function of time andnot only in the ‘global’ behaviour.On the
otherhand, the fluctuationsaroundthe averagevaluein adisorderedsystemareratherlessimportant
since they decay exponentially with volume in the thermodynamic limit which is always reached in a
real sample.

The multifractal formalism becomes in this case just a fluctuation theory which is quite analogous to
that introducedby Einstein in the canonicalensemble.

Let us in fact consider a large number of different samples of a usual equilibrium system with N
particles. A sample can of course be regarded just as a ‘small’ part of a larger system. Each sample is
then characterized by its energy per particle, say x, andwe can group all the realizations with energy
per particle between x andx + dx in the same set 11(x). The numberH,~of realizations belonging to
11(x) is assumed to increase exponentially with N like:

H~—.-exp(s(x)N), (4.1.1)

wheres(x) is the microcanonicalentropyper particle correspondingto the energyx.

We can now computethe partition function of the Gibbs distributionintegratingover x:

ZN(/3) = f H~e~ dx — J ~ dx. (4.1.2)

In the limit N—*cc only one setgives a relevantcontributionto ZN. By means of the steepest descent
method one in fact gets:
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ZN(/3)~exp(-/3f(/3)N) (4.1.3)

with

/3f(/3)=min[/3x—s(x)]=13u—s(u)

wherethe minimal conditionin the Legendretransformation(4.1.3) implies:

=/3(u). (4.1.4)
dx

The probability of finding a samplewith x ~ u vanishesfor largeN like:

PN(x) = Z~1~ FI~— exp(—/3N[~(x)—f(/3)]) (4.1.5)

where ~/i~ = /3x — s(x)� f andf is the free energyper particle of the system.We havederivedthese
well-known resultsin orderto point out that the hierarchyof sets11(x) can be investigatedby varying
the temperature.The sameapproachcan be usedfor characterizingthe finite volume fluctuationsin
disorderedsystemsby meansof the replica formalism.

We shall explicitly considertwo models:the Schroedingerequationwith a randompotentialandthe
Ising modelwith randomcouplings,analysingrespectivelythe localization lengthandthe free energy.
A short discussionwill finally dealwith the possibilitythat thereexist ‘phase’ transitionsin the diagram
L(q) versusq.

4.2. The one-dimensional Anderson model

A first simple model of the conductivity in a disorderedmedium is given by the Schroedinger
equationwith a randomlydistributedpotentialV,. We shall considera discreteversionof the Anderson
model [A58] definedon a one-dimensionallattice. One can write the finite differenceequation:

+ + wV,i/i, = E’/i, (4.2.1)

where i labels the site of the lattice, ~/‘~is the amplitudeof the eigenfunctionat the site i, V1 a random
potentialand E + 2 the energy.

In the following each V1 is uniformly distributedon the range[—112,1/2] andis uncorrelatedfrom
one site to another:

(v,) = 0, (V1V1)= A2~
11 (4.2.2)

withA
2=1/12.

It is well known that wheneverw ~ 0 the eigenfunctionis exponentiallylocalized [DLS85]. This
means that if we have assumedperiodic boundary conditions (i.e. IIJN = ‘l’-N) an eigenfunction
{ ~ I — N � n < N) exponentiallydecreases(with probabilityone) at largedistancesaroundits maximum
(say for n = 0):
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I~l’nI ~ I~hIexp(—const. nI). (4.2.3)

The localizationlengthis thenusually definedas

~‘= lim --~-(lnI~,,l) (4.2.4)
InI-.= fl

wherethe averageis takenover disorder.
On the otherhand Mielke and Wegner[MW85] haverecently considered:

= lirn- ln (k~~I). (4.2.5)

Let us generalize(4.2.5) introducing~q[PV87b]:

lim -~—ln(l~,,I~). (4.2.6)
ini-.= n~q

A direct numericalcomputationof is a hard task since it is ratherdifficult to calculatethe exact
eigenvalueand eigenvectorof (4.2.1) for largechains.

Let us show that the problem can be reducedto the calculation of the generalizedLyapunov
exponentsassociatedwith aproductof randommatrices.Equation(4.2.1)can in factbe written in the
recursiveform:

Z(i + 1) = A~(i)Z(i) (4.2.7)

where

A~(i)=(E_wVi ~),Z(i)= (~1). (4.2.8)

One hasa productFI~A~(i)of randomsymplecticmatriceswhich relatesZ(N) to Z(0).
It is useful to introducethe ‘response’after n sites whosevalue dependson the starting site m:

Rm(n)= Z(m + n)I / Z(m)I. (4.2.9)

ThegeneralizedLyapunovexponentsL(q) are thengiven by the asymptoticbehaviourof themoments:

(R(N)~)= ~ R~(N)~—exp{L(q)N) for largeN. (4.2.10)

It is easyto recognizethat ~ is the maximalLyapunovexponentA1:

= A1 = (ln R(N)) = ~ q’0 (4.2.11)
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We haveseenthat a linear behaviourL( q) = A1q indicatesthat thereare no fluctuationsof R (i.e. no
intermittency).By comparing(4.2.10)with (4.2.6) one has,sinceRm(n)~~~I~I’mI”$’l’m+nI

= L(q)/q. (4.2.12)

Let usemphasizethat the sequence{Z(m + i) with 0< i <N) generatedby iteratingthetransfermatrix
is not an eigenfunction{ ~/i~)on the lattice becauseit doesnot take into accountboundaryconditions.
Nevertheless,if eigenstatesat the chosenenergyexist, thenthe LyapunovexponentA1 coincideswith
the inverseof the (average)localization length~. On the otherhand,the localizationlengthfluctuates
around~ with varying realizationsof disorder.Let us thereforedefine a local expansionparameter
LEP y by the relation:

Rm(N)— exp{’y(m) N) for N large. (4.2.13)

y is a random variable which dependson the starting site m and with averagevalue A1, whose
probability distributionP(y) coincideswith the distributionof the localizationlengthsamongdifferent
realizationsof disorder.

At this point wecan apply all the multifractal machineryof the previoussectionby grouping in the
samesubsetall the trajectories{Z(m + i), 0< i < N) which haveaLEP in the range[y, y + dy].

It is quite reasonableto assumethatafter N sites the probability P(y) of havingaresponsewith a
given LEP hasthe following form:

dPN(y) = dp(y) exp{—S(y)N}. (4.2.14)

The ansatz (4.2.14)is necessaryin order to obtain anexponentialbehaviourfor the moments(R “(N))
and is similar to the hypothesismadefor the singularity structure in turbulenceand in other strange
sets.We can now calculatethe averageover the disorderby the averageover the y-distribution:

(R”(N)) cc Jdp(y) exp{[yq — S(y)]N} cc exp{L(q)N). (4.2.15)

A saddlepoint estimationof (4.2.15)gives:

L(q) = max[yq — S(y)]= qç
1. (4.2.16)

Fromeq. (4.2.13)all the ~~‘smustbe positiveimplying y >0: whenall the potentialsV1 areequalone
recoversthe pure systemand this correspondsto the minimal value of the LEP Ymin• More generally
onecan see from eq. (4.2.16)that:

urn ~ = Ymax’ ~!~rfi~ = 7. = 0 (4.2.17a)-

0 ~ S(y) :S max[S(ymax), S(Vmjn)]. (4.2.17b)

Let us recall that S(y = A
1) = 0 while S(y ~ A1) is positive in the S-definition range [0, Ymax]. The

fluctuationsaroundA1 thereforedecaywith N as exp(— y )N). The existenceof this thermodynamical
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limit correspondsto the Oseledectheorem[068] on the existenceof the LyapunovexponentA1. The
absenceof fluctuationsis analogousto anon-intermittentchaoticbehavior.If the responseis obtained
as the productof independentrandomvariables,the lognormaldistribution is a good approximation
andS(y) is a parabolatruncatedat Ymjfl = 0 andat 7max~The correspondingform L(q) = A1q + (~!2)q

2
is thenvalid only for not too large q values (seeappendixB).

4.3. Anomalousscalinglaws at the band edge

For a puresystem(w = 0) the energiesof the Hamiltonian (4.2.1) areconcentratedwithin a band
-2sEs2.

In the sequel,we shall limit ourselvesto the case (V
1) = 0 since it is alwayspossibleto includethe

averagevalue of the potentialin the definitionof E. Let usconcentrateon the bandedgeE = 2 of the
pure systemwhere the generalizedLyapunov exponentshave a particularly interesting scaling be-
haviour with respect to the disorder amplitude w [PV87b]. The weak disorder expansionof the
Lyapunovexponentis non-analyticandone finds [DG84]:

A1 = C1w
213, C

1 =0.2893A
213. (4.3.1)

On the otherhandit is quite simple to extenda perturbativecalculationof Parisi andVulpiani [PVu86]

for computingL(2) in our case:
L(2) = 2C

2w
213 (4.3.2)

with C
2 = A

2/s2U3I2~0.6299A2/l.
Onecanthereforeestimatethe variance/L by assumingthat for low disorderL(q) = A

1q + (~/ 2) q
2

hasa parabolicshapeup to q >2:

= L(2) /2 — A
1 0.3406A

213w213. (4.3.3)

Figure 16 shows the plot of L(q) /(C
2w

213q) for different valuesof w in the caseof V1- uniformly
distributedin the range[—1/2,1/2]. We observea linearbehaviourL(q)/q = A

1 + (pJ2)qfor q< tj(w)
which breaksdown for larger q’s andthensaturatesto the plateauL(q)Iq = Ymax for q> ~(w).

The maximal LEP can be estimatedby a rather naive (but stringent) argument.The maximal
eigenvalueof a randommatrix A~(i)is 1(V,) = 1 + + 0(w). It follows that the maximalLEP is
obtainedfor a disorder realizationsuch that V~are typically of the sameorderof max{V~}=

Ymax cc wi’
2 (4.3.4)

for small w.
This result is in good agreementwith the numericalextrapolationof L( q) Iq in the limit of largeq

(seefig. 17).
The valueof ci(w) can easilybe obtainedby matchingthe asymptoticbehaviourL(q) cc w~2with the

lognormalonefor smallq, i.e. L(q)/q = A
1 + (~t/2)q.Onethusobtainst~(w)ccw~

6.Thesetwo kinds
of behaviourfor L(q) (i.e. L(q) cc w213 for smallq andL(q) cc w112 for largeq) implies a crossoverfor
the scalinglaw of when q is very large (seeeq. (4.2.12)).
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Fig. 16. Numerical calculation of L(q)I[C2w
213q] at different values of the disorder amplitude w. The full line is the parabolicbehaviour

L(q)/q=A,+(j.~/2)q.

lny,,~,

lfl

Fig. 17. 7~I~ as function of w; the line hasslope1/2.

In fact oneseesthat for large q thereis a value ~‘(q) cc q6 such that:

cc w112 if w �; ~‘(q) (4.3.5)

while the “true” scalinglaw cc w213holdsfor very smallw(<v?(q)). Note thatthevalueof ~3(q)goes
quickly to zerowhenq goesto infinity.

In fig. 18 we showS(y) vs. y as obtainedvia a Legendretransformationfrom the direct numerical
calculationof L(q). Note that for 7 < Ymax’ S(y) is closeto aparabolicform becausethe probability
distributionof R(N) is nearlylognormalfor R(N)< (7maxY”~’andzerootherwise.Themaximumis found
at y = A

1 since A1 is the most probablevalue of the LEP.
Moreoverthe probabilitydistribution of the responseR(N) is closeto a lognormaldistribution with

parametersA1 and j.~(seeappendixB for a detaileddiscussion).
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Fig. 18. S(j) vs. Y (~ = S/(C2w
213) and ~ = yI(C

2w
213)) for w = 0.9 (a) and w = 0.04 (b). The dashedlines indicate the lognormalapproximation;

thedots areobtainedby a Legendretransform from the numericalcalculation of L(q) shown in fig. 16.

In our casewe obtain~ IA
1 1.17>1 which impliesthat the R(n) fluctuations,dueto intermittency,

are relevantalso from aqualitativepoint of view.
In the casep./A1 > 1 the intermittencycannotbe neglectedin the correctionto the ‘meanfield’ which

takesinto accountonly the maximUm R of the probability distribution,since it gives aquite different
qualitativebehaviour.In fact for N—*cc, R(N)—*0 while (R(N))—÷cc(see section 3.2).

Let us remarkthat the abovebehaviourof L( q) /q (i.e. linear for small q and thena saturationto
Ymax cc w

112) is not peculiarto the probability distributionof V~but is typical of all caseswith (V) = 0
and 1/,, <Vmax <cc, i.e. it doesnot dependon the probability distribution of the 17,, ‘s consideringthat
the distribution of ~/,, is concentratedon a finite interval with a zero meanvalue.

In the case(V) = a ~0 and E = 2 (or equivalently(V) = 0 andE = 2— wa) it is easyto showthat
A

1 cc w~
2,L(1) cc ~2, Ymax cc w”2. Thereforeit follows that the crossoverphenomenonis peculiarto the

band edge. -
Bouchaudet al. [BGHLM86] havecalculatedthe set of the L( q) in the caseof the potentialwV,

distributedaccordingto a Gaussiandistributionof variancea- and meanvalue v. Theydefine L(q) as:
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1 N q

L(q) = lirn ~ ln((Tr ~A~(i))) (4.3.6)

and they usethe equality:

N q N

K (Tr LI A~(i))) = TrKLJ A~(i)®~)= Tr(A!~)N (4.3.7)

where Ar” denotesthe direct productof Aw® A~®. ® A,,,, q times. One has to estimatethe
q q

highesteigenvalueA,, of the 2 x 2 matrix (A,,, ) which can be reducedto a (q + 1) x (q + 1) matrix
usingsymmetry considerations[P82].

The calculation inside the bandexceptfor v = 2, gives:

L(q) = A1q + ~q
2 for q even (4.3.8)

with A
1 = o-I[2v(4 — v)].

At the bandedge v=0, no perturbationtheory hasyet been appliedbut for q = 2 and q =4 one
obtainsrespectively:

A—i = (42)1~ (4.3.9)

wherethe L(2) valueagreeswith the [PVu86]result.
Moreover for q integer >2 the a-~

3behaviourwas shown to always hold in the limit of weak
disorder,at differencewith the caseof a boundedpotential where at fixed w a “transition” to the
behaviour(4.3.5) appearsfor q>cjccw116.

We finally recall that somefeaturesof the multifractal natureof one-dimensionallocalizationcan be
obtainedby consideringa simplemultiplicative process[PS86,PSTZ87]. Therandommatricesproduct
problemis reducedto a scalarproduct (i.e. a randomnumbermultiplication, see appendixB) in the
framework of arandomphase-likeapproximation.

4.4. Free energyfluctuationsin spin glasses

In the statisticalmechanicsof disorderedsystemsthe fluctuationsof the free energyamongdifferent
replicascan be regardedas the analogueof the temporalintermittencyin a chaoticsignal. Let us,e.g.,
consideraspin model on a D-dimensionallattice with Hamiltonian:

H[{J,
1}] = — ~ J11a-,o, (4.4.1)

(‘‘I)

where a, = ±1 is the value of the spin on the- site i and the coupling J,1 is an independent random
variabledistributedaccordingto a probabilitydistributionP(J,1). Givenacouplingrealization{J~,j,the
partition functionof an N spin systemis the traceof the Boltzmannweightexp(—/3HN):

ZN(/3, {J~~})= ~ exp{—/3HN[{J~J}]}. (4.4.2)
{~r~}
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The free energyper spin then is in the thermodynamiclimit N—*cc:

F($) = lirn — (ln ZN) = lirn — ~ f P(J,1) dJ,1 ln ZN(/3, {J,1}). (4.4.3)

In orderto computethis quenchedaverageoneusuallyappliesthe so-calledreplicatrick. Onenamely
computesthe free energyper spin of q non-interactingreplicas:

~(q) = hm — ~— ln(Z~). (4.4.4)

The results obtained at integer positive q are then extrapolated at q = 0:

1- ~Z”~
\ NI .

F= lim lim = lim J1(q). (4.4.5)
q-O N—’= N/3q q—~O

Even in the meanfield approximationof infinite rangecouplings, this procedureencounteredgreat
difficulties dueto the replicasymmetrybreaking[seee.g. SK75,HP79] which werefinally overcomeby
the famousmeanfield Parisi solution [P79].

We do not want to enterinto this problembut justshowhow the ~( q) areinterestingby their own.
Indeed, they allow to reconstructthe probability distribution of the partition function among the
different realizationswith respectto disorder[DT81, P86].

The multifractal approachcan be easilyextendedto spin glasses.It is sufficient to introducethe free
energyper spin of a couplingrealization{J~,}of an N-spinsystem:

= — ln ZN(/3, {J,1}). (4.4.6)

In the thermodynamicallimit almost eachsamplehasto havefree energyF and we thusrecoverthe
selfaveragingof ~

F = ~ N (4.4.7)

This is an ergodicityhypothesissinceweareassumingthat the ensembleaverage(4.4.3)andthe spatial
average(4.4.6) are equivalent.

In a unidimensionalsystemwith first neighbourinteractionsanduniform field h, we can write the
partition function (4.4.2) as the traceover 2 x 2 randomtransfermatricesproduct.The Hamiltonianis
now H = —~ (J~o,o,~1+ ho~)so that one has:

— N ( exp(f3J,+/3h) exp(—/3J~+/3h) 448
ZN—TrM~, Mi_~exp(_/3Jt_/3h) exp(/3J1—/3h) . ( . - )

The maximalLyapunov exponentis thus relatedto the free energywhile the generalizedLyapunov
exponentsto the ~( q):

L(q) = —/3 ~(q) q, A1 = —/3F. (4.4.9)
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Derridaet al. [DPV78]have,e.g., found the expressionof A1 in the limit of vanishing temperature for
any value of the uniform field if P(J,) is the sum of two delta functions and their method can be
extendedto the calculationof L( q).

The readercan identify — I3EN with the LEP ‘y (seedefiniti6n (3.5.5)) whoseprobabilitydistribution
is reconstructed by the knowledge of the generalized exponents L(q).

We can however use the multifractal approach without having recourse to the transfer matrix
formalism in a generic dimension.

Let us group all the N spin systemrealizationswith free energyin the range[E, E + dE] into the
same subset 11(E), as usual.If we want a finite free energyperspin andper replica~( q), thenwe must
assume that the probability 11(E) that a realization belongs to 11(E) decaysexponentiallywith N for
E�F:

H(E)ccexp{—S(E)N} (4.4.10)

where S(E)� 0 andS(F) = 0. The momentsof the partition function can be estimatedas an integral
over the spectrum of the possible free energies [Emjn,Emax]

(ZN(/3)”) 11(E)dE exp(—/3EqN). (4.4.11)

We thus have in the limit N—* cc:

q /3 ~~(q) = mn [I3Eq + 5(E)]. (4.4.12)

Let us note that the Oseledectheoremcorrespondsto the self-averaging(4.4.7) as in the previous
section.

Let us conclude with the remark that if the .J~ are bounded(i.e. IJ~JIS C), it is possible to give a
rough estimate on the minimal value of the free energy Emjn. It is in factgiven by the free energyof the
puresystemJ~, = C for eachcouple of neighboursi, j.

5. Multifractal structures in condensedmatter systems

5.1. General remarks

In this sectionwe briefly review somecritical or critical-like phenomenain the studyof which the
multifractal method appearsas a powerful tool. The usual attitude is to assumethat the relevant
features of a system near the critical point are determined by a finite number of relevant operators.

It is thereforenaturalto askwhetherthis ideais in agreementor not with theexistenceof anomalous
scaling and of multifractal structures.

Fourcadeetal. [FBT86a,FBT86b] haveshownthat the anomalousscalingis compatiblewith a finite
number of relevantoperatorsevenif an infinite set of irrelevant operators(irrelevant in the usual
technical senseused in critical phenomena)are also important. They are related to the Renyi
dimensions d,, with n >0 andgive acompletecharacterizationof the statisticalpropertiesof thesystem.

Let us,e.g., considerthe caseof a latticewhosebondsareoccupiedby a resistorwith probability p
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or by an insulator with probability 1 — p. In theserandomresistornetworks,closeto the percolation

thresholdp,~,the measurablequantitiesof interesthavethe form

wherey,~is the powerdissipatedin the branchk. Nowwe define the exponent x,, (analogousto d,,) as
follows:

cc L~ L-*cc (5.1.1)

where (~)EL refers to the averageover the sample realizations,L is the systemsize L ~ ~ and
cc (p — p,~)’~is the correlationlength. In analogywith the critical phenomenawe introducethe joint

probability for ~k ~ ~k y~

andwe assumethe following finite-sizescaling behaviour:

~ y~, ~ y~,. . ., ~,L) = Ax0Ax1 - . . p(~y~/A~o,~ ~ , ~IA, LIA) (5.1.2)

whereA is a rescalingparameter.
No checkof the scaling (5.1.2)hasappearedyet. Howeverit hasbeennumericallyverified [ARC85]

andin somecasesproved [SW76]that partial distributionfunctions

~ y~/A~,cc, i) = Jud(~y~/L~i)~ y~/L~o,.- cc, i) (5.1.3)

do scaleas predictedby eq. (5.1.2). We remarkthat eq. (5.1.2) implies

((~yfl)
tm) ccLrnx,I (5.1.4)

i.e. powers of a given U~= ~ k y~obey to a gap scalingbut different U,, scalein an anomalousway.
Onecan see[RTT85]that thereis a relevantoperator,controlledby p — p,~,while thereis aninfinite

setof irrelevantoperatorsbecausex
0 — x,, <0 for n >0.

A similar result hasbeenobtainedin a 4,4 theory: aninfinite setof irrelevant operatorsassociated
with $ dx 4,”(x) is necessaryto give acompletecharacterizationof the distributionfunction of the field
4, [FBT86a].

5.2. Multifractal wavefunctionat the localizationthreshold

Wewant here to dicuss further the Anderson model by considering the structure of the wavefunction
at the localization transition. The universal properties near the localization threshold can be investi-
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gatedby an expansionin the difference betweenthe spatial dimensionD and the lower critical
dimensionwhich is commonly believed to be two [AALR79]. It was in fact arguedthat even the
presenceof weak disorder inducesa (marginal) localizationof all the quantumstatesof independent
electronsin two dimensions.Wegner[W79,W80] showedhow the localizationproblemcan be handled
by meansof c-expansiontechniquesapplied to the non-lineara--model.

He determined[W80,W86] the exponentsof the momentsP,, of thewavefunctionsfor theAnderson
localization definedas:

P,,(E) = (~4,~(r)~2”~(E- EA))/~(E) (5.2.1)

where~/‘A is the amplitudeof the localizedwavefunctionI A) with energyEA atsite r and,5 is the density
of states.

The averageis takenover realizationsof the disorder.P,, vanishesnearthe mobility edgeE~like:

P,,(E)cc (E — E~)”~cc ~ (5.2.2)

As before,~ is the localization lengthwhich scalesas

~(E) cc (E — ~ (5.2.3)

The value v = 1/c + 0(c3) evaluatedin the c-expansionis often consideredexact [KS83,H83].
The critical exponentsin (5.2.2) havebeenobtained[W86]up to the third order in c:

H,,Dv(q—1)— ~“2q

(5.2.4)

~q=q(q_1)[1_f~1 c3(q2_q+l)]+O(c4)

with ~(3)— 1.2020569.
Castellaniand Peliti [CP86]relatedthe anomalousscalingof Pq to the multifractal structure of the

wavefunctionnearthe localization threshold.
They assumed that just one typical wavefunction 40E gives a significant contributionto the moments

Pq(E) for E—E~.
It follows that it is possible to define a coarse grained probability density, ‘a mass’, p.(l) by

integrating ~ over a box A, of size 1:

p~(l)=~ kD~(x)I2dx. (5.2.5)

Its supportis the wholespaceof dimensionD = d
0 which is not fractalof course,but can beregardedas

multifractal with respectto the scalingof p,(l).
On the otherhand,we can estimatethe momentsP,,(E) for E E~integrating I ~PEIover a box of

size ~ since ‘PE rapidly decaysfor scaleslarger than~:
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-11 Ip

Pq(E)=’~ ~ p,(l)~cc(~) . (5.2.7)
{boxesA~}

Nearthe critical point wecan howeverevaluateP,, by means of the coarse grained probability density
p,(l) becauseof the scaling invariance.

With the standardassumptions,the relevantscalingparameterfor the rescaledsystemmadeof boxes
of size 1 is ~Il andone has:

—n Iv

Pq(E) ~ p.(l)” cc (~) . (5.2.7)
{boxesA,)

A direct comparisonof (5.2.7)with (5.2.6) shows that

4,(q) = d,,~1q= Hq+i/P. (5.2.8)

The singularitiesof the measureI ~(x) 2 dx with respect to the Lebesguemeasurecan then be
characterizedby meansof the Renyi dimensionscomputedwith field theoretical techniques.One
namelyfinds to fourth order in c:

d,,~1= D — v~(q+ 1) + v~c
3 (q3 + 2q2 + 2q + 1). (5.2.9)

Wecan write (5.2.9) using the estimate v~= s + 0(c5) [H83] andnoting D = 2 + c:

dq+i = D
1 — + -~ c’~(2q

2 + q3)+ 0(c5) (5.2.10)

where:

= 2 + ~-~- s4 + 0(c5) (5.2.lla)

= c(i — ~ c3) + 0(c5). (5.2.llb)

This result indicatesthat the wavefunctionhasa multifractalstructuresincethe information dimension
differs from the space dimension d

0 = D.
Weare interested in the three-dimensional case where we have to extrapolate formula (5.2.10) up to

c= 1 to obtain the informationdimension:

d1 2.3. (5.2.12)

Let us recall that 4,(q) is a convexfunction of q (i.e. dq is non-increasing).
Moreover,4,(q) is non-decreasingif oneexcludesthe possibilityof negativemeasuresingularitiesa.

At c = 1 we can therefore trust the c-expansion result (5.2.10) only up to q 1.25 corresponding to
d125~2.24,see fig. 19.
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dq

3
b

2

C

t

I I

0 1 2 3 4 q

Fig. 19. The Renyi dimensionsdq vs. q for the wavefunctionat the localization thresholdin threedimensions.Line (a) indicatesthe c-expansion
resultat first order,line (b) thefourth orderresult(5.2.10)and line (c) theBorel resummation(5.2.15).The dot is thenumericalresultfor d

2 with
the errorbar [SE84].The little arrowsindicatetheq value for which thefunctiond,(q —1) = 4’(q — i) haszeroderivative.For largerq onehas
negativederivatives which correspondsto unphysicalnegativesingularities.

On the other hand,Soukoulis and Economou[SE84]have numerically calculatedthe correlation
integral at the mobility edge:

A(L) = f dx I~(x)I2Jdx’ I~(x+ x~)I2 (5.2.13)

which should scaleas L d2

The correlationdimensiond2, calledby them ‘fractal dimension’(of the measure),is thusestimated
to be

d2 = 1.7±0.3. (5.2.14)

A comparisonbetweenthis value and the result of Wegnerd2 = 3 — 2 c + ~ ~(3)c
4 2.8 makes no

sense because the fourth order c-expansion gives d,, increasingwith q for q � 1.25 at e = 1.
However, we can try to improve the c-expansionresultby meansof a Borel resummationof the

Pade’sapproximantof (5.2.4):

_____ i e~ydy 52 5

q(q—1) J (1+Bs3y3) ( . .1)

with B = ~(3)(q2— q + 1)I(4 •4!). In three dimensions,we thusget d
1 = 2.14 and d2 = 1.51 in good
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agreementwith the numericalestimate(5.2.14).Figure 19 showsthe resultsfor the Renyi dimensions
obtained to first order in s, at the fourth order in c (5.2.10) and by the Borel resummation (5.2.15).

In our discussionwe haveimplicitly extendedthe results(5.2.4) for to non-integerq-values.It is
then possible to apply the usual Legendre transformation to obtain either f(a) or H(a) = —f(a) + a

which characterizethe singularitiesa of the measure.
It is ratheruseful to write H(a) in powersof D = D1 — a = 2— a + (~(3)I4)c

4+ 0(c5):

H(a) = I [ + c-~-~-~-~-j52 + c2 ñ + O(c4)]. (5.2.16)

Let us stress that a first-order calculation [CP86] gives dq+
1 = 2 — cq and the parabolic shape

H(a) = (2 — a)
2I(2~s)with D

1 = 2 and ~ = 2c. In this case,the ‘relevant’ (in the information theory
sense)part of the critical wavefunctionwould cover a bidimensional structurein any spacedimen-
sionality D � 2.

The function H(a) is definedin a boundedrange [amjn>0, amax] as discussedin the first section.
Near the critical point, the probability P(a) of finding a box for which p,(l) i” should scalelike:

P(a)cc ~~~(a)

This meansthat at fixed 1, the probability of finding a singularitywhich differs from the information
dimension vanishes as a power of ~as E tendstowardE~,the mobility edge.In thelimit E = E~only the
singularity a = D1 survives.

In this sensewe havea hierarchyof critical exponentsdq in contrastwith usual critical phenomena.
The larger is H(a), the lessimportant is the correspondingexponenta. At the top of the hierarchy
thereis the information dimensionfor which H reachesits minimumvalue H = 0.

5.3. Growth probability distribution in kinetic aggregationprocesses

The diffusion limited aggregatesDLA were introduced by Witten and Sander[WS81]for the
description of growth phenomena. In this model the growth on a lattice starts from an initial seed. At
eachstepa diffusive particle is releasedfrom infinity. When it strikes the aggregatecluster,it becomes
part of the cluster.

It is simple to generatesuch an aggregateon a two-dimensionallattice by a numericalsimulation.
One thus obtainsa fractal objectwith DF 1.7 which has a highly ramified structuresince particle
deposition is favoured at the tips. This implies practically full screening of the bulk.

The relevant propertiesof these clusters can be characterizedby the site growth probability
distribution. We have namely to considerthe probability p(r) dr that a randomwalker lands on the
boundaryof the cluster 91’ betweenthe points r and r + dr.

p(r) is the harmonicmeasurewhich can be definedfor the boundary~3I’of the clusteras the normal
derivative 3,,g of the Green’s function g(r) for the Laplace equation~g = 0 with the boundary
conditions g(co)= constantandg(aF)= 0. The singularitiesof p(r) were first characterizedby meansof
the multifractal approachby Halseyet al. [HMP86I.The coarsegrainedprobability overa box A, of
size 1 andcentrer~is:

p~(l) p(r) dr. (5.3.1)
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Using the propertiesof the Green’sfunction [HMP86]onecan showthat the informationdimensionof
the harmonicmeasureis:

d1 = 1 (5.3.2)

for the DLA as well as for anyconnectedsetin two dimensions.The Renyi dimensionsaregivenby the
scalingof the moments:

N(1)

(~(l)~)= ~ ccexp(qdq+i)

whereN(l) is the number of intervals of size 1 necessaryto coverthe boundary.The fractal dimension
of ~[‘ is thus d0. Moreoverheuristicarguments[TS85]indicatethat:

d,~amjndo~l~0.7. (5.3.3)

The Renyi dimensionscan becomputedby a direct simulationsendingmanyparticleprobestowardthe
aggregateto estimatep,(1). By this method it is however difficult to calculate the negative moments, for
which very improbable events are relevant. On the contrary, Amitrano et al. [ACL86] used the
electrostaticanalogybetweenDLA anddielectricbreakdown[NPW84]to computethe wholesetof the
Renyi dimensions.Their results areshown in fig. 20 wherewe plot 4,(q — 1) = dq(q— 1) vs. q. They
solved the discretizedversion of the Laplaceequationfor an electrostaticpotential~‘(x)on the DLA
consideredas a conductingcluster. One thushas

p(x) = K[o,, 4,(x)]~1 (5.3.4)

with ~ = 1. Other valuesof i~allow to describedifferent models(e.g. i~= 0 correspondsto the Eden
thodeland ~ = cc producesone-dimensionalclusters).

Let usstressthat in the spirit of the scalingapproachto critical phenomenait is reasonable(seee.g.

(q-1)dq -

10

I I I I ~ I I I
-4 -2 2 4 6 q

-10

-20

—30-

-40

Fig. 20. Renyi dimensionsof the harmonicmeasureon DLA obtainedby numericalsimulations[HMP86,ACI..86].
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[C86])that theprobability that aparticlelandson an 1-sizeinterval of an aggregateof gyrationradiusL
should scale like:

(L)(l)(l/L)a - (5.3.5)

L then plays the role of the correlation length ~ in critical phenomena.The hypothesis (5.3.5)
correspondsto assumethat the growth probability is scale invariant for lIL small enoughwith a
hierarchyof scalingindices a(i). Theasymptoticlimit L —~ cc is asort of ‘critical point’. In thenumerical
calculationsoneusuallyincreasesL atfixed latticeconstant1. Thereis neverthelessanothersubtlepoint
worth stressing.Indeed,one studiesthe moments

~ p~cc (5.3.6)
iESF(L)

wherep, is not given by (5.3.1) but by the probability that the site i on the surface of the cluster
becomespart of the aggregates.The dimensionsdq andthe standardonesdq are assumedto be equal.
This is true only if the aggregateis ahomogeneousfractal with respectto the point density,i.e. if each
interval A, of the boundarycontainsapproximativelythe samenumberof pointsn~(l)so that:

N(l)

~ n,(l)’ cc ~DF(~_1) - (5.3.7)

In this casethe aggregateis a multifractal object with respectto the harmonicmeasurebut not to the
‘natural measure’given by the point density.With this warning, the numericalcalculation[ACL86]
showsthat q5(q) is essentiallylinear for q> 1 and q < —2 and the result amj,, = 0.7 agreeswith the
‘theoretical’ predictionamjn = DF — 1. On the otherhand, 4,(q) is highly non-lineararoundthe value
q = —1 correspondingto the fractal dimensiond0 = — 4,(—1). The derivative

d4,/dq~,,0= 1 (5.3.8)

is in agreementwith (5.3.2) while the fractal dimension d0 1.5 is slightly different from the
independentresultDF 1.7. This fact is attributedby the authorsof ref. [ACL86] to the existenceof a
non-screenedpart of the perimeter(where l/J(r) is neitherzero nor exponentiallydecreasingwith L)
which should scalewith an exponentd0 < DF.

It is easyto obtainthe fractal dimensionf(a) of the set S(a) on which is concentrated the measure
with singularitya by meansof the usual Legendretransform, seefig. 21.

Let us briefly recall the first phenomenologicaltheory on the multifractal structureof the surface
layerof DLA proposedby Halseyet al. [HMP86].They assumedthat the measurecan be describedin
termsof two singularity values:

a1D1’l, a2 amjnO.
7. (5.3.9)

It follows that thereis one adjustableparameterf(a
2) sincef(a,) = f(D1) = 1 by definition.

Recalling that qS(q) = mina [aq + H(a)] we thus see that the relation (5.3.9) corresponds to a
function çb( q) which is a piecewiselinear function of q:
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f(a)
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Fig. 21. f(a) vs. a for DLA obtainedby a Legendretransform of thedq’5 shownin fig. 20.

Jçb(q)=a1q+H(a1)—D1qq, for q<q~ 53 0
~4,(q)=a2 q+H(a2)—(D~—1)(q+1)—f(a2), for q>q ( . .1)

whereH(D1) =0 and H(a2) =f(a2) — a2.
The knowledgeof q,~is equivalentto that of H(a2) since by matchingthe two linesone gets:

q~—H(a2)I(1a2). (5.3.11)

Theseresults agreequite well with the direct calculation of the momentsfor positive q � 1 using the
valuef(a2= 0.71)= 0.42, i.e. q, = 0.74. On the otherhandthe formula(5.3.10)is inconsistentwith the
resultfor the fractal dimensionsince it impliesDF = — 4,(— 1) = 1 which is muchsmallerthanthe value
DF = 1.71 assumedfor estimatinga2.

5.4. Multifractality in percolation

The critical behaviourof randomresistornetworksis a percolationproblemwhich can be studiedby
meansof the multifractal approach[ARC85, RTBT85].

Let usconsidera latticeof size L whereeachbondis conductingwith probabilityp or insulating with
probability 1 — p. In the limit of infinite L thereis a percolationthresholdp,~abovewhich thereis an
infinite cluster of conductingbonds.

At the critical pointp~oneisolatesthe setof bondscarryinga non-zerocurrent from the restof the
infinite cluster. This set is called the backbone and is a fractal object with dimension:

D~,BB)=lnnBB(L)/ln L for L—~cc (5.4.1)

wherenBB (L) is herethe numberof bondsbelonging to the backboneof a systemof size L.
Let us stressthat this is not the box-countingdefinition (0.1). The backboneis made of singly

connectedbonds (links) and of multiply connectedbonds (blobs) in a selfsimilar way. The fractal
dimensionof the setof the links is 1 /v wherev is the connectednesslength exponent[C81].

Let usnow considerthe backboneas a randomresistornetworkeachbond havinga unit resistance.
A unit voltageis thenapplied to the oppositeboundariesof a box containingthe percolatingcluster.



216 G. Paladin and A. Vulpiani, Anomalousscaling laws in multifractalobjects

Eachbond can thusbecharacterizedby the voltage drop acrossit. Let us definethe strengtha(i) of a
bond i as:

VccL~’~. (5.4.2)

The minimumvalue of a is associatedwith thelinks sincetheycarrythe total currentI whichis equalto
the conductanceof the systemR ~ and.to the maximalvalueof the voltage Vmax:

Vmax cc L~m11. , amjn =

where ~R is the resistance exponent defined by Rcc L “v”. The numberof bondsNa(L) with avoltage
drop V—L~’is:

N(L) —~LD~ (5.4.3)

whereD(a) is a sort of fractal dimension. One can compute the scaling of the moments

(1/”) ~

in terms of D(a) with the multifractal machineryand the saddlepoint method:

(q — 1) dq = mm (aq— D(a)).

Note that d0 = D~BB).
Also in this case we must repeat the warning done in section 5.3: D(a) can only be consideredas a

fractal dimensionundercertainassumptions.
De Arcangeliset al. [ARC85] computedthe exponentd,, on a simple hierarchicalmodel which

describesthe backbonepropertiesfor anyspatialdimension.They founda reasonablygood agreement
with the existingnumericaldata.

The model is obtainedby successiveiterationsstarting from a single bond of unit resistance.As
shownin fig. 22 at each step n of the constructionthe bondsarereplacedby two links in serieswith a
blob.

Fig. 22. Hierarchicalmodel for thebackboneof the infinite clusternearthepercolationthreshold.
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It is easyto checkthat thereare4” bondsand2” links, sothat oneidentifiesL with 2”~.Thismodelis
givenby a multiplicativeprocessanddq can thereforebe computedby asimpledirect computation.For
example,takingin thefirst stepof the constructionin fig. 22 the single link potentialV= ~andtheblob
potentialV= ~ (valuessuggestedby phenomenologicalconsiderations)one has:

v(q —1) dq = 1 +ln2[(~)” + (~y’]

in good agreement with the numerical data in two dimensions.
We finish this sectionby recalling thatanomalousscaling laws havebeenfound in manycondensed

matter systems.It is impossibleto analyseall thesecasesandwe must limit ourselvesto recall someof
them: depletionof a diffusing substancein the vicinity of an absorbing fractal [CW86], random
superconductingnetworks [ARC85J,somepropertiesof Laplacianwalks [EL87].

6. Conclusions

The existenceof continuousspectraof independentexponentsarisesas a commonfeature of the
scalinglaws in manyphysicalsystems.Table 1 indicatesthe main multifractal objectsintroducedup to
now.

The popularity of the multifractal approachis due, in our opinion, to its usefulnessin the
interpretationand organizationof theoreticalas well as experimentalresultsin a simple and unique
scheme.

Table 1

Phenomenon Mass density

Fully developedturbulence Densityof energy
in threedimensions dissipation

Chaoticattractors Densityof points
distributedaccordingto
the natural measure

Temporal intermittency Density of trajectories

in ‘history’ space

Metal—insulatortransition Squaremodulusof the
in 2 + a dimensions wavefunction

Andersonlocalizationin Replicasof the systems
one dimension with thesamelocalization

length

Aggregationphenomena Growing probability

Conductionon percolative Voltage on the bondsof
clusters thecluster

Spin glasses Replicasof the systems
with thesamefree energy
in the realizationspace
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However, one mustusepropertechniquesfor eachparticularsituationin order to reacha deeper
understanding of a phenomenon. A typical example is given by the Anderson localization in one
dimensionwherethe calculationof the generalizedexponentshavebeendonefollowing somemethods
developedin the context of disorderedsystems[BGHLM86, PS86,PV87b]. The oppositesituationis
fully-developedturbulencewhereatheoryon the structureof theNavierStokesequationsingularitiesis
still far from beingformulated. Nevertheless,the analysisin termsof multifractalsis a first useful tool
and allows to give a qualitativedescriptionby meansof phenomenologicalmodels.

We think that one of the most interesting future developments will be given by understanding the
link betweentherenormalizationgroupandgeneralizedexponents.An openproblemis the consistence
of the usualscalingwith a finite numberof relevantoperatorsandmultifractality. Some authorshave
shownthat the two aspectsarecompatibleatleast in somecases[FBT86a,FBT86b]. Moreoverthereis
not yet a clearcomprehensionof the mechanismswhich leadto ‘phasetransitions’ (in the generalized
exponentsvarying the moment order) which have been numerically observedin some dynamical
systemsand aggregates[BP87b,BGP87, ACL86].

Appendix A. The Kolmogorov—Obukhov lognormal model for intermittency in turbulence

Kolmogorov [K62]and Obukhov [062] modified the K41 theory assigninga key role to the statistics
of the spatial distributionof the energydensitydissipationin order to take into accountsomeof the
early evidenceon small-scale intermittency. Essentially in the new modified theory K62 the first
hypothesisof K41 (see section 2.2) is replacedby assumingthat in the range r ~ L the n-variate
probability distributionof u(x + r) — u(x) only dependson ~~(r)= (1 1r3) $A(r) c(y) d3y, r and ii.

The secondhypothesisremainsthe sameone as in K41.
Evidently thesetwo hypothesesare quite generaland common to all phenomenologicalcascade

models. To obtain explicit resultsone needsfurther assumptionson the statisticsof c(x), of course.
Kolmogorovand Obukhovsupposedthat ~(r) is distributed according to a lognormal in the range

r~r<<L.
By dimensional analysis the first two hypotheses give for structure functions:

(I~V(r)Ir~3(~(rY’3). (A.1)

Note that (A. 1) holdsalsofor fractal or multifractal models.Accordingto the third hypothesison the
lognormaldistribution, one has[GY67]:

(IAV(r)I~)— r~’31~83’~ (A.2)

i.e.

~ =pf3+(lIl8)p~p(3—p) (A.3)

where ~t is given by the fluctuationsof ~~(r):

= ln(L/r) ((ln ~(r) - (ln ~(r)))2). (A.4)
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Kolmogorov and Obukhovpostulatedthe lognormaldistributionwithout anyjustification. It is however
not difficult to introduce an argumentfor it. We briefly repeatthe derivationdue to Gurvich and
Yaglom [GY67]. Let uscall c,, the quantity ~ (rn) with r,, = 2 “L, we thenobtain c,, as the productof
independentrandomvariables

c,,e0fl’Pt, ~e~/c1_1. (A.5)

Taking the logarithm of (A.5) one has

lnc,,=lns0+~lnç~. (A.6)

Assumingthat all the variablesln ~ havefinite meanvalueand finite variance(meaningthat the event
= 0 hasprobabilityzero)we can apply for large n (r ~gL) the central limit theorem.c,, is therefore

distributedaccordingto a lognormal characterizedby two parameters:

1 1 2

ln(LIr) (ln c,,) and ln(L/r) ((ln c~— (ln c,,)) )

Since (ca) must dependon n, becauseof the constancyof the forward energytransferrate,just a
relevantparametersurvives:the variancegiven by (A.4).

Weremark that in the Gurvich—Yaglom derivation there is the basic assumption that ‘P~ vanishes with
zero probability. This hypothesisis not madein the fractal (or multifractal) model where thereare
cubeswith c~= 0 (non-activefluid) [N69, N70, NS64,M74, FSN78,FP85,BPPV84]. This is the most
remarkabledifferencebetweenthe two approaches.

Let us notethat, at least formally, the lognormalmodel is a limiting caseof the multifractal one,
assuming a parabolic form for d(h) with a maximum at DF 3 and no restrictionon the possible h
values.OnethenobtainsDF = 3, D~= DF — ~/2 = 3 — ~t/2, D* DF — = 3 — j~.The energydissipa-
tion is concentratedon a three-dimensionalsupportwhich is thereforenot fractal.All thefluid is active
but the ‘measure’given by s(r) is fractal since D1 <3.

in eq. (A.3) hasa parabolicform with a maximumatp” = ~(2+ p~)//2and becomesnegative
for largevaluesof p.

This odd featureis due to the fact that the lognormal model gives no restrictionson the possible
valuesof s,,. This is clearlyan unphysicalfeatureof the model. Indeed,we haveseenthat plausible
bounds exist for the values of the singularities h (and thereforefor c,,).

The lognormaldistribution,however,is a good approximationfor a largeclassof phenomenabut it
gives uncorrectvaluesfor the moments(seeappendixB), since theygrow too rapidly with p and thus
violate the Carleman’scriterion [C22]which hasto be satisfiedfor determininga probability distribu-
tion from its moments.This leadsto unphysicalconsequences.If it is not possible to determinethe
probability distributionby momentsof aquantitysatisfyingsomeevolutionequations,thenthe initial
valuesof all the momentsdo not allow to determineuniquely the valuesof the momentsat future
times. Orszag [070b] showedthat the non-uniquenessof the moment values at positive times is
compatiblewith the uniquenessof the solution of the evolutionequations.
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Appendix B. Multiplicative processesandlognormalapproximation

Multiplicative processesarethe simplestway to get anapproximatedescriptionof multifractals.Let
us recall the random/3 -model for turbulence(section2.3) or its equivalentfor chaoticattractors[PV84,
BPPV84], the responsefunction for temporalintermittency(section3) or randommatrices(section4).
In this appendixwe briefly discussthe multiplicative processesand the lognormalapproximationin a
generalcontext.

Let usconsideravariablex,, given by a productof n ~ 1 random variables:

x,, = [I a, (B.1)

wherethe a’s arepositiveindependentrandomvariablesdistributedaccordingto the samedistribution
of probability laws. Moreoverwe assumethat

amjn < a, <amax. (B.2)

The probability distributionof x,, is close to the lognormal distribution:

exp[—(lnx~— An)2I(2~n)]
P(xfl)=~PLN(xfl)= 1/2 (B.3)

x,,(2i~n)

whereA and ~ aregiven by

A = ! = {ln a}

and

= ~- (ln x,, — fjj~)2= {(ln a — {ln a})2},

where~ standsfor the averageon different realizations[a
1,. . . a,,] and { ( )} meansaveragegiven by

the probability distribution of a: { ( )} = f P(a) (.) da.
Note that the logarithm of x,, is given by a sumof independentrandomvariables

lnx~=~lna~. (B.4)

Becauseof the inequalities(B.2)andthe independenceof thea. we can apply the central limit theorem.
Thereforethe probability distributionof the variabley,, = ln x,, is closeto aGaussianwith meanvalue
nA and variancenj~.Equation(B.3) follows from a changeof variables.

In spiteof the fact that the lognormaldistributionis a goodapproximation,its momentsarenot close
to the right ones.

Using eq. (B.3) one has
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x~=f x,,” PLN(xfl) dx~ exp{ng~~(q)}

with

g~~(q)=Aq + ~jsq2. (B.5)

It is trivial to seethat (B.5) cannotbe valid for largeq. Indeedone cancomputex,, directly by (B.1):

~=e”~”-) withg(q)=ln{a”} (B.6)

and becauseof (B.2) one has:

q ln(amjn) <g(q) < q ln(amax). (B.7)

Equation (B.5) is not thereforea good approximation for large q. On the contrary, writing x,, =

exp(q lnx~)andexpandingin seriesto the secondorder in q, we see thatfor smallq, g(q) g~~(q).
This apparentparadox(a probabilitydistributioncloseto the lognormalwhosemomentsdo not follow
(B .5)) is related to the fact that the momentsof the lognormal distributiongrow too fast [C22, O70b,
M72].

Without invoking complexmathematicalargumentsonecan convinceoneselfthat the origin of the
trouble resides in the tail of ~LN (x~).Indeed, the true probability distribution P(x~)is zero for

> (a,,,,,
1,)~,while for largeq the greatestcontributionsto J~°x,,” PLN(xfl) dx,, comefrom aregion where

P(x,,)= 0. This becomesevident by computingthe valuei~”~for which x~”PLN(xfl) takesits maximum.
Onein fact finds for largeq

exp(const.~,~. q) ~. (amax)”

We concludeby noting againthata lognormalapproximationfor moderatevaluesof q (i.e. aparabolic
shapeof f(a) for aaroundD1) is rathergood,while for largeq boundslike (B.2) haveto be takeninto
account.

For exampleif we repeatthe considerationsof this appendixfor fully developedturbulence,weget
an approximateexpressionfor ~,sincethe random/3-modelinvolvesamultiplicative processfor i(r).

Let us remind (eq. 2.3.15)that in the random/3-modelone has

(I~V(r,,)V) r’3{fl /3(1P/3)}

Onethereforeobtains,consideringthe lognormal approximationfor the variable fl~ /3~:

~ ~p/
3 + D,(1 —p13)+ (~/2)(1—p13)2 (B.8)

for I p —31 not very large.
Note that in (B.8) therearetwo independentprametersD

1 and~swhile only oneis involved in K62.
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Wehave in fact considered the multiplicative process on the fractal and the constraint ~ = 1 is imposed
automatically by the model.
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