

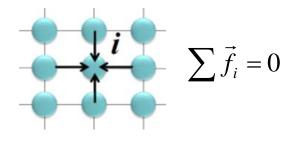
Technische Universität München

Yielding of amorphous materials

Alessio Zaccone Physics-Department & Institute for Advanced Study, TU Munich

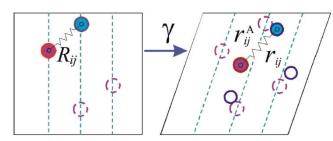
Non-affine deformations

- The breaking of local inversion symmetry is the cause for non-affinity. This is a key in disordered solids.
- Q: But there are many non-centrosymmetric crystals: what about them?
- → In fact, it is known since Kelvin (1890) that crystals with no inversion symmetry (piezoelectrics, e.g. quartz) all have a very low shear modulus!



The associated addition to the elastic free energy is always negative (relaxation of local forces) and can be presented as:

$$F = F_A - F_{NA} = F_A - \frac{1}{2} \left(\frac{\partial \vec{f}_i}{\partial \gamma} \cdot \frac{\partial \vec{r}_{i,NA}}{\partial \gamma} \right) \gamma^2$$



Non-affine deformations

The non-affine reduction of shear modulus can be calculated for harmonic central forces (with spring constant κ):

$$F = F_A - F_{NA} = F_A - \frac{1}{2} \left(\frac{\partial \vec{f}_i}{\partial \gamma} \cdot \frac{\partial \vec{r}_{NA}}{\partial \gamma} \right) \gamma^2$$

Born (1940) in affine model
$$G \approx \frac{N}{V} \kappa r_0^2 (z - z_c)$$

Non-affine softening for harmonic central forces gives a factor $z_c = 2d$

Maths can be found in:

Zaccone & Scossa-Romano PRB (2011) Zaccone, Blundell, Terentjev PRB (2011)

- Q: How limiting is this? What if there are constraints: non-central forces or excluded volume?
- \rightarrow In a few cases (bond-bending & excl. volume) analytical solutions are possible.

What does the temperature do?

We now know:
$$G \approx \frac{N}{V} \kappa r_0^2 (z - z_c)$$

Relate $(z-z_c)$ to the density

The probability g(r) of having two soft particles separated by a vector of length *r* displays a divergence

The increment $\delta z = (z - z_c) \sim \int g(r) r^2 dr$

which now gives $(z - z_c) \sim \sqrt{\phi - \phi_c}$

$$g(r) \sim (r - r_0)^{-1/2}$$

O'Hern, Silbert, Liu, Nagel, 2003

 $\Rightarrow G \approx \left(\frac{\kappa}{r_0}\right) \phi \cdot (z - z_c)$

Relate density to temperature

Thermal expansion cf. of a solid $\alpha_T = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)$

Replace V by f, and integrate:

 $\ln \varphi = -\alpha_T \cdot T + \text{const}$

This gives the temperature change of the shear modulus $(z - z_c) = \sqrt{\varphi_c [e^{\alpha_T (T_c - T)} - 1]}$

Comparing with glassy polymer (T<Tg)

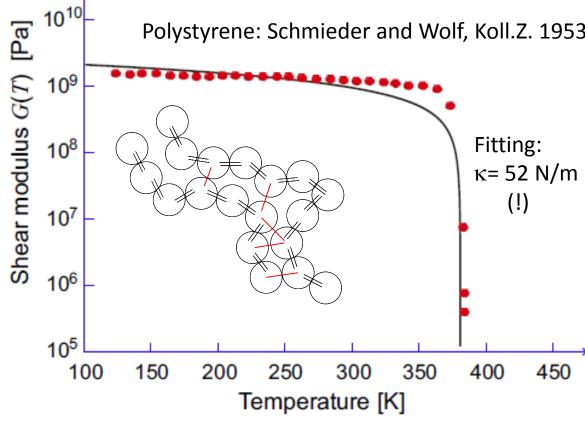
We found:
$$G \approx \frac{N}{V} \kappa r_0^2 (z - z_c) \implies G \approx \frac{\kappa}{r_0} \varphi_c e^{\alpha_T (T_c - T)} \sqrt{\varphi_c [e^{\alpha_T (T_c - T)} - 1]}$$

The system must be free to expand. In that case, a recent MD simulation for L L

recent MD simulation for LJ glass has confirmed

$$(z-z_c) \sim \sqrt{\phi - \phi_c}$$

Wittmer et al., JCP 2013



Zaccone & Terentjev PRL (2013)

Plan for today:

Two examples of fluidization:

1. How a rigid disordered solid (glass) approaches a melting point ($G \rightarrow 0$) on increasing temperature. This is essentially a "glass transition" examined from below $T_{\rm g}$

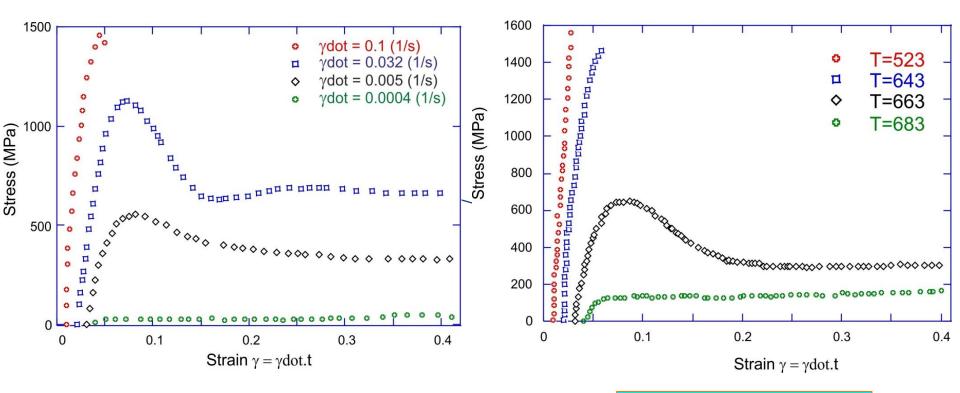
2. How a rigid disordered solid (glass) yields and starts plastic flow at finite deformation rate. Why is there a 'stress overshoot'?

Can we fluidize the random solid by shear?

Experiment on metallic glass

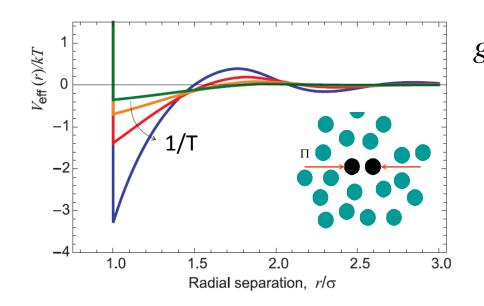
$${\rm Zr}_{41.2}{\rm Ti}_{13.8}{\rm Cu}_{12.5}{\rm Ni}_{10}{\rm Be}_{22.5}$$

Lu, Ravichandran, Johnson, ActaMater. 2003



The linear modulus The overshoot The plastic flow stress

Shear-induced cage deformation

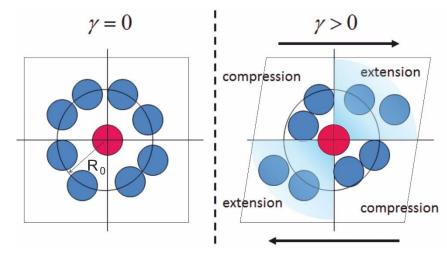


$$g(r) = \exp[-V_{\rm eff} / kT]$$

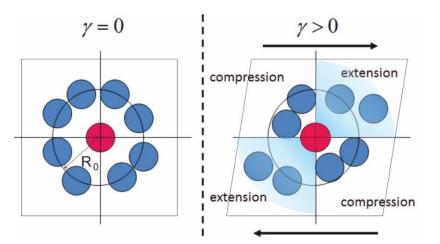
Potential of mean force, accounts also for the "cage"

$$g(\mathbf{r}, \gamma) = \exp[-V_{\text{eff}} / kT + h(\mathbf{r})\gamma]$$

Particles escaping from the cage under shear (extensional sector) go to fill free volume spots (dilatancy is negligible)

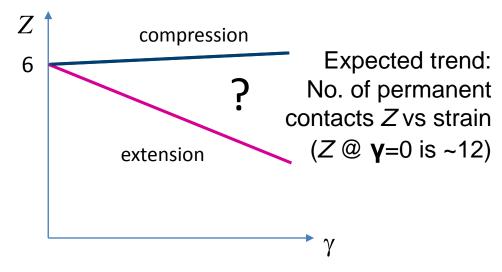


Av. number of contacts z decreases with $\gamma \uparrow$



Net decrease of 'permanent' contacts: imbalance between extension sector (particles "pealed off") and compression sector ("crowding")

Only bonds which are **'permanent**', within the bonding minimum, contribute to elasticity: fluctuating 'fluid' contacts should be discarded



Evolution of permanent Z can be measured in confocal microscopy of colloidal glasses or in simulations (in progress)

Stress non-linearity for a strain ramp (start-up shear)

We saw it many times:
$$G \approx \frac{N}{V} \kappa r_0^2 (z - z_c) \implies F_{el} = \frac{1}{2} K [z(\gamma) - z_c] \cdot \gamma^2$$

z is calculated from g(*r*) $z = \int g(r) 4\pi r^2 dr$

 $g(r) \sim (r - \sigma)^{\lambda}$

g(r) relaxes towards equilibrium

$$g(r) = \Psi_1(r) \cdot e^{-t/\tau_1}$$

lowest eigenvalue

"time is γ "

 $t = \gamma / \dot{\gamma}$ at constant rate

We obtain the contact number z as a function of shear strain γ

$$z(\gamma) = z_0 \cdot \frac{1}{2} (1 + e^{-t/\tau_{\rm S}}) = \frac{1}{2} z_0 (1 + e^{-A\gamma})$$

The exponent: $A = \frac{1}{\dot{\gamma} \tau_{\rm S}} + \frac{\Delta}{k_{\rm B}T}$ hald dep

half of the sectors deplete at $\gamma >>1$

The values: $z_{MAX} = z_0 \approx 12, z_c = 6$ (only central forces)

Stress non-linearity during a strain ramp (start-up shear)

We substitute
$$z(\gamma)$$
: $F_{el} = \frac{1}{2} K [z(\gamma) - z_c] \cdot \gamma^2$ and differentiate for $\sigma(\gamma)$:
Elastic stress: $\sigma_{el}(\gamma) = \frac{1}{4} z_0 K e^{-A\gamma} \cdot \gamma (2 - A\gamma) + \frac{1}{2} (z_0 - 2z_c) K \cdot \gamma$
Please remember: $A = \frac{1}{\dot{\gamma} \tau_s} + \frac{T_g}{T}$

That's good, but we must not forget the stress relaxation (viscoelastic effect). This produces the second part: $\sigma_{visc}(\gamma) = \int G(s) \cdot \dot{\gamma} \, ds$

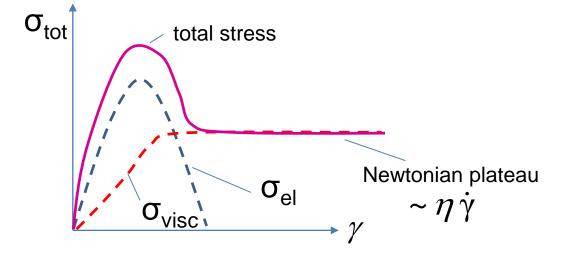
Within the simplest (Zener) model: $G(t) = G + G_R e^{-t/\tau_V}$ and $\tau_V = \eta / G_R$

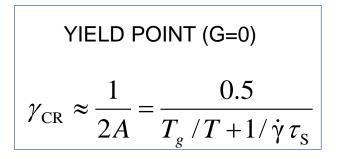
Finally:
$$\sigma_{tot} = \sigma_{el}(\gamma) + \eta \dot{\gamma} \left(1 - e^{-\gamma/\dot{\gamma}\tau_v} \right)$$

Stress rise, overshoot and the plastic flow

Apply a constant shear ramp $\gamma = \dot{\gamma} \cdot t$

and the glassy solid responds with the stress: $\sigma_{\text{tot}} \approx \frac{1}{4} z_0 K e^{-\gamma \left(\frac{T_g}{T} + \frac{1}{\dot{\gamma}\tau_s}\right)} \gamma(2 - A\gamma) + \eta \dot{\gamma} \left(1 - e^{-\frac{\gamma}{\dot{\gamma}\tau_v}}\right)$



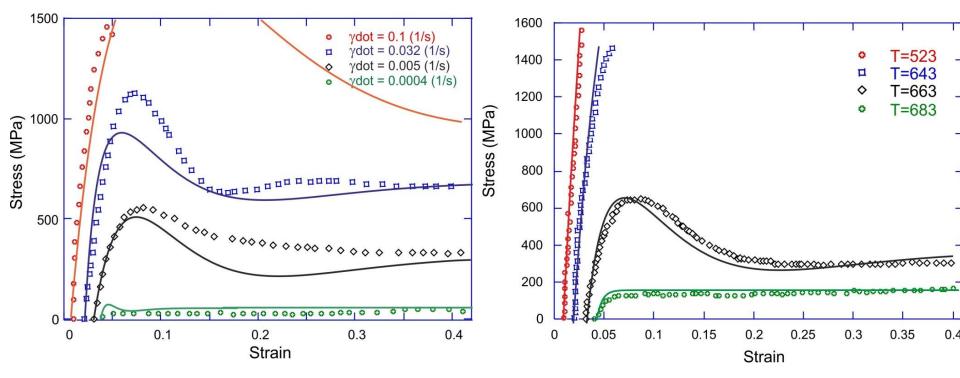


Stress rise, overshoot and the plastic flow

Shear ramp:
$$\gamma = \dot{\gamma} \cdot t$$

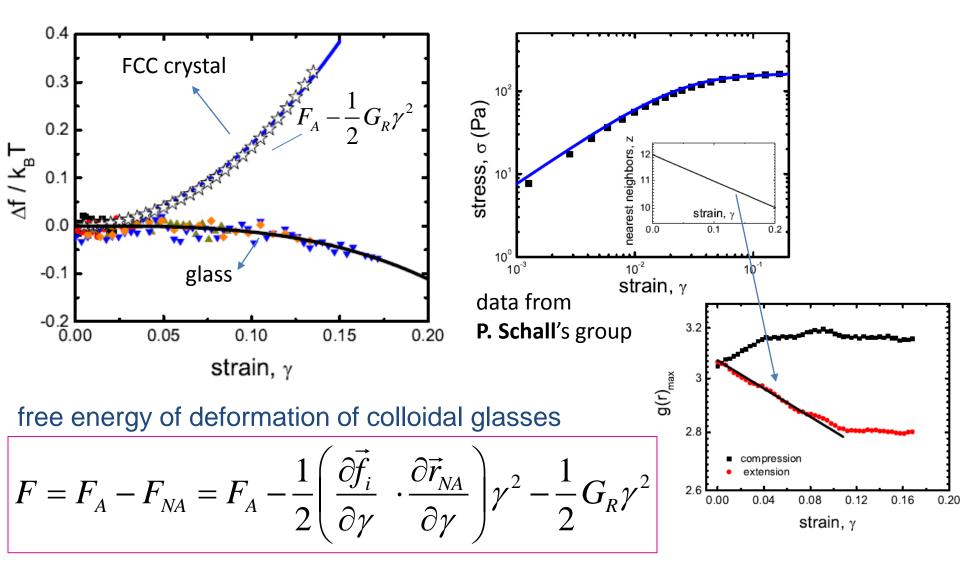
Stress: $\sigma_{\text{tot}} \approx \frac{1}{4} z_0 K e^{-\gamma \left(\frac{T_g}{T} + \frac{1}{\dot{\gamma}\tau_s}\right)} \gamma (2 - A\gamma) + \eta \dot{\gamma} \left(1 - e^{-\frac{\gamma}{\dot{\gamma}\tau_v}}\right)$

Only two t-parameters are not measured experimentally by Johnson et al.



Zaccone, Schall, Terentjev PRB (2014)

Yielding of colloidal glasses: comparing with experiments

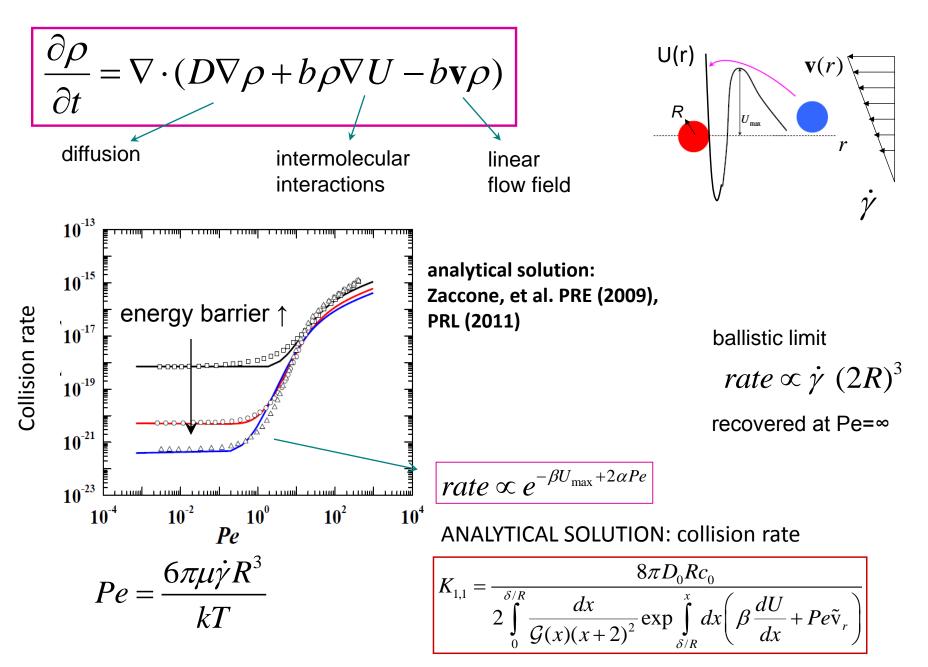


Dang, Rojman, Chikkadi, Bonn, Zaccone, Schall, preprint (2015)

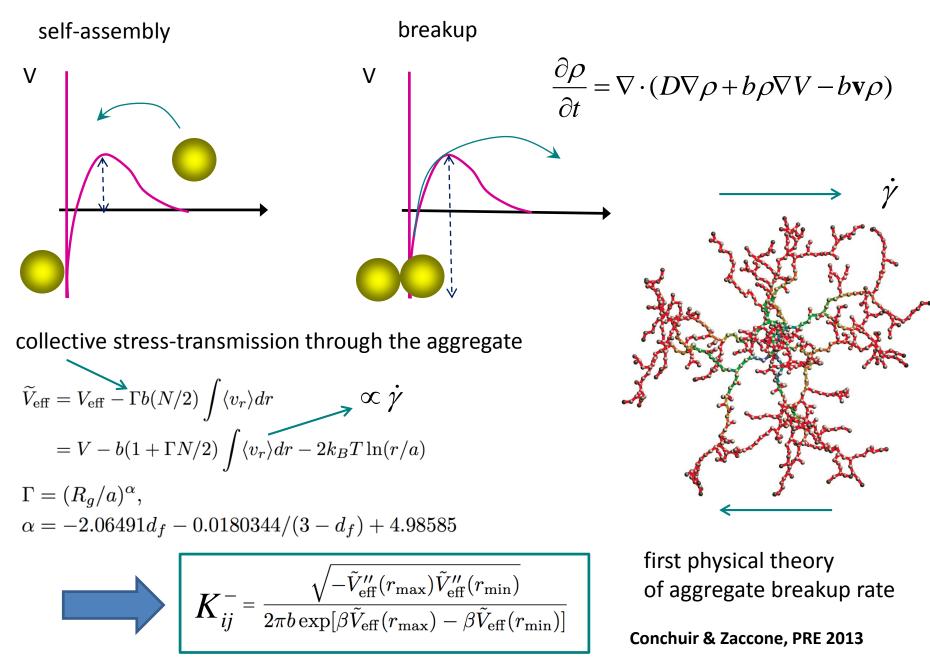
Conclusion

- We used the simplified model of central harmonic bonds and the linear theory of non-affine elastic deformations produces a useful form of the shear modulus, $G \sim K[z-z_c]$
- Examining how the average number of contacts *z* changes in different circumstances allows practical problems to be solved
- 1. Using thermal expansion ideas, and connecting z-f(T) via g(r), we produced a model of glass melting, as well as the T_g
- 2. Using the compression-extension sectors asymmetry in shear, we found $z(\gamma)$ and were able to describe the yielding of metallic glass and the of colloidal glass in agreement with several experimental data-sets

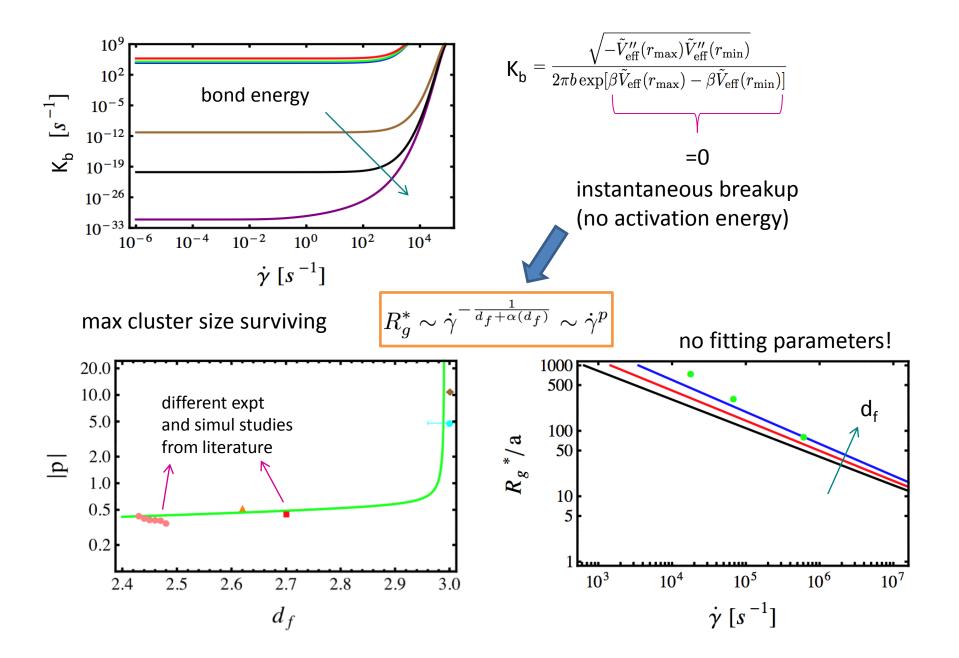
Diffusion-advection: analytical solution



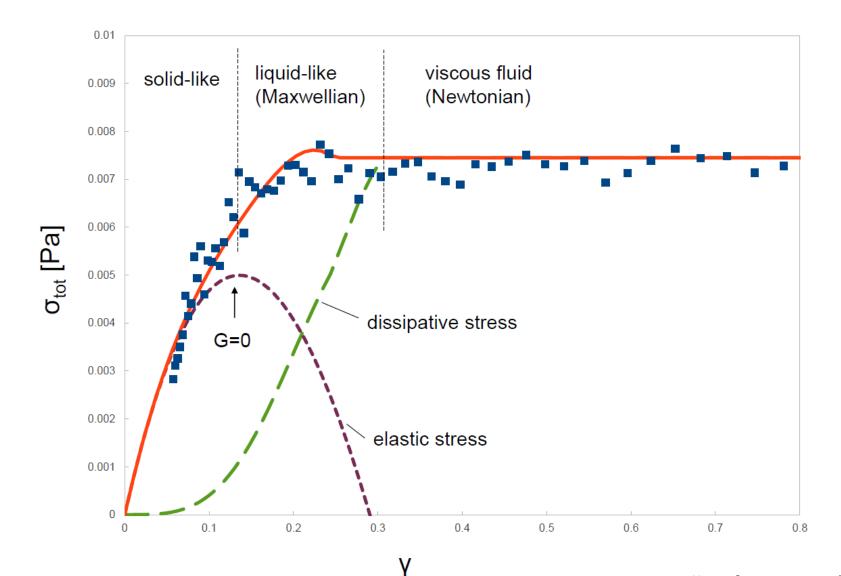
Can we predict the cluster breakup rate?



Successful description of several experimental data

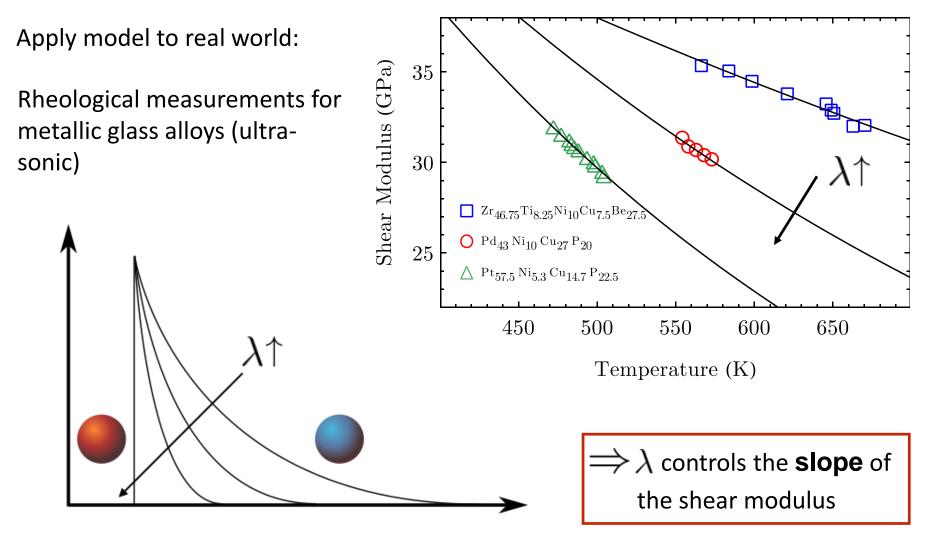


Yielding of colloidal glasses: comparing with confocal microscopy (2)



Laurati, Egelhaaf, Zaccone (2015)

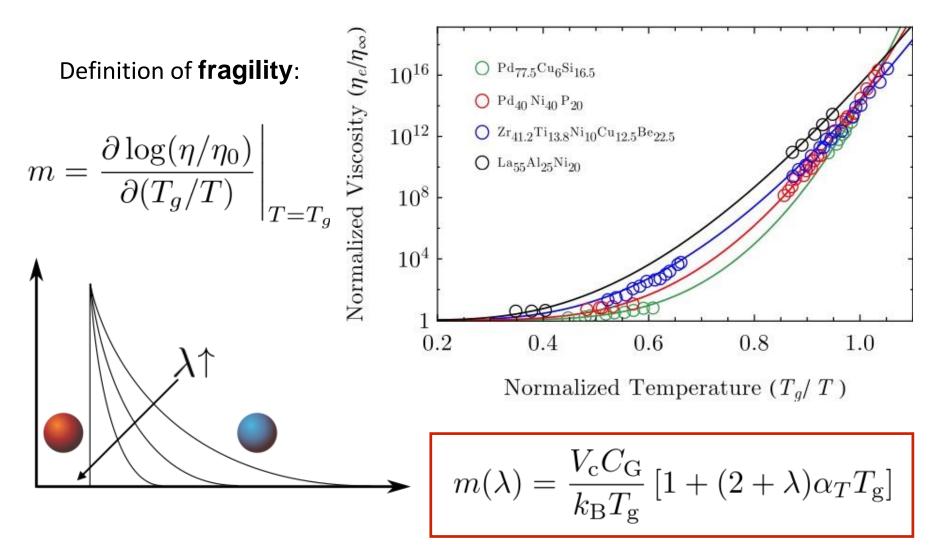
Comparison with experimental data: metallic glass (1)



Johnson et. al, MRS Bull. (2007)

Krausser, Samwer, Zaccone, PNAS (with referees)

Comparison with experimental data: metallic glass (2)



Johnson et. al, MRS Bull. (2007)

Krausser, Samwer, Zaccone, PNAS (with referees)

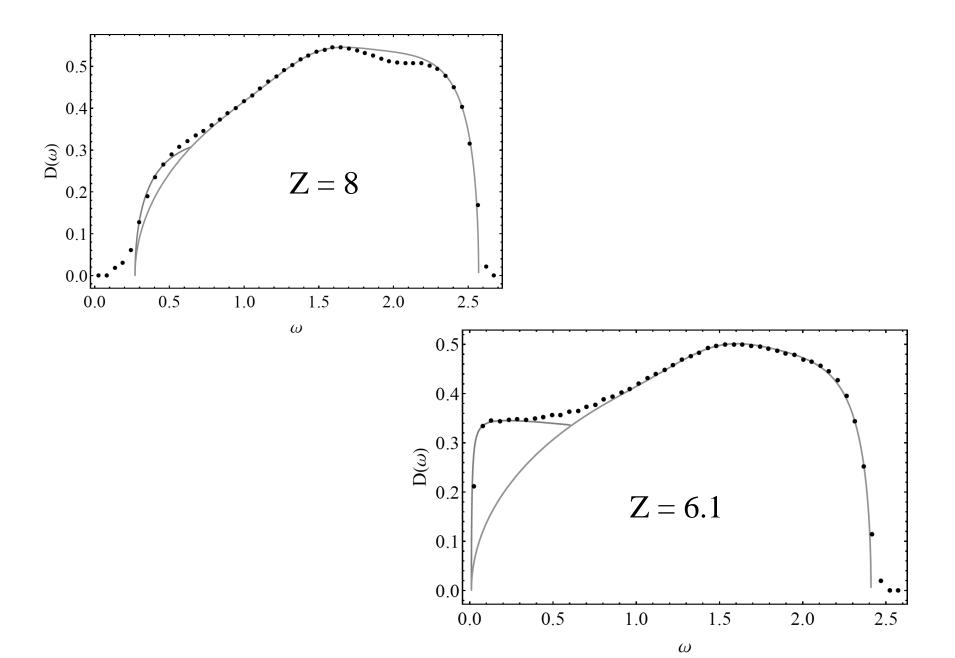
Parameters for overshoot fitting

<i>K</i> [18] (GPa)	η[18] (GPa s)	τ_c (s)	τ_v (s)	<i>T</i> [18](K)
12	80	1.6	2.13	523
3.6	12	1.6	0.32	643
1.2	4	0.6	0.12	663
0.6	2	0.01	0.053	685
K[18] (GPa)	η[18] (GPa s)	τ_c (s)	τ_v (s)	$\dot{\gamma}$ [18] (s ⁻¹)
3.6	80	12	9.0	2×10^{-4}
3.6	80	12	7.3	5×10^{-3}
3.6	22	1.8	0.32	0.032
3.6	12	1.6	0.12	0.10

COMPARISON WITH ALTERNATIVE THEORIES

- MCT with shear: 5-6 free parameters. Shear parameters C_{γ} and λ have no clear physical meaning (cfr. discussion in Binder & Kob's book).
- STZ theory: ~4 parameters (effective T not well-defined)

Vibrational DOS from random matrix theory



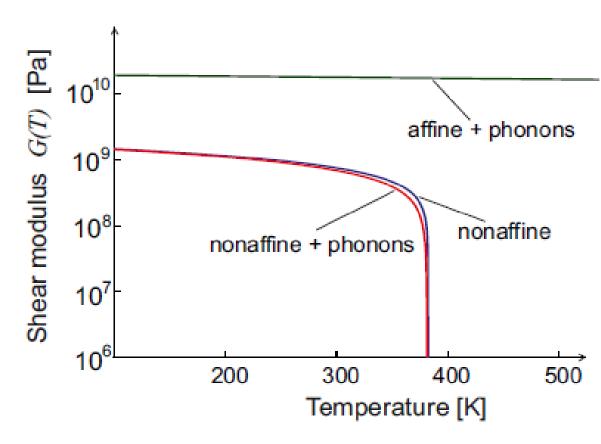
Av. number of contacts z decreases with T个

We found:
$$G \approx \frac{N}{V} \kappa r_0^2 (z - z_c) \longrightarrow G \approx \frac{\kappa}{r_0} \phi_c e^{\alpha (T_c - T)} \sqrt{\phi_c [e^{\alpha (T_c - T)} - 1]}$$

There is one more contribution for the G(T): from **phonon modes** that shift their characteristic frequency on deformation [J. Frenkel 1946]

$$G_{phonons} \approx -\frac{k_B T}{r_o^3} e^{-\alpha T}$$

...but it turns out to be small



May be we can find Tg from $G \rightarrow 0$?

Fox and Flory, 1950

We now know:
$$G \approx \frac{\kappa}{r_0} \phi_c e^{\alpha(T_c - T)} \sqrt{\phi_c [e^{\alpha(T_c - T)} - 1]}$$

because
$$(z-z_c) \sim \sqrt{\phi - \phi_c}$$

To formulate all this in a 'normal language'

- 1. In order to be a rigid glass, the system has to have $z_{\rm VDW} \ge 12 - 5z_{\rm CO}$ additional physical LJ bonds.
- 2. In a long polymer chain $z_{\rm CO} \approx 2$ and so there should be at least $z_{\rm VDW} \approx 2$ of extra contacts per monomer.

Expanding the exponential to linear order:

 $T_{g} \approx \frac{1}{\alpha_{T}} \left(1 + C - \varphi_{c}^{O} + 2\Lambda \right) - \frac{2\Lambda}{\alpha_{T} n}$

The critical point $\varphi_c = e^{-\alpha_T T_g + C}$

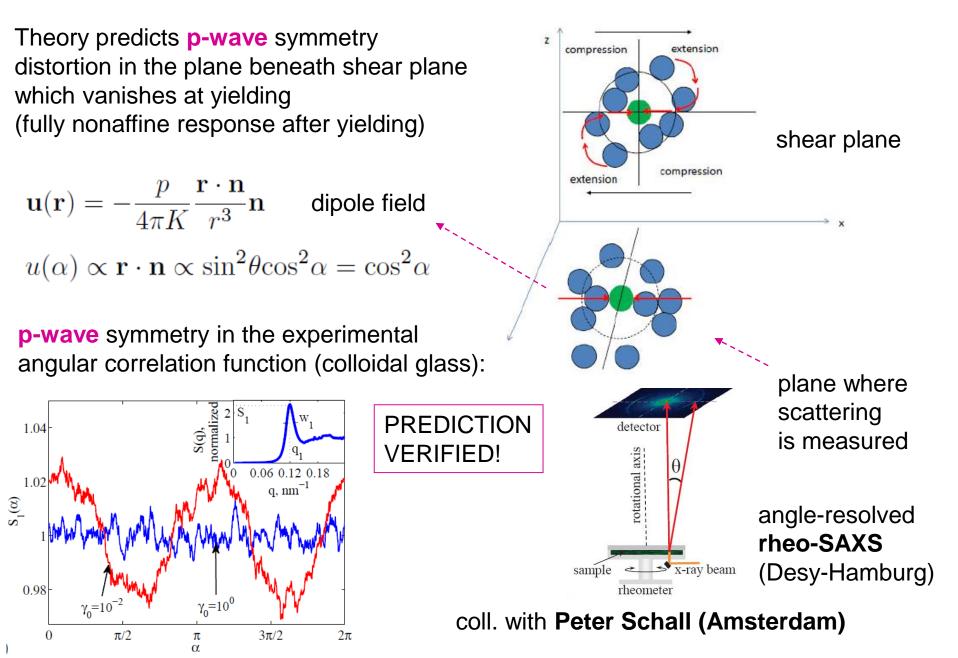
is related to $z_{\rm CO} = 2 - 2/n$

Via
$$\phi_c = \phi_c^{O} - \Lambda \cdot z_{CO}$$

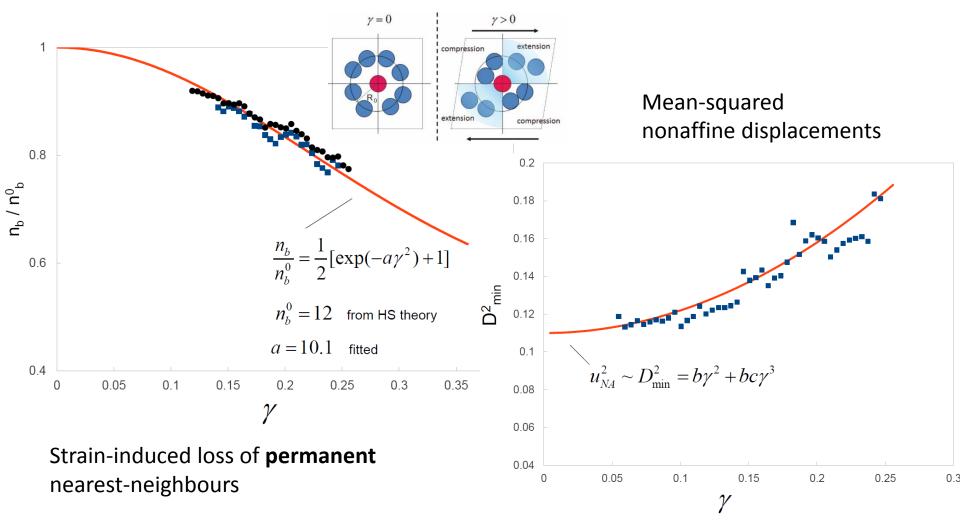
...which solves for Tg

 $\begin{aligned} \Lambda &\sim 0.1 \text{ from experiment} \\ C &= 0.48 \text{ to give Tg=383K} \\ \varphi &= 0.61 e^{-\alpha_T T} \end{aligned}$

Cage distortion and yielding of colloidal glasses



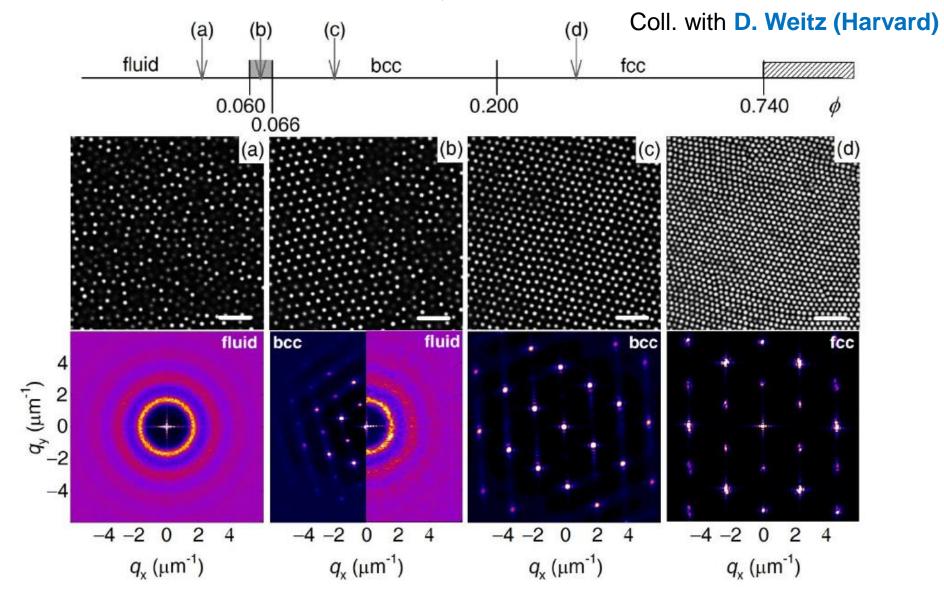
Yielding of colloidal glasses: Direct relation between nonaffine displacements and stress-strain relation



Experimental data from confocal microscopy (S. Egelhaaf & M. Laurati)

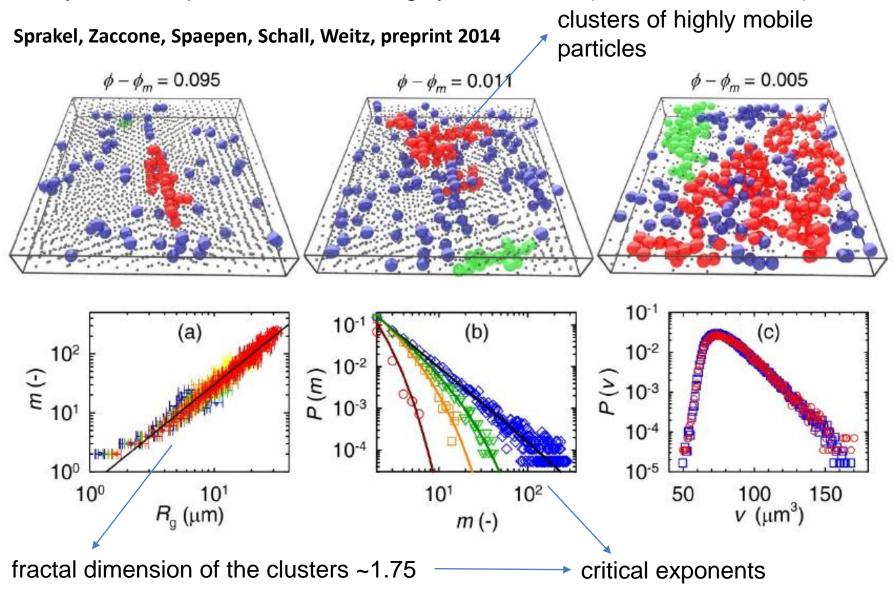
Application: colloidal crystal melting in 3D

Colloidal crystals: the particles (~ 1 micron) and their dynamics can be followed by confocal microscopy (unlike atoms)



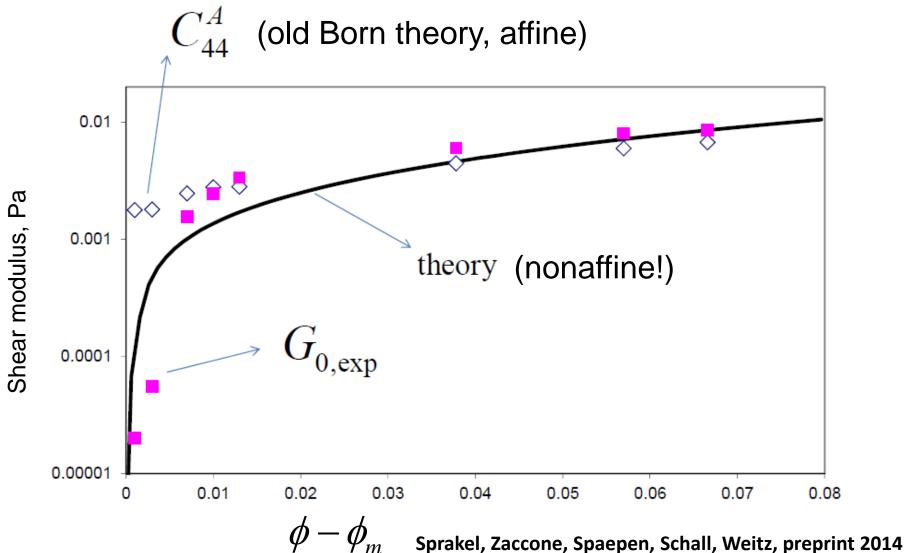
Strong thermal disorder: fluctuations

With colloids, melting is driven by the density φ . Upon approaching the melting point, the dynamics of particles becomes highly **disordered** (thermal fluctuations)



A new melting criterion

Born criterion (1939): crystals melt when the affine shear modulus vanishes Our new criterion: crystals melt when the **nonaffine** shear modulus vanishes, due to thermal fluctuations!



Overview – disordered materials

Nonaffine theory of amorphous materials can explain and describe The difference in material strength

between crystals and glasses

The **glass transition** and mechanical properties of **glassy polymers**

The mechanical failure of **metallic glasses** under strain

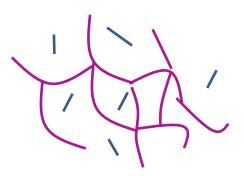
The solid-liquid tr. of 3D crystals with no defects

The link between **interatomic potential** and the **fragility** of **metallic glasses**

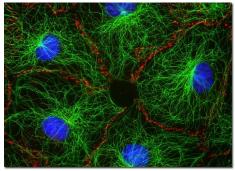
21st century materials: a "disordered" revolution

SOFT

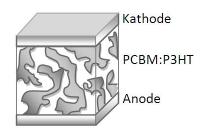
HARD



hydrogels (tissues, drug-delivery foods, cosmetics...)



cells' cytoskeleton



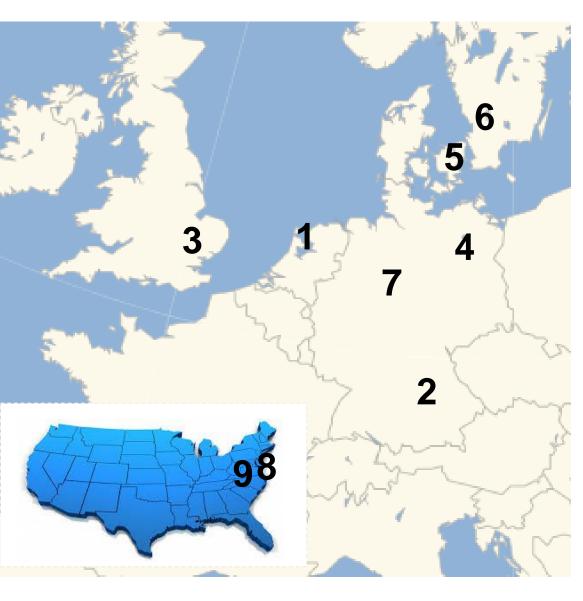
solar cells

AZ Research Group

PhD Students: J. Krausser R. Milkus Post-Docs (from 03.15): M. Abnekar H. Yamani

superalloys metallic glasses

Experimental collaborators



1. Amsterdam

Glasses, shear-banding

• P. Schall, D.Bonn

2. Munich Bio-nanoaggregates

- P. Muller-Buschbaum
- A. Bausch

3. Cambridge Gels, proteins

- T. Knowles
- P. Cicuta, E. M. Terentjev
- **4. Berlin** Gels, nanoparticles • M. Ballauff

5. Copenhagen + 6. Lund Proteins

- B. Vestergaard
- P. Schurtenberger

7. Goettingen Metals

• K. Samwer

8. Harvard

Glasses, Metallic alloys

• D. Weitz, F. Spaepen

9. Amherst Gels

• H.H. Winter

Mathematical approach: master kinetic equation

Until now: **equilibrium** statistical mechanics (Flory-Stockmayer, AHS, percolation), no time-evolution, cannot link molecular level with macroscopic structure & properties

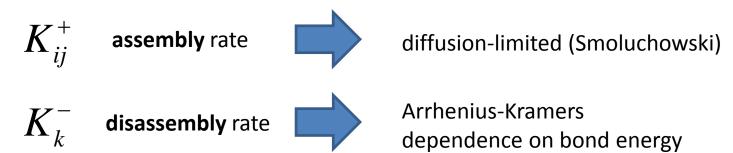
NEW APPROACH: master kinetic equations (NONEQUILIBRIUM!)

$$\frac{dc_k}{dt} = \frac{1}{2} \sum_{i,j=1}^{i+j=k} K_{ij}^+ c_i c_j - c_k \sum_{i=1}^{\infty} K_{ik}^+ c_i$$
$$-K_k^- c_k + \sum_{i=k+1}^{\infty} K_{ik}^- c_i$$

$$i \qquad j \qquad K_{ij}^{+} \qquad k$$

$$k \qquad K_{k}^{-} \qquad k-1$$

$$k \qquad K_{k}^{-} \qquad k -1$$



Free energy of lattice deformation with disorder

$$W = \mathcal{F}_{NA} = \int_{0}^{\underline{u}^{NA}} \delta \underline{f}_{i} \cdot d\underline{x}_{i} = -\frac{1}{2} \underline{\underline{H}}_{ij} \underline{\underline{u}}_{i}^{NA} \underline{\underline{u}}_{j}^{NA}$$
$$= -\frac{1}{2} \left(\underline{\underline{\Xi}}_{i} \cdot \frac{\partial \underline{\underline{\mathring{r}}}_{i}}{\partial \gamma} \right) \gamma^{2}$$
$$\underline{\underline{H}}_{ij} \left. \frac{\partial \underline{\underline{\mathring{r}}}_{j}}{\partial \gamma} \right|_{\gamma \to 0} = \underline{\underline{\Xi}}_{i}$$

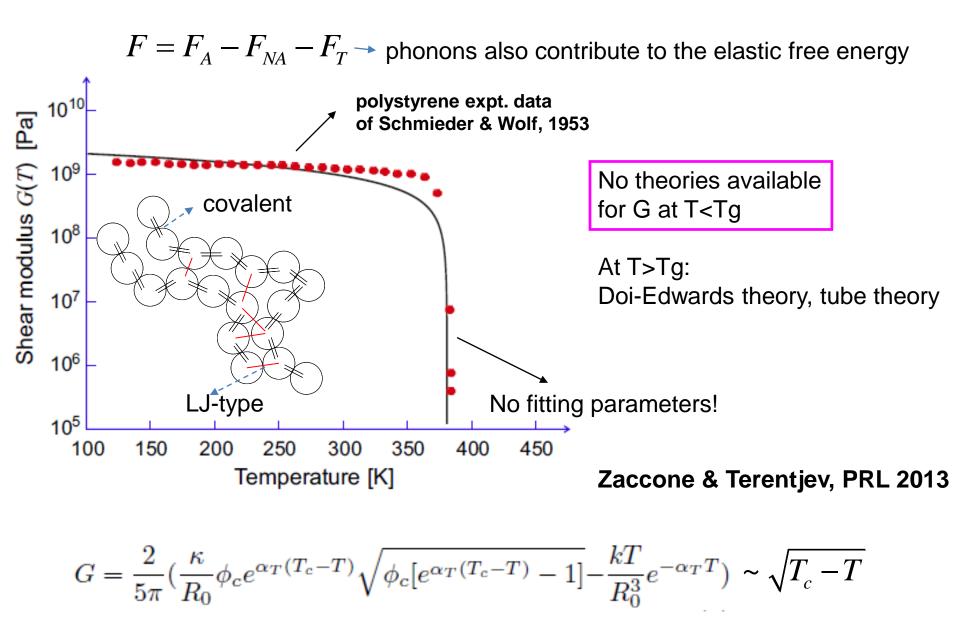
internal work done by nonaffine motions at the expense of lattice energy of deformation

~ force acting on *i* due to affine motions of *j* neighbours

Zaccone & Scossa-Romano, PRB (2011)

$$\mathcal{F} = \mathcal{F}_A - \mathcal{F}_{NA} = \mathcal{F}_A - \frac{1}{2} \left(\underline{\Xi}_i \cdot \frac{\partial \underline{\mathring{r}}_i}{\partial \gamma} \right) \gamma^2$$
affine, "ordered" nonaffine, "disordered"

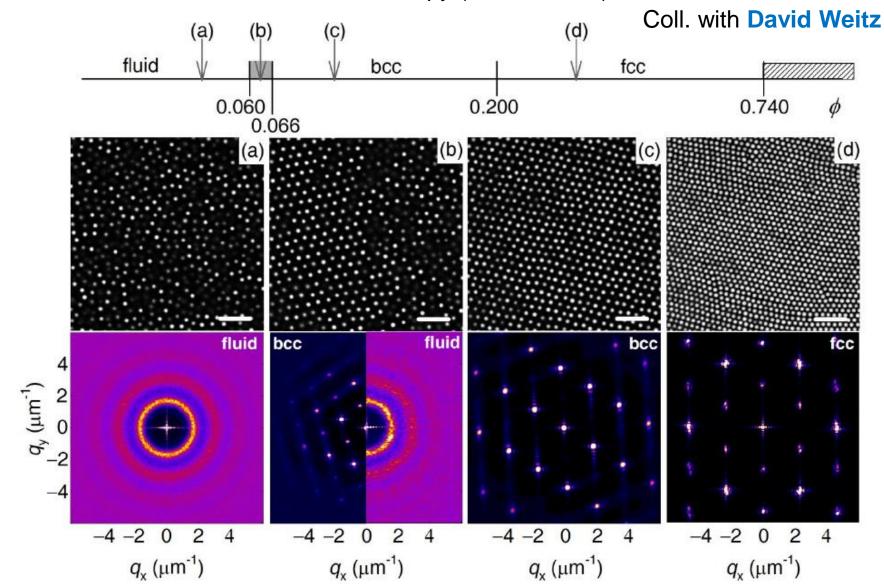
Application (1): polymer glass transition



scaling confirmed by MD simulations in J. Wittmer et al., JCP 2013

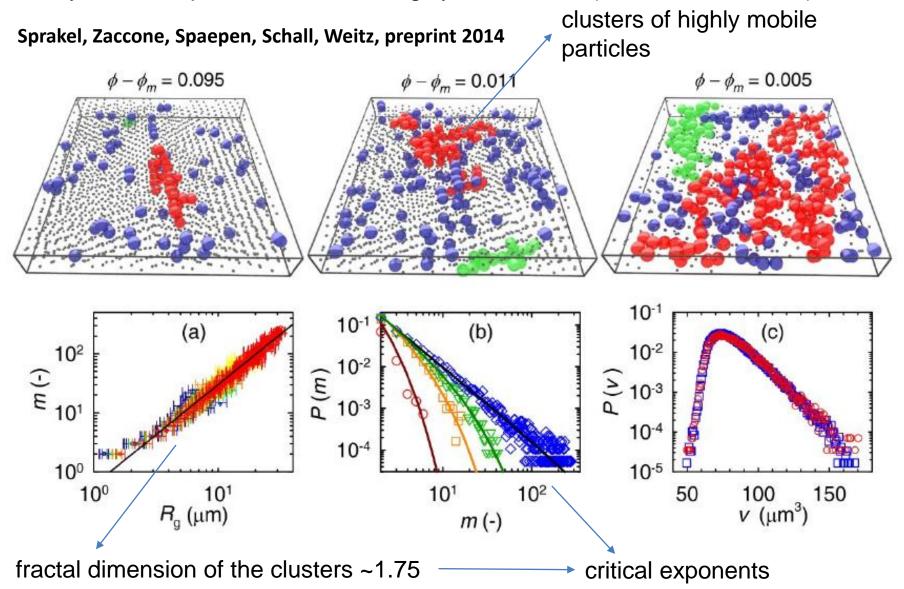
Application (2): crystal melting in 3D

Colloidal crystals: the particles (~ 1 micron) and their dynamics can be followed by confocal microscopy (unlike atoms)



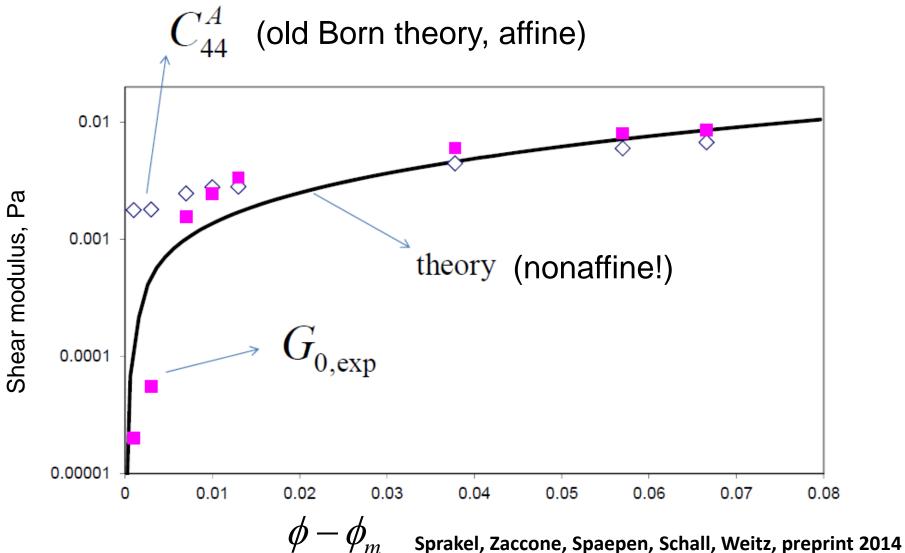
Application (2): crystal melting in 3D

With colloids, melting is driven by the density φ . Upon approaching the melting point, the dynamics of particles becomes highly **disordered** (thermal fluctuations)

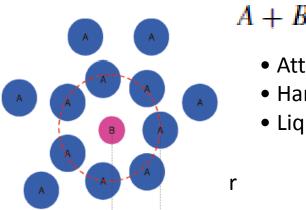


A new melting criterion

Born criterion (1939): crystals melt when the affine shear modulus vanishes Our new criterion: crystals melt when the **nonaffine** shear modulus vanishes, due to thermal fluctuations!



Bimolecular association reactions in crowded environments



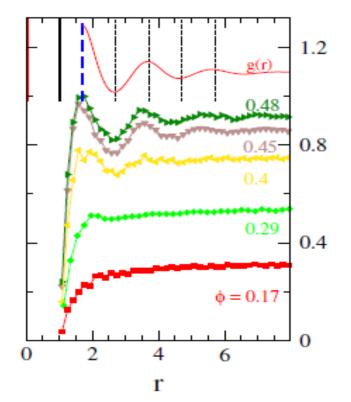
$A + B \rightarrow B$

- Attraction between A and B
- Hard-repulsion among A's
- Liquid-like structure

How does the association rate depend on the crowding packing fraction?

Governing equation (Smoluchowski diff. eq.)

Dorsaz et al. PRL 105, 120601 (2010)



$$\frac{\partial \rho}{\partial t} = D_c \nabla \cdot (\nabla \rho - \beta F \rho).$$

collective diff.

effective force-field due to crowders:

$$-\int \beta F dr = \beta \int \frac{1}{\rho} \frac{d\Pi}{dr} dr = \beta \int \frac{1}{\rho} d\Pi \qquad \text{changes with}$$
r due to g(r) !