

Flow of Glasses 2. Scaling & Multiscale phenomena

Peter Schall University of Amsterdam

Flow of glasses

Lecture 1

- Glass Phenomenology
- Basic concepts: Free volume, elastic fields

Elastic continuum

Strain Field $\epsilon_{\chi Z} \propto \frac{1}{r^3}$

Flow of glasses

Lecture 2

- Correlations in slow flow
- Material stability → Nonequilibrium phase transitions
- Multiscaling

Soft Glasses

Application of stress

Confocal microscopy

Strain and non-affine displacements

Affine transformation : γ

Falk and Langer, PRE 1998.

Strain and non-affine displacements

Affine transformation : γ

$$\Delta \mathbf{r} = \Delta \mathbf{r} + \gamma \Delta \mathbf{r}$$

$$D^{2}_{\min} = \sum_{r=1}^{\text{neighbors}} (\Delta \mathbf{r} - \gamma \Delta \mathbf{r})^{2}$$

Falk and Langer, PRE 1998.

Symmetric part of affine component...

Strain tensor
$$\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix}$$

80

100

60

40

20

0

0

20

Z(µm)

Induce Local Quadrupole $\varepsilon \sim 1/r^3$

60

X(µm)

40

Schall, Weitz, Spaepen, Science (2007)

Spatial Correlations

$$C_{A}(\Delta) = \frac{\left\langle A(\bar{r})A(\bar{r} + \Delta) \right\rangle - \left(\left\langle A \right\rangle\right)^{2}}{\left\langle (A)^{2} \right\rangle - \left(\left\langle A \right\rangle\right)^{2}}$$

- ▲ : difference vector
 ⟨ ⟩ : spatial average

$$A(r+\Delta)$$

Strain correlation $: A = \mathcal{E}_{XZ}$

Non-affine correlation : $A = D^2_{min}$

Yielding: 2nd order transition

A. Ghosh, V. Chikkadi, P. Schall (preprint 2015)

Yielding: 2nd order transition

A. Ghosh, V. Chikkadi, P. Schall (preprint 2015)

Sheared Granulate – Force fluctuations

...towards faster flow

1. Transition to Driven flows

1. Transition to Driven flows

Anisotropic Strain correlations

Shear banding transition

Shear banding transition

V. Chikkadi, G.Wegdam, B. Niehuis, P.S., PRL 2011 V. Chikkadi, P.S., PRE 2012

Shear banding transition

V. Chikkadi, G.Wegdam, B. Niehuis, P.S., PRL 2011 V. Chikkadi, P.S., PRE 2012

First order transition – diffusion time scale

V. Chikkadi, et al. Phys. Rev. Lett. (2014)

P. Schall, Harvard University

First order transition ?

 ζ : Time evolution What is the right order parameter ?

First order transition ?

Dynamic Order Parameter (Garrahan, Chandler 2009) $K = \sum_{i=1}^{N} \sum_{t=0}^{t_{obs}} |\delta r_i|^2$ extensive in Space AND Time

First order transition ?

Structural transition ?

Structural transition ?

D. Denisov, T. Dang, B. Struth, P.S., Sci. Rep. (2013)

Origin of material failure?

"Mechanical Spectroscopy"

Origin of yielding?

"Mechanical Spectroscopy"

Linear Response: $stress = G \gamma_0 sin(\omega t) + G \gamma_0 cos(\omega t)$ storage storagest

Yielding: Oscillatory Shear

Rheology

Structure

Solid and liquid-like structure factor

D. Denisov, T. Dang, B. Struth, P.S., arXive (2013)

Yielding: Oscillatory Shear

Rheology

Structure

Yielding: Oscillatory Shear Rheology + Struct. Order parameter

...towards lower density

Foam Simulations

unjammed

φ ~ <u>0.84</u>

0 ~ 1

jammed

Collaboration with M. van Hecke (Leiden)

P. Schall, University of Amsterdam

0.03

2. Transition to low density

2. Transition to low density

Pair correlation of active spots

V. Cikkadi, E. Woldhuis, M. van Hecke, P. Schall (preprint 2015)

Scaling of velocity fluctuations?

E. Woldhuis, V. Chikkadi, P. Schall, M. van Hecke (preprint 2015)

Scaling of velocity fluctuations?

E. Woldhuis, V. Chikkadi, P. Schall, M. van Hecke (preprint 2015)

Scaling of higher moments

4th moment

6th moment

Scaling of higher moments

Temporal heterogeneity

$$E_d = \left< \Delta v^2 \right>_x / \left< \Delta v^2 \right>_{xt}$$

Spatial heterogeneity

$$IPR = \left< \Delta v^4 \right> / \left< \Delta v^2 \right>^2$$

Conclusions

Elastic coupling

 → highly correlated, intermittent flow

Material failure (yielding, banding)
 → Nonequilibrium phase transitions

• Evidence of Universality

• Multiscaling: intermittency towards slow, dense flow

Thanks to

Vijay Chikkadi (PhD, now Post doc)

Dmitry Denisov (Post Doc)

Soft Matter Group Amsterdam

