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Introduction

• Energy and enstrophy are conserved in 2D Navier-Stokes equations. 

• Forward cascade of energy is blocked, since enstrophy is positive and definite. 
(Boffetta, Ann. Rev. Fluid Mech 2012) 

• Energy and Helicity are invariants of 3D Navier-Stokes equations. 

• Both cascade forward, from large scales to small scales.                                 
(Chen, Phys. Fluids 2003) 

• Helicity could be positive or negative.  

• Each Fourier mode of velocity could be decomposed into positive and negative 
helical modes.   

What happens when we change the relative weight of the positive 
and the negative helicity modes? 
 



Helical decompositionHelical-decimated Navier-Stokes equations

I Following Wale↵e, Phys. Fluids (1992)

u(k, t) = u+(k, t) + u�(k, t),

u±(k, t) = u±(k, t)h±(k)

where h±(k) are the eigenvectors of the curl operator ik⇥ h±(k) = ±kh±(k),
u±(k, t) are the time-dependent scalar co-e�cients.

I Projection operator:

P±(k) ⌘
h±(k)⌦ h±(k)⇤

h±(k)⇤ · h±(k)

u±(k, t) = P±(k)u(k, t)

I Decimated Navier-Stokes equations in Fourier space:

@tu±(k, t) = P±(k)Nu± (k, t) + ⌫k2u±(k, t) + f±(k, t)

where ⌫ is kinematic viscosity and f is external forcing.

I The non-linear term Nu± (k, t) = FT (u± ·ru± �rp),
contains 8 possible triadic interactions q = k+ p which fall into four classes.



Classes of triadic interactions in NS equations 

Classes of triadic interactions in NS equations 

F-type: When large wavenumbers 
have opposite sign, smallest one is 
unstable and could transfer energy 
only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +). 

• Energy and helicity are conserved for 
each individual triad. 

• Triads with only u+, i.e. Class-I, lead to 
reversal of energy cascade. 

• Energy spectra in the inverse 
cascade regime shows a  k-5/3 slope.

R-type: When large wavenumbers have same sign, middle one is unstable and could 
transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].
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F-type: When large wavenumbers have same sign, middle one is unstable 
and could transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

R-type: When large wavenumbers have opposite sign, smallest one is 
unstable and could transfer energy only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +).
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Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.
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Partial Helical-decimation
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Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.

What happens in between??  
when we give different weights to different class of triads…

Helical-decimated Navier-Stokes equations

I Modified projection operator:

P+
↵ (k)u(k, t) = u+(k, t)+✓↵(k)u�(k, t)

where ✓↵(k) is 0 with probability ↵
and is 1 with probability 1� ↵.

I We consider triads of Class-I with
probability 1, Class-III with probability
1� ↵ and Class-II and Class-IV with
probability (1� ↵)2.

I ↵ = 0 ! Standard Navier-Stokes.
↵ = 1 ! Fully helical-decimated NS.

I Critical value of ↵ at which forward
cascade of energy stops?
alternatively, inverse cascade of energy
stops if forced at small scales.

Pseudo-spectral DNS on a triply periodic
cubic domain of size L = 2⇡ with resolutions
upto 5123 collocation points.



Evolution of Energy and helicity

• The peaks suggest the building up of the energy at forced large scales before being able 
to transfer to the small scales.  

• The cascade of energy starts only when helicity becomes active, i.e., modes with 
negative helicity becomes energetic. 

• With increase in α the peak grows, a signature of inverse cascade.

• Pseudo-spectral DNS on a triply periodic cubic domain of size L = 2π with resolutions up to 5123 collocation points. 

Inverse cascade

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20

E
n

er
g

y

t

α = 0.0

α = 0.1

α = 0.3

α = 0.5

α = 0.7

α = 0.9

α = 0.95

α = 0.99

α = 0.999

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

H
/(

k
fE

)

t

α = 0.0

α = 0.1

α = 0.3

α = 0.5

α = 0.7

α = 0.9

α = 0.95

α = 0.99

α = 0.999



Robustness of energy cascade 

• Spectra for all values of α showing 
k-5/3 suggest the forward cascade of    
to be strongly robust. 

• Unless we kill almost all the modes of 
one helicity-type energy always finds 
a way to reach small scales. 

• The energy flux also remains 
unaffected by the decimation until   
 α  is very close to 1. 

• Critical value of α  is ~ 1 !
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Reaction of negative modes

• The E+(k) does not change with decimation.  
• Invariance of parity is restored through scaling of E-(k) 

by the factor (1-α).  

Chen, Phys. Fluids 2003Thank you!

E±(k) ⇠ C1✏
2/3
E k�5/3


1± C2

✓
✏H
✏E

◆
k�1

�
,

where ✏E is the mean energy dissipation rate and ✏H is the mean helicity dissipation rate.
I As we increase ↵, the contribution of triads leading to inverse energy cascade grows.
I Only when ↵ is very close to 1 inverse energy cascade takes over the forward cascade.
I Critical value of ↵ may have Reynolds number dependence!
I Can both forward and inverse cascade co-exist?
I What about intermittency in the forward cascade regime at changing ↵.
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where ✏E is the mean energy dissipation rate
and ✏H is the mean helicity dissipation rate.

I As we increase ↵, the contribution of triads leading to inverse
energy cascade grows.

I Only when ↵ is very close to 1 inverse energy cascade takes
over the forward cascade.

I Critical value of ↵ may have Reynolds number dependence!

I Can both forward and inverse cascade co-exist?

I What about intermittency in the forward cascade regime at
changing ↵.
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where ✏E is the mean energy dissipation rate and ✏H is the mean helicity dissipation rate.
I As we increase ↵, the contribution of triads leading to inverse energy cascade grows.
I Only when ↵ is very close to 1 inverse energy cascade takes over the forward cascade.
I Critical value of ↵ may have Reynolds number dependence!
I Can both forward and inverse cascade co-exist?
I What about intermittency in the forward cascade regime at changing ↵.
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where ✏E is the mean energy dissipation rate and ✏H is the mean helicity dissipation rate.
I As we increase ↵, the contribution of triads leading to inverse energy cascade grows.
I Only when ↵ is very close to 1 inverse energy cascade takes over the forward cascade.
I Critical value of ↵ may have Reynolds number dependence!
I Can both forward and inverse cascade co-exist?
I What about intermittency in the forward cascade regime at changing ↵.
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Summary

• As we increase decimation of the modes with negative helicity (α), the 
contribution of triads leading to inverse energy cascade grows. 

• The forward cascade of energy is very robust in 3D turbulence. It requires only 
a few negative modes to act as catalyst to transfer energy forward. 

• Only when α is very close to 1, i.e., we decimate almost all modes of one 
helical sign, inverse energy cascade takes over the forward cascade. 

• We observe a strong tendency to recover parity invariance even in the 
presence of an explicit parity-invariance symmetry breaking (α >0).

• What about abrupt symmetry breaking at some kc?  

• can we stop the cascade by killing all negatives modes from k>kc?  

• or can we start it at our wish (killing all modes up to kc)? 

• What about intermittency in the forward cascade regime at changing α?



Classes of triadic interactions in NS equations 

F-type: When large wavenumbers 
have opposite sign, smallest one is 
unstable and could transfer energy 
only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +). 

• Energy and helicity are conserved for 
each individual triad. 

• Triads with only u+, i.e. Class-I, lead to 
reversal of energy cascade. 

• Energy spectra in the inverse 
cascade regime shows a  k-5/3 slope.

R-type: When large wavenumbers have same sign, middle one is unstable and could 
transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].
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• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

R-type: When large wavenumbers have opposite sign, smallest one is 
unstable and could transfer energy only to large wavenumbers, for both 
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Helicity 
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Recovery of parity invariance

• The E-(k) becomes higher than E+(k) in the inertial range 
with increasing α. 

• Negative modes transfer energy more efficiently. 
• Invariance of parity is restored through scaling of E-(k) by 

the factor (1-α)  
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