# On the role of the helicity in the energy transfer in three-dimensional turbulence 

Ganapati Sahoo and Luca Biferale

University of Rome Tor Vergata, Italy<br>Flowing Matter Across the Scales, March 24-27, 2015, Rome

- Energy and enstrophy are conserved in 2D Navier-Stokes equations.
- Forward cascade of energy is blocked, since enstrophy is positive and definite. (Boffetta, Ann. Rev. Fluid Mech 2012)
- Energy and Helicity are invariants of 3D Navier-Stokes equations.
- Both cascade forward, from large scales to small scales. (Chen, Phys. Fluids 2003)
- Helicity could be positive or negative.
- Each Fourier mode of velocity could be decomposed into positive and negative helical modes.

What happens when we change the relative weight of the positive and the negative helicity modes?

- Following Waleffe, Phys. Fluids (1992)

$$
\begin{aligned}
\mathbf{u}(\mathbf{k}, t) & =\mathbf{u}^{+}(\mathbf{k}, t)+\mathbf{u}^{-}(\mathbf{k}, t) \\
\mathbf{u}^{ \pm}(\mathbf{k}, t) & =u^{ \pm}(\mathbf{k}, t) \mathbf{h}^{ \pm}(\mathbf{k})
\end{aligned}
$$

where $\mathbf{h}^{ \pm}(\mathbf{k})$ are the eigenvectors of the curl operator $i \mathbf{k} \times \mathbf{h}^{ \pm}(\mathbf{k})= \pm k \mathbf{h}^{ \pm}(\mathbf{k})$, $u^{ \pm}(\mathbf{k}, t)$ are the time-dependent scalar co-efficients.

- Projection operator:

$$
\begin{gathered}
\mathcal{P}^{ \pm}(\mathbf{k}) \equiv \frac{\mathbf{h}^{ \pm}(\mathbf{k}) \otimes \mathbf{h}^{ \pm}(\mathbf{k})^{*}}{\mathbf{h}^{ \pm}(\mathbf{k})^{*} \cdot \mathbf{h}^{ \pm}(\mathbf{k})} \\
\mathbf{u}^{ \pm}(\mathbf{k}, t)=\mathcal{P}^{ \pm}(\mathbf{k}) \mathbf{u}(\mathbf{k}, t)
\end{gathered}
$$

- Decimated Navier-Stokes equations in Fourier space:

$$
\partial_{t} \mathbf{u}^{ \pm}(\mathbf{k}, t)=\mathcal{P}^{ \pm}(\mathbf{k}) \mathbf{N}_{u^{ \pm}}(\mathbf{k}, t)+\nu k^{2} \mathbf{u}^{ \pm}(\mathbf{k}, t)+\mathbf{f}^{ \pm}(\mathbf{k}, t)
$$

where $\nu$ is kinematic viscosity and $\mathbf{f}$ is external forcing.

- The non-linear term $\mathbf{N}_{u} \pm(\mathbf{k}, t)=\mathcal{F} T\left(\mathbf{u}^{ \pm} \cdot \nabla \mathbf{u}^{ \pm}-\nabla p\right)$, contains 8 possible triadic interactions $\mathbf{q}=k+p$ which fall into four classes.




## What happens in between??

when we give different weights to different class of triads...

- Modified projection operator:

$$
\mathcal{P}_{\alpha}^{+}(\mathbf{k}) \mathbf{u}(\mathbf{k}, t)=\mathbf{u}^{+}(\mathbf{k}, t)+\theta_{\alpha}(\mathbf{k}) \mathbf{u}^{-}(\mathbf{k}, t)
$$

where $\theta_{\alpha}(\mathbf{k})$ is 0 with probability $\alpha$ and is 1 with probability $1-\alpha$.

- We consider triads of Class-I with probability 1, Class-III with probability $1-\alpha$ and Class-II and Class-IV with probability $(1-\alpha)^{2}$.
- $\alpha=0 \rightarrow$ Standard Navier-Stokes.
$\alpha=1 \rightarrow$ Fully helical-decimated NS.
- Critical value of $\alpha$ at which forward cascade of energy stops? alternatively, inverse cascade of energy stops if forced at small scales.
- Pseudo-spectral DNS on a triply periodic cubic domain of size $L=2 \pi$ with resolutions up to $512^{3}$ collocation points.


- The peaks suggest the building up of the energy at forced large scales before being able to transfer to the small scales.
- The cascade of energy starts only when helicity becomes active, i.e., modes with negative helicity becomes energetic.
- With increase in a the peak grows, a signature of inverse cascade.
- Spectra for all values of a showing $k^{-5 / 3}$ suggest the forward cascade of to be strongly robust.
- Unless we kill almost all the modes of one helicity-type energy always finds a way to reach small scales.
- The energy flux also remains unaffected by the decimation until $a$ is very close to 1 .
- Critical value of $a$ is $\sim 1$ !



## Chen, Phys. Fluids 2003

$$
E^{ \pm}(k) \sim C_{1} \epsilon_{E}^{2 / 3} k^{-5 / 3}\left[1 \pm C_{2}\left(\frac{\epsilon_{H}}{\epsilon_{E}}\right) k^{-1}\right]
$$

where $\epsilon_{E}$ is the mean energy dissipation rate and $\epsilon_{H}$ is the mean helicity dissipation rate.


- The $E^{+}(k)$ does not change with decimation.
- Invariance of parity is restored through scaling of $E^{-}(k)$ by the factor ( $1-a$ ).

- As we increase decimation of the modes with negative helicity ( $a$ ), the contribution of triads leading to inverse energy cascade grows.
- The forward cascade of energy is very robust in 3D turbulence. It requires only a few negative modes to act as catalyst to transfer energy forward.
- Only when a is very close to 1 , i.e., we decimate almost all modes of one helical sign, inverse energy cascade takes over the forward cascade.
- We observe a strong tendency to recover parity invariance even in the presence of an explicit parity-invariance symmetry breaking ( $a>0$ ).
- What about abrupt symmetry breaking at some $\mathrm{k}_{\mathrm{c}}$ ?
- can we stop the cascade by killing all negatives modes from $k>k_{c}$ ?
- or can we start it at our wish (killing all modes up to $\mathrm{k}_{\mathrm{c}}$ ) ?
- What about intermittency in the forward cascade regime at changing a?

R-type: When large wavenumbers have same sign, middle one is unstable and could transfer energy to both small and large wavenumbers;

- predominantly to the smallest wavenumber if it has the same sign [Class-I $(+,+,+)]$.
- mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

F-type: When large wavenumbers have opposite sign, smallest one is unstable and could transfer energy only to large wavenumbers, for both Class-III (+, -, +) and Class-IV (-, -, +).


- Energy and helicity are conserved for each individual triad.
- Triads with only u+, i.e. Class-I, lead to reversal of energy cascade.
- Energy spectra in the inverse cascade regime shows a $k^{-5 / 3}$ slope.
erc Helicity


## European Research Council Spectrum of helicity $|\mathrm{H}(\mathrm{k})|$




- The $\mathrm{E}^{-}(\mathrm{k})$ becomes higher than $\mathrm{E}^{+}(\mathrm{k})$ in the inertial range with increasing a.
- Negative modes transfer energy more efficiently.
- Invariance of parity is restored through scaling of $E^{-}(k)$ by the factor (1-a)

