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scales (i.e., the microscale), or through global warming attributable to addition-
al greenhouse gases. These perturbed clouds include possibly all tropospheric 
clouds, including contrails which are a direct consequence of anthropogenic 
infl uences, and may include polar stratospheric clouds as well.

What are the practical considerations of this network? For individual mod-
els that can encompass at most three orders of magnitude of spatial (horizontal) 
scales, we need to rethink carefully how to use these in the network. On the 
smallest scale, direct numerical simulations (DNS) are used, ranging from the 
millimeter scale to the 1-meter scale. Large eddy simulations (LES) resolve 
partly the turbulence and the individual clouds up to a scale of 100 km but need 
to parameterize microphysics and small-scale turbulence. At the next level, 
cloud-resolving models (CRMs) address cloud clusters up to scales of 1000 
km, but these require additional parameterized turbulence and clouds for more 
coarse CRMs in the boundary layer (see Grabowski and Petch, this volume). 
On the largest scale, general circulation models (GCMs) are employed. They 
have the obvious advantage of not requiring lateral boundary conditions; how-
ever, as they operate at resolutions of typically 100 km, they fail to represent 
explicitly most of the cloud-controlling factors and essential cloud processes. 
Perhaps surprisingly, the effects of perturbed clouds in our climate system 
have been primarily studied by using these GCMs. One important theme that 
emerged from our discussions is the need to develop a more optimal use of 
this hierarchical network of models to answer questions on the representa-
tion of clouds in our climate system. This is a diffi cult task, as we do not 
yet understand completely how the various interactions propagate across the 
many scales.

Similar arguments hold for experimental research, which ranges from small-
scale laboratory experiments that address microphysical issues to large-scale 
fi eld experiments and global satellite observations.
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Figure 12.1 Depiction of the continuum  of  relevant  cloud-related processes across 
the full range of spatiotemporal scales,  showing  the  underlying  categorical  behavior 
(gray text) from which processes emerge.
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Boussinesq equations 
High-wavenumber energy spectra of rotating Boussinesq 3

The Boussinesq system for a stably stratified flow in a rotating frame is given by:

D
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where u is the velocity, w is its vertical component, p is the e↵ective pressure and F is an

external input or force. The total density is given by ⇢

T

(x) = ⇢0 � bz + ⇢(x), such that

|⇢| ⌧ |bz| ⌧ ⇢0 where ⇢0 is the constant background, b is constant and larger than

zero for stable stratification in the vertical z-coordinate, ⇢ is the density fluctuation.

The density in normalized to ✓ = ⇢(g/b⇢0)
1/2 which has the dimensions of velocity. The

Coriolis parameter f = 2⌦ where ⌦ is the constant rotation rate about the z-axis, the

Brunt-Väisälä frequency N = (gb/⇢0)
1/2, ⌫ = µ/⇢0 is the kinematic viscosity and 

is the mass di↵usivity coe�cient. We assume periodic or infinite boundary conditions

with Prandtl number Pr = ⌫/ ⇠ O(1). The relevant non-dimensional parameters for

this system are the Rossby number Ro = f
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/f and the Froude number Fr = f
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/N ,
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)1/3 is the non-linear frequency given input rate of energy ✏

f

Smith &

Wale↵e (2002). Thus Ro and Fr are the ratios of rotation and stratification timescales

respectively to the nonlinear timescale.

There are three overlapping ideas from turbulence theory which we will exploit in

this analysis of the Boussinesq equations. First from Kolmogorov (1941) the notion of a

universal range of scales governed by the dynamics of the flux of a conserved quantity.

Second, the analysis of Kraichnan (1971) on the inertial ranges of two-dimensional flows

based on the constraint imposed by the joint conservation of both energy and enstrophy.

Kraichnan thus deduced the k

�3 scaling, up to logarithmic correction, of the energy in

Frequency of (gravity-inertial) waves: 
ω2(k) = k-2 [N2 k2

perp + f2 k2
// ] 
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FIG. 3. Normalized wave vector and frequency spectrum E11(k, ω)/E11(k) for the run with " = 8. Darker regions indicate
larger energy density. The dashed curve indicates the dispersion relation for inertial waves. (Top left) Normalized E11(kx =
0, ky = 0, kz, ω). (Top right) Normalized E11(kx = 0, ky = 1, kz, ω). (Bottom left) Normalized E11(kx = 0, ky = 5, kz, ω).
(Bottom right) Normalized E11(kx = 0, ky = 10, kz, ω). Note from the maximum values in the color bars how the modes close
to the dispersion relation concentrate most of the energy in the first two cases (ky = 0 and ky = 1), while as ky is increased
energy becomes more spread.

It should also be noted that in Fig. 2 the energy does not accumulate near the modes with
τω = τNL, as it is expected in theories dealing with the concept of critical balance.24 In critical
balance, it is argued that in the case of strong turbulence, energy in the weak turbulence modes
cascades towards larger values of k⊥, while energy in modes with τω < τNL (which are outside the
domain of weak turbulence, and are, therefore, strong) cascade inversely towards smaller values
of k⊥.24, 37 This establishes a balance with τω = τNL; energy accumulates in the modes that satisfy
this balance and then cascades towards larger values of k along this curve. No such accumulation is
visible in Fig. 2, and as only modes with τω < τsw are forced, the energy in the domain τω > τNL

can only come from a transfer from the wave modes to the vortical modes in the direction opposite
to that needed to establish the balance.

B. Wave vector and frequency spectrum

Figure 3 shows the wave vector and frequency spectrum E11(k, ω)/E11(k) for different values
of k, where

E11(k) =
∫

E11(k,ω) dω. (18)

With this choice for the normalization, the frequencies that concentrate most of the energy for each
k are more clearly visible.

When kx = 0, ky = 0, and kz is varied, most of the energy is concentrated near ω = 2", especially
for kz < 10. For larger values of kz, the width of the band that concentrates most of the energy increases
(compare this with the regions in Fig. 2 corresponding to modes with τω(k) < τsw(k), and to modes
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universal range of scales governed by the dynamics of the flux of a conserved quantity.
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based on the constraint imposed by the joint conservation of both energy and enstrophy.
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Ro= U/[Lf]  << 1 ,   Fr= U/[LN]<< 1	
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤
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FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν &= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

Do waves alter the overall dynamics? 
Stable Boussinesq stratification	
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resolution spectra at Fr¼ 0.05 and 0.01 are similar. Note
that the buoyancy wavenumber, marked (along with kO) by
arrows in Fig. 4, is not resolved in the horizontal by the low-
est-resolution simulations at any stratification.

As the horizontal resolution is increased, the hypervis-
cosity coefficient !h is reduced and the kh spectra extend to
higher wavenumbers. The spectra vary in two nontrivial
ways as Dx decreases towards Dz. First, the power law range
gets steeper as finer horizontal scales are resolved, and at the
highest resolution is noticeably steeper than k"5=3

h . For
Fr¼ 0.02, the measured slopes are –1.6, –1.9, –2.0, and –2.1
for Dx=Lb¼ 0.4, 0.2, 0.1, and 0.05. For Fr¼ 0.01, the high-
est-resolution simulation has a slope of –2.2.

In addition to steepening, a transition in the kh spectrum
emerges as the horizontal resolution increases. At intermedi-
ate resolutions (e.g., Dx=Lb¼ 0.4 and 0.2 for Fr¼ 0.2) there
is a shallow tail in the spectrum. The position of this tail
appears to scale with kd, implying that it is likely an artifact
of the small-scale dissipation, possibly due to the bottleneck
effect.45 However, at the highest resolutions (Dx=Lb¼ 0.1
and 0.05 for Fr¼ 0.2) the location of the spectral transition
appears to be independent of kd; this robustness strongly sug-
gests that the spectral transition in the high-resolution simu-
lations is a real feature of the flow. In these high-resolution
simulations, the energy spectrum has two distinct ranges
between the forcing and dissipation scales: a large-scale
power law range with a slope of around –2 and a small-scale
bump. The position of the bump appears to be given by kb,
which can be seen by comparing the spectra at different reso-
lutions and stratifications with the arrows in Fig. 4 (see also
Fig. 10 below). We refer to the portions of the spectrum
upscale and downscale of kb as the mesoscale and microscale

ranges, respectively, based on the corresponding ranges in
the atmosphere. Simulation B5 has the widest microscale
range, with kd=kb¼ 8.

Figure 5 compares the energy spectra from simulations
with Fr¼ 0.02 to corresponding runs with double the vertical
resolution. Two cases are considered: Dx=Lb¼ 0.2, in which
the microscale transition is misrepresented as a shallow tail,
and Dx=Lb¼ 0.1, which gives a reasonably well-resolved
transition. In both cases, the sensitivity of the spectra to

FIG. 4. (Color online) Horizontal wavenumber spectra of total energy for
(a) Fr¼ 0.05, (b) 0.02, and (c) 0.01. Dash patterns correspond to horizontal
resolutions as indicated, and arrows mark the mean values of kb and kO.

FIG. 3. (Color online) Horizontal slices through the z¼ 0 plane of xz=N for
Fr¼ 0.02 and Dx=Lb¼ 0.05 (run B5 in Table I) at the same time as in Fig. 2.
Unlike in Fig. 2, the entire domain is shown.
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est-resolution simulations at any stratification.

As the horizontal resolution is increased, the hypervis-
cosity coefficient !h is reduced and the kh spectra extend to
higher wavenumbers. The spectra vary in two nontrivial
ways as Dx decreases towards Dz. First, the power law range
gets steeper as finer horizontal scales are resolved, and at the
highest resolution is noticeably steeper than k"5=3

h . For
Fr¼ 0.02, the measured slopes are –1.6, –1.9, –2.0, and –2.1
for Dx=Lb¼ 0.4, 0.2, 0.1, and 0.05. For Fr¼ 0.01, the high-
est-resolution simulation has a slope of –2.2.

In addition to steepening, a transition in the kh spectrum
emerges as the horizontal resolution increases. At intermedi-
ate resolutions (e.g., Dx=Lb¼ 0.4 and 0.2 for Fr¼ 0.2) there
is a shallow tail in the spectrum. The position of this tail
appears to scale with kd, implying that it is likely an artifact
of the small-scale dissipation, possibly due to the bottleneck
effect.45 However, at the highest resolutions (Dx=Lb¼ 0.1
and 0.05 for Fr¼ 0.2) the location of the spectral transition
appears to be independent of kd; this robustness strongly sug-
gests that the spectral transition in the high-resolution simu-
lations is a real feature of the flow. In these high-resolution
simulations, the energy spectrum has two distinct ranges
between the forcing and dissipation scales: a large-scale
power law range with a slope of around –2 and a small-scale
bump. The position of the bump appears to be given by kb,
which can be seen by comparing the spectra at different reso-
lutions and stratifications with the arrows in Fig. 4 (see also
Fig. 10 below). We refer to the portions of the spectrum
upscale and downscale of kb as the mesoscale and microscale

ranges, respectively, based on the corresponding ranges in
the atmosphere. Simulation B5 has the widest microscale
range, with kd=kb¼ 8.

Figure 5 compares the energy spectra from simulations
with Fr¼ 0.02 to corresponding runs with double the vertical
resolution. Two cases are considered: Dx=Lb¼ 0.2, in which
the microscale transition is misrepresented as a shallow tail,
and Dx=Lb¼ 0.1, which gives a reasonably well-resolved
transition. In both cases, the sensitivity of the spectra to

FIG. 4. (Color online) Horizontal wavenumber spectra of total energy for
(a) Fr¼ 0.05, (b) 0.02, and (c) 0.01. Dash patterns correspond to horizontal
resolutions as indicated, and arrows mark the mean values of kb and kO.

FIG. 3. (Color online) Horizontal slices through the z¼ 0 plane of xz=N for
Fr¼ 0.02 and Dx=Lb¼ 0.05 (run B5 in Table I) at the same time as in Fig. 2.
Unlike in Fig. 2, the entire domain is shown.
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Simulations are then continued for another 10sN for every
Dx. Reported values of Fr, sN, Lb, LO, and Ld are based on
time averages of ! and kinetic energy over the last 8sN of the
restarted simulations.

III. OVERVIEW OF SIMULATIONS

Time series of kinetic and potential energy are plotted in
Fig. 1 for Fr¼ 0.02. Kinetic energy increases in the low-re-
solution simulations for the first 10sN, during which time the
flow is essentially two-dimensional. After this time, kinetic
energy decreases, potential energy increases, and the flow
transitions to a statistically stationary three-dimensional
state. The launching of the higher-resolution simulations at
t¼ 40sN is visible in Fig. 1. For our range of parameters, the
Ozmidov scale is an order of magnitude smaller than the
buoyancy scale, and the highest resolution simulations have
Dx " Lb and Dx#LO. The vertical Froude number Frz,
which is computed using the rms horizontal component of
the vorticity x $ $% u, is approximately 1 for all simula-
tions, as expected3,7 (not shown).

Figure 2 shows vertical slices of the y-component of
vorticity from each simulation at Fr¼ 0.02. The physical
structures in the simulation display a significant dependence

on horizontal resolution. At the lowest resolution, the flow
comprises thin, vertically laminar shear layers. As the hori-
zontal resolution increases, structures with aspect ratios
closer to unity begin to emerge. At intermediate resolutions,
these structures resemble intermittent Kelvin–Helmholtz
instabilities. The highest-resolution simulation exhibits a
wide variety of structures: laminar shear layers, Kelvin–
Helmholtz instabilities, and what appears to be patches of
three-dimensional turbulence. Indeed, some of the structures
in the highest-resolution simulation look remarkably iso-
tropic, even at the scale of the shear-layer thickness. Regions
of three-dimensional turbulence are also visible in horizontal
slices of vertical vorticity (Fig. 3) at high resolution.

IV. ENERGY SPECTRA

A. Horizontal spectra

Horizontal wavenumber spectra of total energy are plot-
ted in Fig. 4. These spectra are computed by summing the
energy in each wave vector k over kz and binning into kh
intervals of width Dkh. For kinetic energy, the spectrum is

EKðkhÞ $
X

kh(Dkh=2)k0h<khþDkh=2

1

2
jûðk0Þj2; (11)

for kh corresponding to positive integer multiples of Dkh.
Here hat denotes Fourier coefficient and k

02
h ¼ k

02
x þ k

02
y . The

potential energy spectrum EP(kh) is defined similarly, and
E(kh) : EK(kh)þEP(kh). All spectra are averaged in time
over the last 8sN of the simulations.

For Fr¼ 0.02 (Fig. 4(b)), the spectrum obtained with
the coarsest horizontal resolution has a short power law
range between the forcing and dissipation scales with a spec-
tral slope of around –1.3 (here and below, slopes are meas-
ured by a least-squares power law fit between dimensionless
wavenumbers 6 and 20). Though shallower than the theoreti-
cal value of –5=3, this slope is nevertheless consistent with
previous findings at comparable Froude numbers.4 The low-

FIG. 1. (Color online) Time series of total kinetic energy EK and potential
energy EP in simulations with Fr¼ 0.02. Simulations are spun up with
Dx=Lb¼ 0.9 and then restarted at t¼ 40sN with different horizontal resolutions.

FIG. 2. (Color online) Vertical slices
through the y¼ 0 plane of xy=N for
Fr¼ 0.02 and (from top to bottom)
Dx=Lb¼ 0.9, 0.4, 0.2, 0.1, and 0.05 (runs
B1-B5 in Table I). For clarity, only half
the domain 0 ) x ) L=2 is shown. All
fields are plotted at the end of the
simulation.
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Stratified turbulence: resolving the buoyancy scale Lb	



Horizontal vorticity	
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 Geostrophic Balance 
High-wavenumber energy spectra of rotating Boussinesq 3

The Boussinesq system for a stably stratified flow in a rotating frame is given by:

D
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u+ F (1.1)
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r · u = 0,
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where u is the velocity, w is its vertical component, p is the e↵ective pressure and F is an

external input or force. The total density is given by ⇢

T

(x) = ⇢0 � bz + ⇢(x), such that

|⇢| ⌧ |bz| ⌧ ⇢0 where ⇢0 is the constant background, b is constant and larger than

zero for stable stratification in the vertical z-coordinate, ⇢ is the density fluctuation.

The density in normalized to ✓ = ⇢(g/b⇢0)
1/2 which has the dimensions of velocity. The

Coriolis parameter f = 2⌦ where ⌦ is the constant rotation rate about the z-axis, the

Brunt-Väisälä frequency N = (gb/⇢0)
1/2, ⌫ = µ/⇢0 is the kinematic viscosity and 

is the mass di↵usivity coe�cient. We assume periodic or infinite boundary conditions

with Prandtl number Pr = ⌫/ ⇠ O(1). The relevant non-dimensional parameters for

this system are the Rossby number Ro = f

nl

/f and the Froude number Fr = f
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/N ,

where f
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= (✏
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)1/3 is the non-linear frequency given input rate of energy ✏
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Smith &

Wale↵e (2002). Thus Ro and Fr are the ratios of rotation and stratification timescales

respectively to the nonlinear timescale.

There are three overlapping ideas from turbulence theory which we will exploit in

this analysis of the Boussinesq equations. First from Kolmogorov (1941) the notion of a

universal range of scales governed by the dynamics of the flux of a conserved quantity.

Second, the analysis of Kraichnan (1971) on the inertial ranges of two-dimensional flows

based on the constraint imposed by the joint conservation of both energy and enstrophy.

Kraichnan thus deduced the k

�3 scaling, up to logarithmic correction, of the energy in

à Hydrostatic balance in the vertical	
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Take the curl à “thermal winds”	


	


N ∂yθ = - f ∂zux	


	


N ∂xθ =   f ∂zuy	


	





Boussinesq à Geostrophic Balance 
High-wavenumber energy spectra of rotating Boussinesq 3

The Boussinesq system for a stably stratified flow in a rotating frame is given by:

D

Dt
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One more step (Hide ‘72): dot product with f zxu & horizontal average 
 
à Creation of helicity through 
     rotation and stratification 
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FIG. 1: Temporal evolution of helicity HT (top) and enstro-
phy ZV (bottom), both for Fr ∼ 0.01, and various N/f (see
insets). Oscillations are due to gravity waves.

of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , ∇ · u = 0 ; (2)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all di-
rections and unit aspect ratio; it is parallelized with a
hybrid MPI/OpenMP method [18], and has been run
on grids of up to 81963 points (for short times), using
up to 98304 compute cores. The Froude, Rossby and
Reynolds numbers are defined as Fr = urms/[NLint],
Ro = urms/[fLint] (with f = 2Ω), and Re = urmsLint/ν
with urms and Lint =

∫

[EV (k)/k]/EV the rms velocity
and integral scale evaluated around the maximum of en-
strophy with EV the kinetic energy. These parameters
vary in the range 0.006 ≤ Fr ≤ 0.27, 0.012 ≤ Ro ≤ 8.1,
and Re ≈ 3000 for grids of 2563 points, and Re ≈ 8000
using 5123 points. Decay is left to occur for 15 to 30
turn-over times, τNL = Lint/urms. At t = 0, b = 0, and
HT ≈ +0.2; other initial values have been used as well
to ascertain that the results do not depend on them.

In the ideal (ν = 0) case, potential vorticity PV =
−fN + f∂zb − Nωz + ω · ∇b, is a point-wise invariant,
and the total (kinetic + potential) energy ET = EV +EP

is conserved, with respective enstrophies (proportional to
dissipation when ν &= 0), ZV =

〈

ω2
〉

and ZP =
〈

|∇b|2
〉

.
Assuming stationarity, weak nonlinearities and small

dissipation at large scales, one can show that helicity

FIG. 2: Buoyancy b, 5123 grid, Fr = 0.11, Ro = 0.40; vertical
is given by blue arrow; blue and green strata represent ±
variations in b, with sizable fluctuations and structuring.

production in RST is proportional to N/f and to the cor-
relation between buoyancy and vertical shear [19] :start
from geostrophic balance (rhs of eq. (1) set equal to
0), take its curl (giving the usual thermal wind equa-
tion governing the vertically sheared horizontal motions
due to buoyancy gradients), and dot it with the Coriolis
force. Noting further that only u⊥ appears in the re-
sulting expression, writing HT ≡ H⊥ + H+, and finally
taking horizontal averages (denoted 〈.〉

⊥
), one arrives at

[19, 20]:

〈H⊥〉⊥ ≡ 〈u⊥ ·∇× u⊥〉⊥ =
N

f
〈b

∂w

∂z
〉⊥ . (3)

Measurements of 〈H⊥〉⊥,z are found in simulations of
hurricanes to be two orders of magnitude larger than its
vertical component [21, 22]. Note that N/f scaling has
also been advocated, for example in the context of statis-
tical mechanics of non-dissipative geophysical flows [23].
As N/f (proportional to the Rossby deformation radius)
increases, stratification dominates and the Coriolis force
is no longer available to balance gravity, although in that
case another balance involving dissipation may be writ-
ten instead, which improves the preservation of helicity
[24]. Indeed, dissipation is known to play a role in the
overall dynamics, e.g. in the changes of potential vortic-
ity once gravity waves start to break [25].

Results
We have performed 9 runs on grids of 5123 points,

and 36 on 2563 grids, up to past the peak of dissipa-
tion, with similar (but not identical) initial conditions
and N/f ∈ [1/2, 16.7]. Fig. 1 gives the temporal evo-
lution of HT (top) and ZV (bottom) for several flows at

θ 



Asymptotic Expansions & Classical Results

Recovered classical single-scale models:

U(i) = U(i)(
t

⇥
, x,

z

⇥
) Linear small scale internal gravity waves

U(i) = U(i)(t,x, z) Anelastic & pseudo-incompressible models

U(i) = U(i)(⇥t, ⇥2x, z) Linear large scale internal gravity waves

U(i) = U(i)(⇥2t, ⇥2x, z) Mid-latitude Quasi-Geostrophic Flow

U(i) = U(i)(⇥2t, ⇥2x, z) Equatorial Weak Temperature Gradients

U(i) = U(i)(⇥2t, ⇥�1 ⇤(⇥2x), z) Semi-geostrophic flow

U(i) = U(i)(⇥3/2t, ⇥5/2x, ⇥5/2y, z) Kelvin, Yanai, Rossby, and gravity Waves

Klein, 2010	





Atmospheric Flow Regimes

R.K., Ann. Rev. Fluid Mech, 42, 2010

bulk
micro

synopticmesoconvective planetary
[hsc]1 1/ 1/ 2 1/ 3

1/ 3

1/ 2

1/

1
[h

sc
/u

re
f]

1/ 5/2

1/ 5/2

Obukhov
scale

advec
tio

n

inter
nal w

ave
s

aco
ustic

 wave
s

inertial waves

anela
stic

 / p
seu

do-in
compres

sib
le

HPE
+Coriolis

QG

WTG
+Coriolis

PG

Boussi-
nesq

WTG

HPE

Scale-Dependent Models

R.K., Ann. Rev. Fluid Mech., 42, 2010

Classical length scales and dimensionless numbers

Lmeso = ��1 hsc

LRo = ��2 hsc

LOb = ��5/2hsc

Lp = ��3 hsc

Frint ⇥ �

Rohsc ⇥ ��1

RoLRo ⇥ �

Ma ⇥ �3/2

ε: Froude number    
hsc:  density scale height 

ANRV400-FL42-12 ARI 17 November 2009 10:29

Bulk micro SynopticMesoConvective Planetary

1/ε3

1/ε2

1/ε

1/ε5/2

1/ε5/2

1

Ti
m

e 
sc

al
e 

(h
sc

/u
re

f)

Advectio
n

Internal w
aves 

Acoustic
 waves 

Anelastic
/pseudoincompressible

HPE
+Coriolis

QG

WTG
+Coriolis

PG

Boussi-
nesq

WTG

HPE

Length scale (hsc)

Inertial waves

ε

1/ε31/ε21/ε1ε

Obukhov scale

Figure 1
Scaling regimes and model equations for atmospheric flows. The weak-temperature-gradient (WTG) and
hydrostatic primitive equation (HPE) models cover a wide range of spatial scales assuming the associated
advective and acoustic timescales, respectively. The anelastic and pseudoincompressible models for realistic
flow regimes cover multiple spatiotemporal scales (Section 4.3). For similar graphs for near-equatorial flows,
see Majda 2007b, Majda & Klein 2003. PG, planetary geostrophic; QG, quasi-geostrophic.

Importantly, in writing Equation 9, we have merely adopted a transformation of variables, but
no approximations. Together with the definitions in Equations 7 and 8, they are equivalent to the
original version of the compressible flow equations in Equation 5. However, below we employ
judicious choices for the scaling exponents, α[·], and assume solutions that adhere to the implied
scalings in that v||, w̃, π̃ , θ̃ = O(1) and that the partial derivative operators ∂τ , ∇ξ, and ∂z yield O(1)
results when applied to these variables as ε → 0. This allows us to efficiently carve out the essence of
various limit regimes for atmospheric flows without having to go through the details of the asymp-
totic expansions. Figure 1 summarizes the mid-latitude flow regimes discussed in this way below.

The classical Strouhal, Mach, Froude, and Rossby numbers are now related to ε and the
spatiotemporal scaling exponents via

St−1 = L
UT

= εαt

εαx
, Fr2 = γ Ma2 = γU2

C2 = ε3, Ro = εαx−1, (10)

where T, L, U, and C are the characteristic timescale and length scale, horizontal flow velocity,
and sound speed in the rescaled variables from Equations 8 and 9, respectively.

1.4. Remarks
We restrict the discussion here to length scales larger or equal to the density scale height. Of
course, on length scales and timescales comparable with those of typical engineering applications,
turbulence will induce a continuous range of scales. Analyses that exclusively rely on the assumption
of scale separations are of limited value in studying such flows. The interested reader may want
to consult Oberlack (2006) for theoretical foundations and references.
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Polar Extratropics Tropics
O (Ro)  – O (Ro)!0

~ 1 ~ 1
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Az Ay
UH-QGE

UH-QGEUH-QGE
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UNH-QGE I,II
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TNH-QGE I,II TNH-QGE III

TNH-QGE III

TNH-QGE III

SNH-QGE III

SNH-QGE III
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2
π

Figure 4. Classification of the reduced U–Upright, T–Tilted, S–Sideways QG models (see
table 4) as a function of the colatitude ϑ0, and the spatial aspect ratios Az or Ay .
H–hydrostatic, QH–quasi-hydrostatic, NH–non-hydrostatic. With the exception of TNH-QGE
III Az distinguishes between all models in the polar and extratropical regions where Ay =O(1),
while Ay distinguishes between the tropical QGE and TNH-QGE III for which Az = O(1). The
symbol ←→ indicates a continuous transition between different models while indicates
extension of a model to the polar or equatorial regions.

horizontal dominate material advection, D0
t = ∂t + u0 · ∇⊥, as expected of geostrophy.

For the non-orthogonal coordinate representation u0 · ∇⊥ = ũ0∂x̃ + ṽ0∂ỹ for X = Z and
u0 · ∇⊥ = ũ0∂x̃ + w̃0∂z̃ for X = Y.

In the remainder of this section we summarize the essential attributes of each
regime, following the details presented in figure 4, and tables 3 and 4.

(a) Small aspect ratio regime

This regime occurs when Az = o(1), Ay ∼ 1 (see figure 2a). The dominant
contribution from the Coriolis force comes from the local vertical component 2Ωη3.
This assumption leads to an upright geostrophic balance and a description of the slow
dynamics in the extratropical regions in terms of UH-QGE (table 4, equation (3.1)).
The resulting QGE (schematically illustrated in figure 4) are derived in § 4 for the
parameter values given in table 3, and correspond to the classical equations of Charney
(1948, 1971; see also Pedlosky 1979; Salmon 1998) that are valid for large-scale, stably

JFM 2006	





Xu & Fu JPO 2012                               Resolution of 7km, range of 50-500km, 1 s average, for 6 months.         Δ of 1 minute 

spectrum at these wavelengths is caused by the effect of
the instrument noise. To our surprise, the effect of the
instrument noise is substantial even in a region of high
eddy energy with steep spectral slope as illustrated by
this case.
Using the method of Xu and Fu (2011) we remapped

the global SSH spectral slope after removing the noise
and compared it with the original calculation (Fig. 3). As
in Xu and Fu (2011), the areas poleward of 608S and
608N are excluded from the study to avoid the ice in-
fluence on the SSH measurements. The wavelength
range of 70–250 km was selected for computing the
spectral slope. Despite the differences in the values of
spectral slope, the geographic patterns of the two maps
are similar to each other even in some details. After
removing the noise, the spectral slopes have generally
become steeper than the previous estimates, especially
in regions of low eddy energy away from the major
ocean currents. The most important new result is that
the spectral slopes are generally steeper than k22 pole-
ward of the 208 latitudes. The previous results in some
high-latitude regions such as the northeast Pacific and
southeast Pacific show spectral slopes flatter than k22,
implying ‘‘blue’’ spectra in geostrophic velocity, which
are unphysical. These features have been removed in
the new map. Spectral slopes flatter than k22 are present
only in low-latitude regions at places where ageostrophic
effects may become important.
In the high eddy energy regions associated with

the major ocean currents, the slopes become slightly
steeper. These regions include the core regions of the
Gulf Stream, the Kuroshio Extension and the Antarctic
Circumpolar Current (ACC) systems, the Brazil–Malvinas

Confluence, and the Agulhas Current. The steepest
spectral slope of the global ocean is 24.5 6 0.12 (see
error estimation method in Xu and Fu 2011), which is
significantly flatter than the k25 power law predicted by
the original geostrophic turbulence theory (Charney
1971), suggesting that the observed SSH spectral slopes
are flatter than the prediction of the geostrophic turbu-
lence theory everywhere in the ocean.
Recent theoretical work has suggested the rele-

vance of the surface quasigeostrophic (SQG) theory for
interpreting altimeter observations (Held et al. 1995;
Capet et al. 2008; Le Traon et al. 2008). This theory
predicts k211/3 power law for SSH spectrum. To explore
the consistency of the observed spectral slopes with the
SQG theory, Fig. 4 exhibits the distribution of four
categories of regions according the spectral slopes. The
type-1 regions are the areas where the spectral slopes are
indistinguishable from 211/3 within the 95% confidence

FIG. 2. The wavenumber spectrum from Jason-1 altimeter ob-
servations before (black) and after (blue) removing the noise. The
spectra were calculated from the data within a box 108 3 108 box
centered at (2528N, 2408E). The red lines are linear fits in the
wavelength range of 70–250 km. The values of spectral slope are
noted.

FIG. 3. The global distribution of the spectral slopes of SSH
wavenumber spectrum in the wavelength band of 70–250 km esti-
mated from the Jason-1 altimeter measurements (a) before and (b)
after removing the noise. The sign of the slopes was reversed to
make the values positive.
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What’s different in rotating &/or stratified turbulence  
(R/ST)? 

•  Direct and inverse cascades in homogeneous isotropic 
turbulence 

 
•  Bi-directional constant-flux energy cascades & oceanic mixing 

•  Bolgiano-Obukhov scaling and the role of potential energy 

•  Development of large vertical velocity in stratified flows 

•  Role of helicity (velocity-vorticity correlations) 
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤
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FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν &= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

Homogeneous, isotropic turbulence: Navier-Stokes eqs.	
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Figure 2
Normalized dissipation rate D versus Rλ. Direct numerical simulation data from Gotoh et al. (2002),
Ishihara & Kaneda (2002), and Kaneda et al. (2003), together with those compiled by Sreenivasan (1998),
i.e., the data from Cao et al. (1999), Jiménez et al. (1993), Wang et al. (1996), and Yeung & Zhou (1997).
Figure redrawn from Kaneda et al. 2003.

spectrum is of the form

E(k)/(〈ε〉 ν5)1/4 = φ(kη) (1)

in the wave-number range k # kL ≡ 1/L, and in particular

E(k) ≈ Ko 〈ε〉2/3k−5/3 (2)

in the inertial subrange kL ' k ' kd , where φ is a universal function of kη, kd ≡ 1/η, and Ko is a
nondimensional universal constant.

One can stringently examine Equation 2 by viewing a plot of the compensated spectrum
Ê(kη) = k5/3 E(k)/〈ε〉2/3 (Figure 3). If Equation 2 holds, the curves must be flat. The curves
are nearly, but not strictly, flat at kη ≈ 0.01. The curves of Ê(kη) are close to each other at large
kη and Rλ, in accordance with K41. The same is also true for the energy-flux &(k) across wave
number k defined as &(k) =

∫ ∞
k T(k)dk,where T(k) is the energy transfer function. A bump is

observed in Ê(kη) at kη ≈ 0.1, but its height is lower for larger Rλ. A similar, but less prominent,
bump is also observed in the one-dimensional spectrum, E11(k1) (Gotoh et al. 2002, Saddoughi &
Veeravalli 1994, Yeung & Zhou 1997).

The existence of a sufficiently wide inertial subrange kL ' k ' kd with

&(k) = 〈ε〉 (3)

is a prerequisite for theories and analyses of statistics in the inertial subrange. However, at Rλ !
200, such a range is not observed in Figure 3a. Misidentification of the range near the peak of
the bump (i.e., kη ≈ 0.1) as the inertial subrange results in an overestimate of the Kolmogorov
constant Ko . kη must be as small as ∼0.01 to realize Equations 2 and 3. The plots give Ko = 1.5–
1.7. This value is close to the experimental value Kexp = 1.62 (Sreenivasan 1995) and consistent
with DNSs by Gotoh & Fukayama (2001), Kaneda (2001), and Yeung & Zhou (1997). However,
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Vorticity ω=∇xu 
  

Direct numerical 
simulation of                                                        
homogeneous 
isotropic turbulence 
 
Incompressible, 3D Navier-Stokes 

Periodic boundary conditions 
 
64+ billion grid points 
(40963) 
Ishihara Kaneda ‘03, Earth sim. 
 
 
 
 
NEW!   De Bruyn-Kops, 2015: 4096X80922 with stratification 
NEW!             Kaneda, 2015: 122883 homogeneous isotropic turbulence 

ANRV365-FL41-10 ARI 12 November 2008 14:55

L
10 λ
100 η

Figure 1
Intense vorticity isosurfaces showing the region |ω| > 〈ω〉 + 4σω in direct numerical simulation with 40963

grid points and Rλ = 1131, where ω is the vorticity and 〈ω〉 and σω are the mean and standard deviation of
|ω|. The size of the display domain is 12267η × 12267η, periodic in the vertical and horizontal directions.
The black bars at the bottom indicate the integral length scale L ≡ π/(2U2)

∫ ∞
0 E(k)/kdk, the Taylor

microscale λ, and the Kolmogorov length scale η ≡ ν3/4/〈ε〉1/4, where E(k) is the energy spectrum
normalized so that

∫ ∞
0 E(k)dk = E. The field consists of clouds of a large number of small eddies and void

regions. Intermittency is observed from large to small scales.

1991; Vincent & Meneguzzi 1991; Yamamoto & Hosokawa 1988). Figure 1 shows regions of
intense vorticity in DNS-ES at the Taylor-microscale Reynolds number Rλ ≡ Uλ/ν = 1131,
where λ is the Taylor microscale defined by λ ≡ (15νU2/〈ε〉)1/2, ν is the kinematic viscosity, 〈ε〉 is
the mean rate of the kinetic energy dissipation per unit mass, and 3U2/2 = E is the kinetic energy
per unit mass of the fluctuating velocity.
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Direct versus inverse cascades	
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crease in R!!
in run B to the value quoted above in the first

five turnover times, both R! and R!!
keep growing slowly as

! and !! slowly increase. On the other hand, a Taylor
Reynolds number based on the parallel scale for run B,
R!!

=U!! /", stays approximately constant after t=10. Note
that these values are larger than the typical values considered
in experiments with similar Rossby numbers "see e.g., Ref.
26#. This is the result of the large spatial resolution used in
the simulations, which allows us to study flows at larger
Reynolds numbers than what is often considered.

Yet another measure of small scale spectral anisotropy is
given by the Shebalin angles,38

tan2"## = 2
$k!

k!
2 E"k!#

$k!
k!

2E"k!#
, "14#

tan2"#H# = 2
$k!

k!
2 H"k!#

$k!
k!

2H"k!#
. "15#

These angles measure the spectral anisotropy level, with the
case tan2"##=2 corresponding to an isotropic flow. As the
previous quantities, they only give a global measure of
small-scale anisotropy and are a byproduct of the axisym-
metric energy spectra "see Refs. 11 and 23#. Figure 6 shows
the time evolution of the angles based on the energy and on
the helicity. The helicity at small scales is again more isotro-
pic than the energy. However, unlike the previous quantities,
the Shebalin angles grow fast and then saturate in both cases,
reaching a steady state after ten turnover times.

Finally, the amount of energy and helicity in two-
dimensional modes can be measured with the ratios
E"k! =0# /E and H"k! =0# /H "see Fig. 7#. Again, the spectral
distribution of energy is more anisotropic than for helicity.
Note that at late times a substantial fraction of the energy is
in modes with k! =0; at t%29 near 95% of the energy is in
those modes, while less than 75% of the helicity is in the
same modes. All these results indicate that the distribution of
energy is more anisotropic than that of helicity at all scales.
As will be discussed next, this is due to the fact that helicity
only suffers a direct cascade and is therefore transported in
spectral space to smaller scales which are more isotropic.

IV. SPECTRAL BEHAVIOR

Figure 8 shows the isotropic energy and helicity spectra
in run A. The run, with negligible rotation effects, displays
the usual Kolmogorov scaling in the inertial range of the
energy and the helicity, with a dual cascade of both quanti-
ties toward small scales. As in many simulations of three-
dimensional isotropic and homogeneous turbulence, the short
inertial range is followed by a bottleneck "which makes the
spectra slightly shallower# and then by a dissipative range.
The dual cascade toward smaller scales is further confirmed
by examination of the energy and helicity fluxes "inset of
Fig. 8# which are both positive and constant across the iner-
tial range to the right of the forcing wave number. At wave
numbers smaller than kF, both fluxes are negligible. The
small amount of energy and helicity observed in the spectra
at those wave numbers is the result of backscatter, not of a
cascade, and the energy in the large scales displays a slope
compatible with a &k2 scaling "see e.g., Refs. 39 and 40#.

The energy and helicity spectra and fluxes at late times
in run B at Ro=0.06 are shown in Fig. 9. An inverse cascade
of energy develops, as evidenced in the spectrum by the pile
up of energy at scales larger than the forcing, and in the
energy flux by a range of wave numbers with nearly constant
and negative transfer. However, unlike two-dimensional
turbulence,41 not all the energy injected in the system under-

FIG. 6. Shebalin angles based on the energy "solid# and helicity spectra
"dashed# as a function of time in run B.

FIG. 7. Ratios E"k! =0# /E "solid line# and H"k! =0# /H "dash line# as a func-
tion of time in run B.

FIG. 8. Isotropic energy spectrum "solid# and helicity spectrum "dashed#
normalized by the forcing wave number in run A with Ro=8.5. Kolmogorov
scaling is shown as a reference. The inset gives the isotropic energy flux,
and the helicity flux normalized by the forcing wave number.

035105-5 Rotating helical turbulence. I. Global evolution Phys. Fluids 22, 035105 !2010"
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E(k)= C ε2/3 k –5/3 , C~6 
E(k) ~ k –(3+x) 
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Figure 2. Energy spectra for the two simulations for the different resolutions (labels as in
figure 1). Dashed and dotted lines represent the two predictions Ck−5/3 with C = 6 and k−3

respectively. Inset: correction δ to the Kraichnan exponent −3 as a function of viscosity,
computed by fitting the spectra with a power law k−(3+δ) in the range 100 ! k ! 400.

of the energy transferred to large scales, while the Kolmogorov scaling k−5/3 is always
observed with a Kolmogorov constant C " 6, in agreement with Boffetta et al. (2000)
and virtually independent of resolution. The effect of finite resolution on the enstrophy
cascade range is, of course, more dramatic. We observe here a significant correction
to the Kraichnan spectrum k−3 even for the 16 384 run, where we measure a scaling
exponents close to −3.6. We note that a similar steepening of the spectrum has been
observed even for simulations with a more resolved direct cascade range (here we
have kmax/kf " 55 at the highest resolution). Despite these difficulties, there is a clear
indication that the correction to the exponent is a finite-size effect which eventually
disappears on increasing the extent of the inertial range (see inset of figure 2). The
conclusion, therefore, is that a k−3 spectrum in stationary solutions of (2.1) could
be achieved only by taking simultaneously the limits L/"f → ∞ and "f /"d → ∞ (i.e.
vanishing α and ν).

3. Analysis of fluxes in physical space
A better understanding of the physical mechanism at the basis of the cascades can

be obtained by looking at the distribution of fluxes in space. This can be obtained
by using a filtering procedure recently introduced and applied separately to the direct
cascade by Chen et al. (2003) and to the inverse cascade by Chen et al. (2006).
Thanks to the resolution of the present simulations, we are able to analyse both
cascades jointly and also the correlation between them. Following Chen et al. (2003),
we introduce a large-scale vorticity field ωr ≡ Gr &ω obtained from the convolution
of ω with a Gaussian filter Gr , and a large-scale velocity field vr ≡ Gr & v. From
these definitions, balance equations for the large-scale energy er (x, t) = (1/2)|vr |2 and
enstrophy zr (x, t) = (1/2)ω2

r densities are easily written (with a compact notation):

∂t (er, zr ) + ∇ · J (e,r)
r = −Π (e,r)

r − D(e,r)
r + F (e,r)

r (3.1)
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Double cascade of two-dimensional turbulence 255
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Figure 1. (a) Energy and (b) enstrophy fluxes in Fourier space at resolutions 2048 (A), 4096
(B), 8192 (C) and 16384 (D). At resolution 16384 fluxes are computed on a single frame.

One of the simplest pieces of information which can be obtained from table 1 is
related to the energy–enstrophy balance. At N = 2048 only about half of the energy
injected is transferred to large scales where it is removed by friction at a rate εα = 2αE.
This fraction increases with the resolution and becomes about 95 % for the N = 16386
run. The remaining energy injected is dissipated by viscosity at scales comparable with
the forcing scale and at a rate proportional to ν (which thus decreases on increasing
the resolution).

Most of the enstrophy (around 90 %) follows the direct cascade to small scales,
where it is dissipated by viscosity. We observe a moderate increase of the large-scale
enstrophy dissipation ηα on increasing the resolution: this is a finite-size effect due the
increase of α with N (see table 1) necessary to keep the friction scale %α ! ε1/2

α α−3/2

constant with increasing εα .
In figure 1 we plot the fluxes of energy and enstrophy in wavenumber space.

Observe that because we change the resolution while keeping the ratio L/%f constant,
the only effect of reducing the grid size on the inverse cascade is the decrease of
the energy transferred to large scales (being εα = εI − εν with εν proportional to ν)
while the extent of the inertial range is almost unaffected. The behaviour of the fluxes
around k ! kf depends on the details of the injection: the transition from zero to
negative (positive) energy (enstrophy) flux is sharp in the case of forcing for a narrow
band of wavenumber (run D) while it is more smooth for the Gaussian forcing
which is active on more scales. Fluctuations observed in the energy flux for run D
are a consequence of the short time statistics in this case. These results confirm the
robustness of the energy inertial range regardless of the viscous dissipative scale, a
further justification of many simulations of the inverse cascade in which, because of
the limited resolution, the forcing scale is very close to the dissipative scale.

Unlike the inverse cascade, the direct enstrophy cascade is strongly affected by finite
resolution effects. This is not a surprise because, by keeping %f fixed, the extent of the
direct cascade is simply proportional to N . As shown in figure 1, we observe a range
of wavenumbers with almost constant flux ΠZ(k) only for the runs with N ! 8192.

Figure 2 shows the energy spectra computed for the different runs. We remark
again that the only effect of finite resolution on the inverse cascade is the reduction
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Figure 2. Energy spectra for the two simulations for the different resolutions (labels as in
figure 1). Dashed and dotted lines represent the two predictions Ck−5/3 with C = 6 and k−3

respectively. Inset: correction δ to the Kraichnan exponent −3 as a function of viscosity,
computed by fitting the spectra with a power law k−(3+δ) in the range 100 ! k ! 400.

of the energy transferred to large scales, while the Kolmogorov scaling k−5/3 is always
observed with a Kolmogorov constant C " 6, in agreement with Boffetta et al. (2000)
and virtually independent of resolution. The effect of finite resolution on the enstrophy
cascade range is, of course, more dramatic. We observe here a significant correction
to the Kraichnan spectrum k−3 even for the 16 384 run, where we measure a scaling
exponents close to −3.6. We note that a similar steepening of the spectrum has been
observed even for simulations with a more resolved direct cascade range (here we
have kmax/kf " 55 at the highest resolution). Despite these difficulties, there is a clear
indication that the correction to the exponent is a finite-size effect which eventually
disappears on increasing the extent of the inertial range (see inset of figure 2). The
conclusion, therefore, is that a k−3 spectrum in stationary solutions of (2.1) could
be achieved only by taking simultaneously the limits L/"f → ∞ and "f /"d → ∞ (i.e.
vanishing α and ν).

3. Analysis of fluxes in physical space
A better understanding of the physical mechanism at the basis of the cascades can

be obtained by looking at the distribution of fluxes in space. This can be obtained
by using a filtering procedure recently introduced and applied separately to the direct
cascade by Chen et al. (2003) and to the inverse cascade by Chen et al. (2006).
Thanks to the resolution of the present simulations, we are able to analyse both
cascades jointly and also the correlation between them. Following Chen et al. (2003),
we introduce a large-scale vorticity field ωr ≡ Gr &ω obtained from the convolution
of ω with a Gaussian filter Gr , and a large-scale velocity field vr ≡ Gr & v. From
these definitions, balance equations for the large-scale energy er (x, t) = (1/2)|vr |2 and
enstrophy zr (x, t) = (1/2)ω2

r densities are easily written (with a compact notation):

∂t (er, zr ) + ∇ · J (e,r)
r = −Π (e,r)

r − D(e,r)
r + F (e,r)

r (3.1)
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Paradigm with 2 invariants like energy & enstrophy: 
 
2D: Dual but mutually exclusive system with an  
       inverse cascade of energy & a direct enstrophy cascade 
 
3D: Direct cascade of energy, and direct helicity cascade 
 
 BUT … role of:  
 
1)  Aspect ratio / Anisotropy 
2)  Imposed magnetic field 
3)  Imposed rotation / stratification 
4)  Helicity decimation 
5)  And more 
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TABLE I. The behavior (2D, 3D or l for critical) of the turbulence for various (S, Ro) and
2D2C forcing.

(I) 128 3 128 3 8 (II) 512 3 512 3 8 (III) 256 3 256 3 32

⇥0.75, `⇤ 3D ⇥12⌥16, `⇤ 3D ⇥0.75, 1.6⇤ l ⇥2.0, 1.5⇤ 3D
⇥0.75, 2.0⇤ 3D ⇥9⌥16, `⇤ 3D ⇥0.75, 1.3⇤ 2D ⇥4.0, 1.8⇤ 3D
⇥0.75, 1.4⇤ 3D ⇥8⌥16, `⇤ l ⇥0.75, 1.25⇤ 2D ⇥4.0, 1.4⇤ l
⇥0.75, 1.25⇤ l ⇥7⌥16, `⇤ 2D ⇥0.75, 0.5⇤ 2D ⇥4.0, 1.25⇤ 2D
⇥0.75, 1.2⇤ 2D ⇥6⌥16, `⇤ 2D ⇥1.0, 0.25⇤ 2D ⇥4.0, 1.1⇤ 2D
⇥0.75, 1.1⇤ 2D ⇥4⌥16, `⇤ 2D ⇥0.5, 2⇤ 2D ⇥4.0, 1.0⇤ 2D
⇥0.75, 0.75⇤ 2D ⇥0.75, 2⇤ 3D ⇥8.0, 0.7⇤ 2D
⇥0.75, 0.5⇤ 2D

decreases slowly for S . 0.75. The data suggest that Roc
may asymptote to a nonzero constant for large S.
Numerical data sets I and II were used to explore S # 1.

For aspect ratios A � 1⌥16 and 1⌥64, the range of S is
limited by the dimensions of the box to approximately
0.1 # S # 1. For S � 0.75, we found the near-critical
values Ro � 1.25 for A � 1⌥16 and Ro � 1.6 for A �
1⌥64 (Table I). The critical Ro for fixed S changes by
(20–25)% when the aspect ratio is lowered from A �
1⌥16 to 1⌥64, suggesting that finite-size effects in the
horizontal directions may be influencing the results for
the case A � 1⌥16. For fixed S and decreasing Ro, the
value of ed⌥ef decreases approximately linearly for Ro
less than the critical value, indicating that a larger fraction

FIG. 1. A � 1⌥64, Ro � `, S � 0.75 (solid line); A � 1⌥64,
Ro � `, S � 0.375, eddy viscosity model (dashed line); A �
1⌥64, Ro � `, S � 0.375, hyperviscosity operator =4 (dotted
line); A � 1⌥64, Ro � 0.5, S � 0.75 (dot-dashed line).

of energy is cascaded to large scales as the Rossby number
is decreased below critical. Figure 1 compares Ro � `
(solid) and Ro � 0.5 (dot-dashed line) for A � 1⌥64 and
S � 0.75.
The scaling ed � O⇥Ro⇤ indicated by our results for

2D2C forcing can be understood in light of the closures
[9,11] which show that, in a statistically steady state, the
energy flux to k . kf is proportional to a decorrelation
time scale ⇥ukpq⇤. In the absence of rotation, this time scale
is determined by the nonlinear interactions and is O⇥1⇤
with respect to the variables nondimensionalized by ef and

FIG. 2. (upper) A � 1⌥64, Ro � `, S � 0.75 (statistically
steady); (lower) A � 1⌥64, Ro � `, S � 0.375: eddy viscosity
(solid line) with time increasing upwards; hyperviscosity

(dotted line). The lines are Eh ~ k
25⌥3
h .

2469

3D, T-HI, 2D2C force, A=Lz/Lx=1/64 with S = Lf/Lz 
Turbulent viscosity, Navier-Stokes, no rotation, 1283 grid 

S=3/4 

S=3/8 
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decreases slowly for S . 0.75. The data suggest that Roc
may asymptote to a nonzero constant for large S.
Numerical data sets I and II were used to explore S # 1.

For aspect ratios A � 1⌥16 and 1⌥64, the range of S is
limited by the dimensions of the box to approximately
0.1 # S # 1. For S � 0.75, we found the near-critical
values Ro � 1.25 for A � 1⌥16 and Ro � 1.6 for A �
1⌥64 (Table I). The critical Ro for fixed S changes by
(20–25)% when the aspect ratio is lowered from A �
1⌥16 to 1⌥64, suggesting that finite-size effects in the
horizontal directions may be influencing the results for
the case A � 1⌥16. For fixed S and decreasing Ro, the
value of ed⌥ef decreases approximately linearly for Ro
less than the critical value, indicating that a larger fraction

FIG. 1. A � 1⌥64, Ro � `, S � 0.75 (solid line); A � 1⌥64,
Ro � `, S � 0.375, eddy viscosity model (dashed line); A �
1⌥64, Ro � `, S � 0.375, hyperviscosity operator =4 (dotted
line); A � 1⌥64, Ro � 0.5, S � 0.75 (dot-dashed line).

of energy is cascaded to large scales as the Rossby number
is decreased below critical. Figure 1 compares Ro � `
(solid) and Ro � 0.5 (dot-dashed line) for A � 1⌥64 and
S � 0.75.
The scaling ed � O⇥Ro⇤ indicated by our results for

2D2C forcing can be understood in light of the closures
[9,11] which show that, in a statistically steady state, the
energy flux to k . kf is proportional to a decorrelation
time scale ⇥ukpq⇤. In the absence of rotation, this time scale
is determined by the nonlinear interactions and is O⇥1⇤
with respect to the variables nondimensionalized by ef and
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energy in these scales is mostly contained in the 2D modes
k‖ = 0. This means that the flow in the large scales is almost
2D. (Here the flow is referred to as 2D in the sense that u has no
dependence on the z direction and not that the uz component
is absent.) On the other hand, at the small scales Eu(0,k⊥) is
significantly smaller than Ēu, thus the 2D modes contain only
a small fraction of the energy and therefore the flow is three
dimensional.

The bottom panel of Fig. 3 compares the magnetic energy
spectra Eb(0,k⊥) and Ēb. Unlike the velocity field the magnetic
field remains strongly three dimensional for all scales since
Eb(0,k⊥) # Ēb. The amplitude of the magnetic energy is
much smaller than that of the kinetic energy in the large scales
but of the same order in the small scales. This is essential for
the presence of the 2D-inverse cascade. If the magnetic field
fluctuations were strong enough in the large scales, the flow
would behave as a 2D-MHD flow with a direct cascade.

The k−5/3 scaling prediction for the 2D inverse cascade, the
k−3 for the direct 2D cascade, and the k−2 prediction of WTT
are shown as a reference. The observed spectra are compatible
with k−5/3 in the large scales and k−2 in the small scales;
however, the inertial ranges in the examined flow are too small
to be conclusive.

B. Guiding magnetic field strength

As a next step the dependence of the inverse cascade,
observed in R1, on the amplitude of the uniform magnetic field
is examined. Runs R2 and R3 have all parameters similar to run
R1 but a different value of the magnetic field amplitude. The
flux of energy in both directions for runs R1, R2, and R3 are
compared in Fig. 4. As expected, the amplitude of the uniform
magnetic field has a drastic effect on the energy flux. The
top panel of this figure shows !⊥(k⊥). R2 (dashed line) that
has smaller value of V

A
than run R1 (solid line) has no inverse

cascade and a stronger direct cascade. R3 (dashed-dot line) that
has larger value of V

A
has on the contrary a stronger inverse

cascade and a weaker forward cascade. The bottom panel of

FIG. 4. Top panel: The energy flux in the perpendicular direction
for R1 (V

A
= 5, solid line), R2 (V

A
= 2, dashed line), and R3

(V
A

= 10, dashed-dot line). Bottom panel: The energy flux in the
perpendicular direction for the same runs.

FIG. 5. Top panel: The kinetic energy spectra of Ēu(k⊥) (solid
line) and Eu(0,k⊥) (dashed line) for R3, V

A
= 10 (top lines), R1, V

A
=

5 (middle lines), and R2, V
A

= 2 (bottom lines). Bottom panel: The
kinetic energy spectra Ēu(k⊥) (solid line) compared to the magnetic
energy spectra Ēb(k⊥) (dashed line) of the same runs and with the
same order. The spectra have been shifted for reasons of clarity.

Fig. 4 shows the energy flux in the parallel direction. As the
magnetic field is increased the flux to large kz is decreased.
This expected since in the V

A
= ∞ limit there is cascade only

in perpendicular direction. It is noted that although V
A

is larger
than the root mean square of the velocity fluctuations, because
the cascade moves the energy to large k⊥ the ratio ukk⊥/B0k‖
is larger than unity in the case of R2, making the cascade strong
in the small scales and leading to a nonzero flux in the parallel
direction.

The spectra for these runs are compared in Fig. 5. The top
panel of this figure shows the kinetic energy spectra Ēu(k⊥)
and Eu(0,k⊥). The spectra have been shifted for reasons of
clarity. In the two runs R1 and R3 that showed an inverse
cascade, energy is concentrated in the largest scales. What can
also be observed is that as V

A
is increased the flow comes

closer to a two-dimensional flow. For R2 for which V
A

= 2
and no inverse cascade is observed, the flow is far from two
dimensional even at the largest scales.

The bottom panel panel of Fig. 5 compares the kinetic
energy spectra Ēu(k⊥) (solid line) with the magnetic energy
spectra Ēb(k⊥) (dashed line). As the uniform magnetic field
is increased the magnetic fluctuations are decreased compared
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Energy flux in rotating flows with varying aspect ratios 
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FIG. 3. (a) Spectral flux of kinetic energy for different values
of R = 0, 1, 1.5, 5 (following the arrow) at fixed S = 2. (b)
Spectral flux of kinetic energy for different values of aspect
ratio S = 0.5, 1, 4, 8 (following the arrow) at fixed R = 1.
All fluxes are normalized with energy input εI . The forcing
wavenumber is kf = 8.

(run at S = 2 and R = 5), the direct flux almost van-
ishes, as predicted in a pure 2D scenario. At small wave
numbers, k < kf , and for R > 0, we observe the devel-
opment of an inverse cascade produced by rotation. In
this range of wave numbers the fluxes are more noisy but
nonetheless they are negative, which is the signature of
an energy cascade towards large scales. We recall that
the range of scales available for the inverse cascade is
quite small, since kf = 8. Figure 3b shows the fluxes for
different aspect ratios at fixed R = 1. Again, for all the
simulations we have a clear plateau for k > kf , at a value
εν which increases with S (see Fig. 2). The inverse cas-
cade to wavenumber k < kf is suppressed by increasing
S and eventually vanishes for S = 8.
The fact that both the confinement and the rotation

favor the development of the inverse cascade leads to an
interesting consideration. Different flows can have the
same ratio between inverse and direct energy fluxes for
different values of S and R, as it evident from Figure 2.
In particular a thin non-rotating thin layer can have the

same flux ratio as a thick rotating one. In order to un-
derstand the similarities and differences between these
two cases we need to investigate the mechanisms which
are responsible for the transfer of energy towards large
scales.
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FIG. 4. Spectral flux of enstrophy ΠZ(k) (solid lines) and
enstrophy production ΣZ(k) (dashed line) for two flow con-
figuration: R = 0, S = 3/16 (lower, red lines) with kz = 42.7
and R = 1.5, S = 4 (upper, black lines) with kz = 2. In
both cases kf = 8. All quantities are normalized with the
enstrophy input ηI .

The main difference between 3D and 2D Navier–Stokes
equations, written for the vorticity field, is the absence
of the vortex stretching term ω · ∇u in the latter. As
a consequence the enstrophy, i.e. mean square vortic-
ity, is conserved in the inviscid limit in 2D flows. In
the forced-dissipated case, the presence of two positive-
defined inviscid invariants (energy and enstrophy) causes
the reversal of the direction of the energy cascade with
respect to the 3D case, and the simultaneous develop-
ment of a direct enstrophy cascade [3, 4]. It is therefore
natural to investigate if a similar phenomenology can be
observed also in thin fluid layers. In particular, we con-
jecture that the development of the inverse cascade can
be accompanied by a partial suppression of the enstrophy
production induced either by the confinement or by the
rotation. To address this issue we computed the spectral
flux of enstrophy ΠZ(k) and enstrophy production ΣZ(k)
defined as:

ΠZ(k) =

∫

|q|≤k

̂u ·∇ω (q) ω̂∗ (q) dq, (2)

ΣZ(k) =

∫

|q|≤k

̂ω ·∇u (q) ω̂∗ (q) dq, (3)

where ·̂ represents the three-dimensional Fourier trans-
form. In Figure 4 we show both quantities for a non-
rotating thin layer (R = 0, S = 3/16) and a rotating
thick layer (R = 1.5, S = 4). As shown in table I, these

R~ f: rotation 
S=Lz/Lf   
 
 
 
R= 0, 1, 1.5, 5 
with S=2 
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§  What happens  
   with rotation  
   and  
   stratification  
   in an idealized setting? 
 



5

FIG. 3: (Color online) Visualization of the buoyancy b in runs with 5123 grids, for Re ⇡ 8000, Fr = 0.11, and Ro = 0.40 (left)
and for the same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and
light (green) strata represent respectively positive and negative variations in b around its mean, with sizable fluctuations and
structuring, and with more turbulent eddies at higher Froude number.

TABLE I: List of runs analyzed in this paper with some characteristics parameters: run number nR, resolution np, Reynolds Re,
Froude Fr and Rossby Ro numbers; ratio EP /EV , ratio

⌦
w2

↵
/
⌦
u2
?
↵
, enstrophy ZV , ratio ZP /ZV where ZP is the potential

enstrophy (see get), H? at peak of enstrophy Tp (or we could put the maximum time of the run), [... skewness Sk?,
Flatness?, Kolmogorov (dissipative0 scale ⌘? ...] A star in the “in” column indicates points that are in the scatter plot
with N/f < 3, and two stars for those in the plot with RB < 20 or RR < 20. [OR? AND?]

nR np Re Fr Ro EP /EV

⌦
w2

↵
/
⌦
u2
?
↵

ZV ZP /ZV H? Tp in Remarks
1 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157 – * –
2 256 256 – 2.07 5.59 4.60 12857 1.22 –
3 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157
4 256 256 – 2.07 5.59 4.60 12857 1.22 –
5 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157
6 256 256 – 2.07 5.59 4.60 12857 1.22 –

We thus conclude that the production of helicity in
strongly rotating stratified turbulence is directly propor-
tional to N/f , and results from a balance between ro-
tation and stratification. In the limit of f ! 1 (no
stratification), helicity is exactly conserved; in the limit
of N ! 1, helicity can again be created by the flow, but
in the balance, dissipation also plays a role [32]. In other
words, as N/f (proportional to the Rossby deformation
radius) increases, stratification dominates and the Corio-
lis force is no longer available to balance gravity, although
in this case another balance involving dissipation may be
written instead, which describes well the preservation of
helicity [32]. Indeed, dissipation is known to play a role
in the overall dynamics, e.g., in the changes of potential
vorticity once gravity waves start to break [33]. Finally, it
is interesting that N/f scaling has also been advocated,
for example, in the context of statistical mechanics of

non-dissipative geophysical flows [34].

B. Beyond geostrophy

Geostrophic balance is just the beginning of the story,
the assumptions (of stationarity, zero non-linearities and
no dissipation) being of course unrealistic for geophysical
and astrophysical flows. For example, it is known that in
three-dimensional turbulence without waves, the rate of
energy dissipation can be evaluated phenomenologically
as ✏

V

⇠ U3
0 /L0, no matter how high the Reynolds num-

ber; this has been demonstrated using highly-resolved di-
rect numerical simulations [35] up to grids of 40963 points
(for the case of a coupling to a magnetic field, in which
case Alfvén waves are present and interact with the flow,
see [36] in two dimensions (2D), and [37] in 3D).

Fr ~ 0.11, Ro ~ 0.4, 	


RB = ReFr2  ~ 100, N/f ~ 3.6	



                   Temperature,      Re ~ 8000,         5123 grids,  decaying flows	



Rendering using Vapor                                                                                   Marino et al., 2013 

Fr ~ 0.025, Ro ~ 0.05, 	


RB ~ 5, N/f = 2	



Ω,g 
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Fast growth of large scales in rotating stratified turbulence

Fig. 1: (Colour on-line) Three-dimensional visualizations of the buoyancy θ in 1/8 of the entire volume for two 10243 runs at
late times. Fr = 0.04, with no rotation (f = 0, left) and with N/f = 2 (middle); in the former case, one sees layers which are
thinner than the forcing length, whereas large-scale growth is detectable on the right, corresponding to an inverse cascade of
energy. Dark colour (blue and red) corresponds to positive values of θ, and light colour (green and yellow) to negative values
of θ. On the right is a top view in the entire box of regions with large horizontal kinetic-energy density (u2+ v2)/2, for N/f = 2
and Fr = 0.04, showing the existence of large-scale structures which do not have the full depth of the box. The depth of these
eddies is ≈ 1/8 of the total box depth.

can either increase in time, or stabilize around a turbulent-
steady-state value. In all the runs, the flow is left to
evolve for at least 35 turnover times computed at the
forcing scale, τNL =LF /UF (with UF =

√

kFEV (kF ) the
r.m.s. velocity at the forcing scale), and up to 130 turnover
times in some cases.
Altogether, seventeen runs were performed, all of them

but three on grids of n3p = 512
3 points, with kF ∈ [22, 23]

and ν = 2.73× 10−4, whereas kF ∈ [40, 41] for the three
n3p = 1024

3 runs and ν = 1.4× 10−4. These choices for the
forcing wave number allow for sufficient scale separation to
study the inverse-cascade scaling. All runs have Re≈ 1000,
and N/f = 0 (with N = 0), 1/4, 1/2, 3/2, 2, 3, 4, 7, or ∞
(with f = 0). These runs can be further divided into two
sets: runs with constant Rossby number (Ro≈ 0.08), and
runs with constant Froude number (Fr≈ 0.04).

Results. – In fig. 1 we show a perspective volume
rendering of the buoyancy θ in 1/8 of the whole volume for
two runs on grids of 10243 points, at late times. On the left
is the flow without rotation (f = 0), and the main struc-
ture here is the layering of the buoyancy at a scale smaller
than that of the forcing (possibly at the buoyancy scale).
In the presence of rotation (middle, N/f = 2), larger-scale
fluctuations are clearly observed that grow in time. On the
right is given a top view of the horizontal energy density
at the same time for the rotating stratified run. The entire
box is shown, with the horizontal energy density only
rendered for a depth of ≈ 1/8 of the box (regions with low-
energy density are transparent, so the structures can be
seen at different depths). Large-scale columnar eddies with
little variation in the vertical are visible, but the depth
of these structures is ≈ 1/8 of the box (i.e., the vertical
correlation length is smaller than 2π).

The difference between these two runs is further
confirmed by the examination of the temporal evolution
of kinetic energy, as well as of the total energy and
integral scales in the flow. As an example, fig. 2 (top)
shows the time evolution of EV for several runs with
N/f = 0, 1/2, 2, and 4, all with Ro≈ 0.08, plus one in the
purely stratified case (f = 0 and Fr≈ 0.04). The unit of
time is the eddy turn-over time τNL at the forcing scale
in each specific run. Note that the early-time variations
(t/τNL < 1) are dominated by stratification, as already
found using, e.g., RDT [31]. The run with pure stratifica-
tion shows no energy growth even after being continued
for 130 turnover times. On the other hand, for various
values of N/f , including in the purely rotating case, a
growth is obtained after an initial adjustment phase,
and at different rates, as already found in [22,27,30] for
N/f ! 1. Note that runs with N/f = 1/2 and 2 grow
with similar rates (highlighted by the shaded region in
the plot), while the run with pure rotation grows at a
slower pace. Similar results are obtained when studying
the evolution of the integral scale as a function of time.
The overall data set is best represented by examining

scatter plots. In fig. 2 (bottom) we also show the mean
value of σ=dEV /dt averaged for 10" t/τNL " 30. The
runs with 1/2"N/f " 2 show the fastest growth; σ decays
monotonically for N/f > 2 and is close to zero or becomes
negative in the runs with f = 0.
To understand the reason for these differences, we

consider the flux of kinetic energy from 3D modes to 2D
modes,

Π3D→2D =

∫∫

[

û∗k ·
̂(u ·∇u)k

]

k‖=0
dkxdky +c.c., (5)
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Fig. 2: (Colour on-line) Top: kinetic energy as a function of time
for runs withN/f = 0, 1/2, 2, and 4 (all with the same Ro), and
for a purely stratified run (f = 0). Note the growth of energy
after t/τNL ≈ 5 in all runs except in the latter. In several runs
with stratification the energy grows faster than in the purely
rotating case (N = 0). The gray band indicates an average slope
observed in the runs with 1/2!N/f ! 2, and highlights runs in
which the energy grows faster. Bottom: growth rate σ of EV (t)
as a function of N/f for all runs. Empty symbols correspond
to 5123 runs, and filled symbols to 10243 runs. Triangles (red)
have constant Ro, while squares (black) have constant Fr. The
gray band indicates the range 1/2!N/f ! 2, where the energy
grows faster. The dashed vertical line indicates a cut in the
data, since there are no data points for N/f > 7, except for the
point with f = 0 (no rotation).

where the hat denotes Fourier transform, the brackets
indicate the integrand is evaluated at k‖ = 0, and the
complex conjugate (c.c.) of this integral is added to get
a real quantity. When positive, Π3D→2D gives the amount
of energy transferred from 3D modes to 2D modes per unit
of time, and the direction of the transfer is reversed when
Π3D→2D is negative. As the flux has units of energy per
unit of time, we can build an inverse transfer time as

1

T3D→2D
=
Π3D→2D
U2F

, (6)

and a dimensionless transfer time as τNL/T3D→2D. The
quantity in eq. (6) is signed, with the sign indicating
the direction of the transfer, and when larger it indicates
the transfer is faster (i.e., the transfer time is shorter).
The dimensionless transfer time for all the runs is plotted
as a function of N/f in fig. 3 after averaging over 20
turnover times (for all the runs, τNL/T3D→2D remains
approximately constant in time).
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3D modes to 2D modes, as a function of N/f for all the
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inverse transfer time from the 3D to the 2D modes. Empty
symbols correspond to 5123 runs, and filled symbols to 10243

runs. Runs with 1/2!N/f ! 2 (shaded region) have maximum
transfer of energy towards the 2D modes (larger than the run
with pure rotation, corresponding to N/f = 0), while runs with
N/f " 7 have negative transfer (i.e., energy goes towards the
3D modes). The inset shows the same inverse transfer time as
a function of the efficiency of the inverse cascade Γ (see text
for definition) in all the runs. Runs in the 1/2!N/f ! 2 range
are indicated by diamonds, and have the largest efficiencies.

Runs with 1/2!N/f ! 2 show the fastest transfer
of energy to 2D modes (larger than in the run with
pure rotation). For N/f > 2, τNL/T3D→2D decreases, and
becomes negative (i.e., energy goes from 2D modes to
3D modes) in the purely stratified case. This indicates
that the inverse cascade in rotating and stratified flows
is associated with a build-up of energy in 2D modes, and
that rotation plays an important role in this transfer.
This conclusion is confirmed by the correlation in the

growth behavior between kinetic energy (see σ as a
function of N/f in fig. 2) and τNL/T3D→2D. The inset in
fig. 3 shows τNL/T3D→2D as a function of Γ= σ/ε; Γ is a
rescaled kinetic-energy growth which we call “efficiency”
for short; it is based on σ normalized by the total amount
of energy injected in the system, ε. The most efficient
inverse cascade is for N/f = 1/2 (with Γ≈ 0.86). Indeed,
although rotation is necessary to get τNL/T3D→2D > 0,
moderate stratification helps the inverse cascade (the
purely rotating run, with N/f = 0, has Γ≈ 0.19).
The faster growth of large-scale structures in the runs

with 1/2!N/f ! 2 (and the associated faster transfer
of energy towards 2D modes) is likely due to the fact
that, in the presence of stratification, the flow is less
anisotropic, with k⊥ and k‖ both being populated by the
linear (and non-linear) interactions. Note that the range
1/2!N/f ! 2 also corresponds to the range of parameters
in rotating and stratified flows for which triadic wave
resonances are non-existent [27]. For the case N/f = 1,
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Figure 2 | Key observations in the Southern Ocean. a, Climatological positions of the subantarctic front (SAF) and polar front (PF) are marked in orange,
with the thickness of the line representing the variance in the latitudinal position. The green arrows indicate the observed speed and direction of surface
ocean currents as measured by drifters floating at a depth of 15 m (note the scale in the upper right-hand side). The depth of the ocean is colour coded in
blue: the main topographic features are labelled. The black lines mark the summer (minimum) and winter (maximum) extent of sea ice. The position of key
hydrographic sections are marked by the thick grey lines. b, T (temperature), S (salinity), and O2 sections along 30� E (coloured red in a) cutting across the
ACC from Africa towards Antarctica. Black contours are labelled in �C (for T), psu (for S) and µmol l�1 (for O2). The thick white line is the 27.6 kg m�3

density surface.

Dynamics of the SouthernOcean and its upwelling branch
The Southern Ocean is driven by surface fluxes of momentum and
density (owing to heat and fresh water) induced by the strong,
predominantly westerly winds that blow over it and the freezing
phenomena close to the continent33. Zonal wind stress (Fig. 4a)
induces upwelling polewards of the zonal surface-wind maximum
and downwelling equatorwards of the maximum. This directly

wind-driven circulation, known as the Deacon cell, acts to overturn
density surfaces supporting the thermal wind current of the ACC
and creating a store of available potential energy.

Air–sea fluxes generate dense water near the continent and
lighten the surface layers in the ACC (see Fig. 4b). The dense
water sinks and tends to draw in warmer, saltier water from the
surrounding ocean; however, rather than being fed from the surface,
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Figure 2 |Mechanical, a sum of kinetic and potential, energy budget
terms in (mWm�2) as a function of time. a,b, Energy budgets from
rough-topography (a) and flat-bottom (b) simulations: evolution of
mechanical energy (blue), wind power input (red), dissipation by the
bottom drag (orange), dissipation by viscous friction (green) and changes
in potential energy due to diffusion (purple). Values averaged over the last
10 days of simulations are shown in parenthesis.

deformation in the experiment is about 20 km) as well as several
smaller, submesoscale, warm- and cold-core eddies. The bottom
topography is multichromatic, randomly generated with the same
spectral characteristics as topography observed in theDrake Passage
region of the Southern Ocean16 and includes horizontal scales from
50 km down to 1 km.

The energetics of the flow in the two simulations are presented in
Fig. 2 showing the evolution of the volume-integrated mechanical
(that is, a sum of kinetic and potential) energy budget terms.
The energy budgets are closed to within a few per cent of the
wind power input terms. Both simulations are well equilibrated. In
the rough-topography simulation, there is a leading-order balance
between the wind power input at the surface of 6.4mWm�2 and
interior viscous dissipation of 6.1mWm�2. Dissipation due to
bottom drag, which parameterizes unresolved turbulence in the
bottom boundary layer, is small, 0.7mWm�2, compared with the
viscous dissipation by resolved motions. The effect of diffusion,
computed as a change in the unavailable potential energy22,23 (that
is, potential energy of a motionless fluid) and thus including
the effects of both explicit and spurious numerical diffusion, is
negligible, 0.3mWm�2. The energetics of the rough-topography
simulation suggest that the wind power input, generated by the
wind stress acting on the time-mean flow at the surface, is primarily
dissipated by interior viscous friction acting on resolved motions.
Viscous friction, which parameterizes subgrid-scale processes, is
scale dependent: it acts primary on small-scale motions with large
velocity gradients. In the simulations, the Reynolds number of
geostrophic eddies, estimated at the deformation scale of 20 km, is
O(104), implying that geostrophic eddies are inertial and essentially
inviscid. Hence, to equilibrate, geostrophic eddies must transfer
their energy to smaller-scale motions that can then be dissipated
by viscous friction. In the flat-bottom simulation, on the other
hand, viscous dissipation is small, implying that there is no
effective mechanism for the generation of small-scale motions and
therefore the bulk of the wind power input is dissipated by the
bottom drag. That is, the spontaneous generation of unbalanced

0 50 100

Distance (km)

150 200

0 50 100
Distance (km)

150 200

0

¬11 ¬9 ¬7

25 50¬3,000

¬4,000

¬2,000
D

ep
th

 (
m

) ¬1,000

0a

b

c

0
0 50 100

Zonal distance (km)

150 200

50

135 140 145 150

¬2 0 2
150

155

160

2

55

2
2

5

5

5

5 2

2

2

10

5

10

5

5
10

10

5

2

2

5
2

22

5

225

10

5
2

2

2
5

5
2

10

10

5

5

5

22

5
10

10

10

10

5

5

105

100

150

200

M
er

id
io

na
l d

is
ta

nc
e 

(k
m

)

¬4,000

¬3,000

¬2,000

D
ep

th
 (

m
) ¬1,000

0

2

Figure 3 | Snapshots after 40 days in the rough-bottom simulation.
a,b, Zonal sections of speed (cm s�1; a) and energy dissipation dissipation
(log10(W kg�1); b) at y= 170 km. c, Horizontal section at 2 km depth of
vertical velocity (cm s�1; blue/red) and 5 km low-pass-filtered horizontal
flow speed (cm s�1; contours). The inset plot is a zoom-in on the region
shown with the thick black line.

motion from geostrophic flows in the ocean interior is far less
efficient than the generation of unbalanced flow through eddy–
topographic interactions.

The equilibration of the flow changes markedly between the
two simulations: in the flat-bottomed simulation, the wind stress
is completely balanced by the bottom drag rather than the
topographic form stress as in the rough-topography simulation, and
the wind power input is nearly balanced by the bottom drag work
against the bottom flow rather that the interior viscous dissipation.
As a result, the system equilibrates with higher magnitude of the
flow and therefore higher wind power input.

Vertical and horizontal representations of the flows in the
rough-topography simulation are illustrated in Fig. 3. The top two
panels show zonal cross-sections of kinetic energy and viscous
energy dissipation, emphasizing large- and small-scale motions,
respectively. The kinetic energy of the flow is dominated by frontal
meanders and mesoscale eddies. Consistent with observations24,25,
the surface speed of geostrophic eddies exceeds 50 cm s�1, whereas
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Figure 2 | Key observations in the Southern Ocean. a, Climatological positions of the subantarctic front (SAF) and polar front (PF) are marked in orange,
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ocean currents as measured by drifters floating at a depth of 15 m (note the scale in the upper right-hand side). The depth of the ocean is colour coded in
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density surface.

Dynamics of the SouthernOcean and its upwelling branch
The Southern Ocean is driven by surface fluxes of momentum and
density (owing to heat and fresh water) induced by the strong,
predominantly westerly winds that blow over it and the freezing
phenomena close to the continent33. Zonal wind stress (Fig. 4a)
induces upwelling polewards of the zonal surface-wind maximum
and downwelling equatorwards of the maximum. This directly

wind-driven circulation, known as the Deacon cell, acts to overturn
density surfaces supporting the thermal wind current of the ACC
and creating a store of available potential energy.

Air–sea fluxes generate dense water near the continent and
lighten the surface layers in the ACC (see Fig. 4b). The dense
water sinks and tends to draw in warmer, saltier water from the
surrounding ocean; however, rather than being fed from the surface,
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ergy-balance terms in k and assuming that the flux van-
ishes at the highest wavenumber, kmax:

!!k" # !
k

kmax

!Ah $ A"" dk. !10"

The spectral flux % is shown in Fig. 6 over the whole k
range for several simulations with different horizontal
resolution. Due to the open boundaries, some net en-
ergy input or output is possible, and we formally split
the flux as

! # !t $ !b,

where %t represents energy transfers inside the domain
and %b energy flux through the boundaries. The shapes
of Ah and A& in Fig. 3 imply that % ' 0 in the high-k
range. This positive % at high k is probably a conser-
vative estimate of a genuine forward energy cascade
%t ' 0 within the submesoscale range, based on the
following considerations. First, if anything, the open
boundaries should be a sink of high-k KE because the
submesoscale activity is nonexistent in the lateral
boundary conditions and it is much weaker beneath the
boundary layer (section 4 of Part I); this effect would
make %b ( 0 and %t ' % ' 0. The excluded coastal
upwelling zone could be both a location of important
%t ' 0 as well as a source of submesoscale energy for
the lateral interior, that is, contributing to %b ' 0 for
our analysis domain. To check this we performed a

spectral analysis for ICC0 within an even more re-
stricted 5122 domain that is well separated (by 200 km)
from the coast with respect to a typical advective ve-
locity and lifetime of submesoscale structures. The re-
sulting advective flux % has a similar k dependence as
the one represented in Fig. 6 but with a magnitude
reduced by )50%. This is at least partly because the
submesoscale activity level weakens somewhat with dis-
tance from the coast.4 So, we conclude that %t ' 0 is not
overly based on the behavior in the near-coastal region.
Finally, to assess the degree to which our results de-
pend on windowing, the analysis domain for ICC0 was
evenly subdivided into 4 and 16 subdomains, and an
advective flux was computed by averaging the fluxes
obtained over each subdomain (computed in a way
analogous to that for the full domain, including Han-
ning windowing). The stability of % vis-à-vis domain
size (Fig. 6) indicates the absence of spurious tapering
effect.

Independent of resolution, % changes sign at an in-
termediate wavenumber k% within the submesoscale
range since Ah becomes negative at larger k within the
submesoscale range. Notice that k% changes only
slightly with resolution from ICC3 to ICC1 and not
between ICC1 and ICC0 (k% * 2 + 10,4 rad m,1),
although the magnitude of % does increase significantly
with increasing resolution (Fig. 6). The range with % (
0 extends into the mesoscale k range and it indicates an
inverse KE cascade toward larger scales, consistent
with geostrophic turbulence. Because of the large sam-
pling uncertainty and the likelihood of a significant %b

component at larger scales (distorted by the window-
ing), we hesitate to draw any strong conclusions about
the efficacy of a mesoscale inverse KE cascade in
our solutions, although our results indicate it does oc-
cur to some degree [in agreement with the more reli-
able estimate by Klein et al. (2008) for a periodic do-
main].

b. Ageostrophic velocity and KE flux

We now assess the degree to which balanced and
unbalanced parts of the flow (section 5 of Part II) con-
tribute to the submesoscale forward kinetic energy cas-
cade. For this purpose, we make a Helmholtz decom-
position of the horizontal velocity into a horizontally
nondivergent part and its divergent residual:

u # uh $ wẑ # uhr $ !uhd $ wẑ",
!h # uhr # 0 ; ẑ # !h + uhd # 0. !11"

4 The same is true for the mesoscale activity both in our simu-
lations and more generally in eastern-boundary currents
(Marchesiello et al. 2003).

FIG. 6. KE transfer function %(k) [m2 s,3]. Results are shown
for simulations ICC3 with dx # 3 km (dotted–dashed line), ICC1
with dx # 1.5 km (dashed line), and ICC0 with dx # 0.75 km (solid
line) using a Hanning window. Also included are two estimates of
%(k) (dotted line) for ICC0 obtained by evenly dividing the di-
agnostic domain into 4 and 16 subdomains of sizes 3842 and 1922

grid points and averaging the resulting spectral fluxes.
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sink. Ageostrophic instabilities in the ocean interior [Müller
et al., 2005] or nonlinear coupling to internal gravity waves
(IGWs) [Buhler and McIntyre, 2005] could possibly lead
to significant energy dissipation of geostrophic flow, but
quantifying these in the World Ocean is a formidable
challenge [Polzin, 2008]. Propagation to the western
boundaries might play a significant role outside the South-
ern Ocean [Zhai et al., 2010], but most of the wind forcing
occurs in the Antarctic Circumpolar Current (ACC) where
baroclinic eddies seldom propagate westward [Fu, 2006]
and likely dissipate before reaching a coastline. In short,
despite great effort in studying the ocean’s energy budget
in the last two decades, the bulk of the dissipation of the
most energetic oceanic motions remains unaccounted for.
[3] The unsolved problem of the mechanical energy

budget has important ramifications, most notably in con-
sidering the role of turbulent diapycnal mixing in driving
the oceanic overturning circulation [e.g., Kuhlbrodt et al.,
2007]. For anticipating the intensity and distribution of
this diapycnal mixing requires knowledge of the sources of
mechanical energy and the pathways and processes that lead
to mechanical energy dissipation [e.g., Huang et al., 2006;
Scott and Xu, 2009]. Estimates of the abyssal power
required to maintain the overturning circulation vary but
could be as high as 2 or 3 TW [Webb and Suginohara, 2001;
Munk and Wunsch, 1998; St. Laurent and Simmons, 2006].
The wind work on the general circulation is a leading can-
didate for the ultimate power source driving the mixing,
supplementing important contributions from tidal conver-
sion in the deep ocean [Jayne and St. Laurent, 2001; Egbert
and Ray, 2003; Arbic et al., 2004; Egbert et al., 2004] and
possibly wind‐driven internal gravity waves [Alford, 2003;
Watanabe and Hibiya, 2002]. If a substantial fraction of the
wind work on the general circulation were to be dissipated
by small‐scale turbulence outside viscous boundary layers,
it would constitute a significant and possibly leading‐order
driver of diapycnal overturning in the deep ocean. Fine‐
structure estimates of the turbulent kinetic energy dissipa-
tion rate associated with IGW breaking in the Southern
Ocean [Naveira Garabato et al., 2004; Sloyan, 2005; Kunze
et al., 2006] point to this possibility. Those studies find
generally elevated levels of dissipation in the ACC, and
suggest that the bulk of the regional IGW field may be
sustained by interactions of the strong ACC flow with
the sea floor topography. These ideas are endorsed by
Nikurashin and Ferrari [2010], who combine observations
of the circulation and bathymetry of Drake Passage with
wave radiation theory to show that the IGW generation rate
in the area is large enough to support the dissipation rates
found by the preceding studies.
[4] Here we consider the global dissipation of mechanical

energy from the geostrophically balanced ocean circulation
via the generation of IGWs in the lee of topographic features
in the deep ocean. This mechanism of generating IGWs
was proposed by Bell [1975] and explained pedagogically
by [Gill, 1982, chapter 8]. As we discuss in more detail
in Section 2, the IGW generation rate (or vertical flux of
energy) depends upon the buoyancy stratification above the
topography N, the geostrophic flow rate above the topog-
raphy U (generally treated as steady on timescales of IGW
generation), and the roughness of the bottom topography

on horizontal length scales 1/k short enough to generate
IGWs via steady flow,

U
N

<
1
k

<
U
j f0j

; ð1Þ

where k is the horizontal wavenumber and f0 is the local
vertical component of the Coriolis frequency. For typical
deep ocean parameters, the relevant length scales are
between about 100 m and 5 km, which is much smaller than
that associated with internal tide production. The primary
challenge for this calculation was obtaining global statistics
of the seafloor topography on these length scales, which are
well below those resolved by global topographic data sets
[Smith and Sandwell, 1997, 2004]. What has made this
calculation possible is the recent development of two almost
independent quasi‐global estimates of small‐scale topo-
graphic roughness statistics [Goff and Arbic, 2010, herein-
after GA2010; Goff, 2010, hereinafter G2010]. The former
uses a statistical modeling approach that predicts small‐scale
roughness properties based on paleo‐spreading rates and
directions modified for sediment cover. In the latter, gravity
roughness on scales less than about 100 km is first com-
puted after masking of large‐scale features such as sea-
mounts and spreading ridges, application of a directional
filtering algorithm to remove fractures zones and disconti-
nuity traces, and subtraction of estimated noise contribu-
tions. The statistical properties of abyssal hill morphology
at the seafloor are related to this residual roughness by
‘upward continuation’: a projection of the gravity signature
at the seafloor to the sea surface, which works as a linear
filter on the topographic spectrum, dependent on water
depth and seafloor/water density contrast [Smith, 1998]. See
G2010 for further details.
[5] As with many geophysical calculations and especially

global ones, the calculation of the most recent best estimate
is much easier than estimating the uncertainty in that esti-
mate. And while the need for attempting quantitative error
estimates is easy to find in the literature, it is much harder
to find published quantitative error estimates. Herein we
employ the strategy of Scott and Xu [2009] and in lieu of
rigorous error estimates use sensitivity tests with indepen-
dent data sets. Both global estimates of small‐scale topo-
graphic roughness statistics were used to produce global
maps of the rate of lee wave generation and several sensi-
tivity tests were performed. First we briefly review the
theory and describe the calculation procedure in Section 2,
including properties of the data sets employed. In Section 3
we present the maps of lee wave generation rate including
all the sensitivity experiments. We conclude in Section 4
with a brief discussion of some of the implications for the
World Ocean mechanical energy budget, the maintenance
of the oceanic overturning circulation, and ocean modeling.

2. Theory and Methods

2.1. Internal Lee Wave Generation Theory
[6] The mechanism by which geostrophically balanced

flow over topography generates IGWs (also called internal
lee waves) is explained by Gill [1982, chapter 8]. Under
the traditional approximation of ignoring the horizontal
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Large-scale spectra, N/f=2 
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related to the ratios LF=‘oz and LF=‘diss, where ‘diss is the
dissipation wavelength. The shallower spectrum is close to
a Kolmogorov solution !Kol ¼ 5=3, expected (possibly
with small intermittency corrections) once the small scales
recover isotropy for high enough RB (see [31] for the
rotating case).

The inset in Fig. 2 gives the temporal variation of EV

(solid lines) and (scaled) dissipation DV ¼ 2"hj!j2i
(dashed lines). The steady energy increase, after an initial
transient, is typical of inverse cascades. The variation of
the ratio of inverse to direct flux with the buoyancy
Reynolds number is indicative of the increased effective-
ness of turbulence as RB grows. One can also expect this
ratio to decrease as N=f increases since no inverse cascade
occurs in the purely stratified case [30].

Such direct cascades of energy in rotating stratified
turbulence have been analyzed using theoretical closure
models of turbulence [37]. Dual cascades were also found
when examining AVISO altimeter data for the Kuroshio
current [13], with values of R! approaching those of
oceanic data for the largest imposed turbulent (horizontal)
viscosity. Whereas these authors conclude to some ambi-
guity in the interpretation of their results due to the neces-
sary filtering of the data, our DNS of the Boussinesq
equations unambiguously show that dual energy cascades
are realistic outcomes in a geophysical setting. The higher
values of R! found in our runs likely reflect the fact that
buoyancy is not dominant in our DNS, with N=f " 4.
However, we note that the abyssal southern ocean at mid
latitudes has N=f as low as 4 or 5 and shows considerable
mixing [1,38].

Conclusion and discussion.—We have shown in this
Letter that a dual (direct and inverse) constant flux

energy cascade is present in rotating stratified turbulence,
thereby resolving the paradox noted by some authors (see,
e.g., [4,13]) and thus adding credence to having both geo-
strophic balance and anomalous transport in geophysical
turbulence. The computations clearly point out the possi-
bility of the coexistence in the ocean and the atmosphere of
idealized large-scale dynamics dominated by quasigeo-
strophic motions, together with the production of small
scales, essential to transport [38].
More computations and data analysis are required to

categorize in a quantitative way the duality of the energy
cascade, as well as the mixing efficiency one can expect in
rotating stratified flows. For example, the variation of R!

with the relevant dimensionless parameters, such as Re,
N=f, and RB, as well as LF ¼ 2#=kF (when measured
relative to L0, ‘oz and ‘diss), is an open problem which will
require huge numerical as well as observational resources.
In that context, two-point closures of turbulence (see, e.g.,
[9]), so-called shell models as used in [16] but generalized
to include both rotation and stratification, as well as sub-
grid scale modeling of small-scale dynamics may be intro-
duced to study this phenomenon in a thorough parametric
fashion (see, e.g., [39] for rotating flows), varying the
forcing mechanisms as well.
However, there are some indications of a dual flux, using

quasigeostrophy [13], or in more complex settings using a
numerical oceanic model applied to the California coastal
current [40]. This somewhat paradoxical behavior of the
energy directivity can be understood if one recalls that
triadic energetic exchanges can be either positive or nega-
tive, and it is a delicate balance between the two that
determines the overall sign of the flux, as also found for
helical flows [18].

(a) (b)

FIG. 2 (color online). (a) Kinetic energy spectra for Run 10d (red line), 10e (blue line), and 15a (black line), all with N=f ¼ 2 and
increasing RB ¼ ReFr2. The straight lines with different power laws are given as indications. In the bottom inset are shown the
temporal evolution of the kinetic energy for the same runs (solid lines), together with their (scaled) dissipation (dashed lines)
5# 2"hj!j2i, with ! ¼ r# u the vorticity. The spectra, not averaged in time, are shown at t=$NL $ 22, whereas the peak of
dissipation occurs for all the runs around t=$NL $ 1:3, time after which the energy starts to grow, with $NL ¼ LF=U0 the turnover time.
(b) Total (kinetic plus potential) energy fluxes normalized by energy input %V ¼ hu % Fi for the same runs, as well as for runs 10a
(magenta dashed line), 10b (green dashed line), and 10c (cyan dashed line) for which N=f ¼ 4.
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Ro=0.26, variable Fr	



ΠT/εV 

The small-scale flux is smaller  
when waves are stronger 
à  Regime of ``weak’’ turbulence 
à  εdir,WT = εKol * Fr 



Fr=0.04, variable Ro	


N/f=Ro/Fr,  Ro=U/[Lf]	


Ro~ 0.08	


    ~ 0.16	


    ~ 0.28	


    ~ 0.45	


	



The stronger  
the rotation, 
the larger is RΠ, 
i.e. the larger is 
the cascade 
to large scales 
relative to that  
to small scales 



Fr=0.04, variable Ro	



Ro=0.26, variable Fr	


àεLS / εss ~ [Fr * Ro]-1 
 

       ~ ωrms [Nf]-1/2 Re -1 
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Conclusion 

Dual bi-directional constant flux cascades  
are the norm, allowing for  
long-time large-scale coherent structures  
as well as small-scale mixing and dissipation 


