Collective response and emergent morphologies in swimmer suspensions

I. Pagonabarraga University of Barcelona

1. Introduction

1. Introduction

Biomimetic cilia

Jaramayan et al. PRL (2012)

Internal activity new materials

Sanchezet al. Nature (2013)

Left: Active Droplets Right: Passive Droplets 10X Magnification

100µm bar

Microfluidic flows

Desired structures, adaptive, capable of self repair

Wioland et al. PRL (2013)

Active drops

flagella

Dynamics of active particles

Low Reynolds numbers

Absence of external driving closer to electrophoresis?

Relevance of swimming mechanism

Fluid flows with vorticity

Coupling translation/rotation relevance of near field interactions

Flow measurements

0.032

0.0032

≤ 0.001

0.01

Chlamydomonas

Time dependent flow

cycle averaged

emulsions

Thutupalli et al. NJP (2011)

20

Drescher et al. PNAS (2011)

Hydrodynamic coupling - long range

Relevance of shape

Disks/spheres prevent crystallization?

Matas-Navarro et al. (2014)

Zottl et al. (2014)

Hydrodynamic coupling - long range

Unsteady flows

Meso-scale turbulence

Relevance of shape

Lushi et al. (2013)

Zottl et al. (2014)

Wensick et al. (2012) 7

Squirmers

Metachronal wave on Opalina, Paramecium. Fixed tangential velocity profile on the surface (Lighthill, 1952; Blake, 1971)

Surface tangential velocity

$$\mathbf{v}_S = \sum_{n=1}^{\infty} B_n V_n(\cos \theta) \mathbf{t}$$

$$\mathbf{v}_S = (B_1 \sin \theta + B_2 \sin \theta \cos \theta) \mathbf{t}$$

β=B₂/B₁ Steady squirmer (Pedley 1986)

$$\dot{} u_{\infty} = \frac{2}{3}B_1$$

Through the Nikon Eclipse E600 Microscope with Apodized Phase Contrast

Squirmers

Metachronal wave on Opalina, Paramecium. Fixed tangential velocity profile on the surface (Lighthill, 1952; Blake, 1971)

Surface tangential velocity

$$\mathbf{v}_S = \sum_{n=1}^{\infty} B_n V_n(\cos\theta) \mathbf{t}$$

$$\mathbf{v}_S = (B_1 \sin \theta + B_2 \sin \theta \cos \theta) \mathbf{t}$$

 $\beta = B_2/B_1$ Steady squirmer
(Shun Pak et al, 2014)

Propulsion velocity

13

β>0 puller

B₁=0 B₂≠0

 $v \sim 1/r^2$

Apolar

 $v \sim 1/r^{3}$

E. coli

KKKKKKKKK

 $\leftarrow \leftarrow$

β<0 pusher

2. Microswimmer suspension: Model

Hard core

No temperature No tumbling focus on hydrodynamic coupling

 $\mathbf{v}_S = (B_1 \sin \theta + B_2 \sin \theta \cos \theta) \mathbf{t}$

Slip velocity as a local bounce-back

Additional attraction competition with activity

Transition to an ordered phase: LJ interaction strength is reduced and B2 is not too big. Stokes Law, small Reynolds $F_d = 6\pi\eta R_p v_s \qquad v_s = \frac{2}{3}B_1$ $\eta = 0.5, R_p = 2.3$ $\xi = \frac{F_d}{F_{LJ}(r = \sigma_{LJ})}$ 11

Streamlines

Polar

Passive

Apolar

Hydrodynamic coupling - long range

Relevance of shape

Disks/spheres prevent crystallization?

Zottl et al. (2014)

Matas-Navarro et al. (2014)

3. Cluster morphologies

Dynamic structures

Morphological characterization?

3. Cluster morphologies

Density fluctuations

Zhang et al. PNAS (2010)

3. Squirmer suspensions: density fluctuations

Quantify degree of ordering sensitive to active stresses distinguish puller/pusher

Squirmer attraction enhances cohesion destroys ordering

3. Squirmer suspensions: density fluctuations

Need to reach large system sizes Strong correlations

Significant finite size effects 17

3. Squirmer suspensions: Cluster distributions

Power-law decay

Wide range dynamic structures

18

= 3.0

= 0.25

3. Squirmer suspensions: Cluster distributions

Hydrodynamic coupling lack of translation/rotation coupling Nematogenic character lost

$$f(s) \sim s^{-\gamma_0} \exp(-s/s_0)$$

.. and reorientation

t=0

pushers $\beta = -3$

3. Squirmer suspensions

velocity distributions

impact of HI wider distributions for pullers

Generic polar order inside clusters

3. Squirmer suspensions: Cluster distributions

3. Cluster morphologies

Dynamic clusters

β=-0.6 β=-1.0

crystal structures pullers more robust

t=500000

Percolating clusters

6. Conclusions

Active matter

Release energy at small scales (natural/synthetic) intrinsically out of equilibrium

New mechanisms to develop patterns and structures Competition between attraction/activity

Interplay hydrodynamics/attraction Large density fluctuations Macroscopic cluster Induce polar ordering: dominant effect of translation/rotation

Dynamic clusters

Interplay hydrodynamics/attraction Large density fluctuations

Acknowledgements

Francisco Alarcón-Oseguera

Barcelona Supercomputing Center

3. Motility-induced phase separation

Active Brownian Particles

 $\mathbf{J} = -\rho D(\rho) \nabla \left[\frac{\delta \mathscr{F}_0}{\delta \rho} \right]$ $D(\rho) = \frac{v^2(\rho)\tau_{\rm r}}{d(d-1)} = D_0(1 - v_0\sigma_{\rm s}\tau_{\rm c}\rho)^2$ $\partial_{\mathrm{t}}\rho = -\nabla \cdot \mathbf{J} = -\nabla \cdot \left\{ -D(\rho)\rho \nabla \mu + \sqrt{2D(\rho)\rho} \mathbf{\Lambda} \right\}$ $\phi_{_{0}} = 0.5$ $\phi_0 = 0.25$ $\phi_0 = 0.4$ φ 1.0 0.8 0.6 $\phi_{0} = 0.6$ $\phi_{0} = 0.7$ $\phi_{0} = 0.8$ 0.4 0.2

Particles trapped regions low motility

Stenhammar et al. (2014)

3. Motility-induced phase separation

Active Brownian Particles

2. Microswimmer suspension: Model

Lattice kinetic model: "microscopic" dynamics

Final

 $f_i(r + c_i, t + 1) = f_i(r, t) - \omega[f_i(r, t) - f_i^{eq}(r, t)]$

Initial

Post-Collision

 $\sum f_i = \rho$

 $\sum f_i c_i = \rho v$ $\sum f_i c_i c_i = \rho v v + P$

Conserved variables Proper symmetries

Hydrodynamic equations

Colloid rigid hollow surface

collision bounce-back

Hybrid scheme:molecular dynamicsPre-selection of relevant degrees of freedom

