Taylor rolls in high Reynolds number Taylor-Couette flow

<u>Rodolfo Ostilla Mónico</u>

Roberto Verzicco, Siegfried Grossmann, Detlef Lohse

Physics of Fluids University of Twente

Geometric parameters

Driving parameters

Taylor-Couette experiments from 1890s

R. Donnelly, "Taylor-couette flow: the early days", Physics Today 1991

Soft Matter

Cite this: Soft Matter, 2014, 10, 3523

TUTORIAL REVIEW

View Article Online View Journal | View Issue

"The hydrogen atom of fluid dynamics" – introduction to the Taylor–Couette flow for soft matter scientists

M. A. Fardin, *ab C. Perge^a and N. Taberlet^{ac}

Focus on inner cylinder rotation

The transition to turbulence of TC flow

Increasing Reynolds number

R. Donnelly, "Taylor-couette flow: the early days", Physics Today 1991

Do the rolls dissapear at large Re?

Increase Reynolds enough

Lathrop DP, Fineberg J, Swinney HS. 1992. Phys. Rev. A 46:6390–6405

Do the rolls dissapear at large Re?

Huisman SG, van der Veen RCA, Sun C, Lohse D. 2014. Nat. Commun. 5:3820

Also in DNS with periodic conditions

$$\eta = 0.909$$
$$Re_s = 10^5$$
$$\Gamma = 2$$
$$\omega_o = 0$$

$$\eta = 0.909$$
$$Re_s = 10^5$$
$$\Gamma = 2$$
$$\omega_o = 0$$

They are persistent in time

$$\eta = 0.909$$
$$Re_s = 10^5$$
$$\Gamma = 2$$
$$\omega_o = 0$$

Rolls dominate the axial autocorrelations

Rolls dominate the axial autocorrelations

They seem to be resistant to axial flow

Axial autocorrelations with imposed flow

What is the effect of these rolls on the system?

Lewis & Swinney, Phys. Rev. E, 59(5) 5457-5467, (1999)

Do the rolls explain the absence of -5/3 energy spectra?

What is the effect of these rolls on the system?

Lewis & Swinney, Phys. Rev. E, 59(5) 5457-5467, (1999)

Do the rolls explain the absence of -5/3 energy spectra? Structure functions (with ESS) behave similar to other flows

What is the effect of these rolls on the system?

Huisman, Scharnowski, Cierpka, Kaehler, Lohse, Sun, Phys. Rev. Lett, 110 (2013), 264501

Same Prandtl-von Karman velocity profiles as in channels, pipes...

Can we further understand this using DNS?

Start by looking at the boundary layers...

In DNS we can also see these log-profiles

In DNS we can also see these log-profiles

In DNS we can also see these log-profiles

How logarithmic are the profiles?

S-like behaviour in similar Re₋ channels

Lozano-Duran, Jimenez, Phys. Fluids , 26 (2014), 011702

Streamwise velocity profile for $Re_{T} = 2000$ 30 6 20 4 U^+ + [I] 10 2 0^{___} 10^{_1} 0⁻¹ 10² 10^{2} 10⁰ 10⁰ 10³ 10³ **10**¹ 10⁴ 10¹ r^+ r^+

10⁴

$$\Xi^+ = r^+ \frac{dU^+}{dr^+}$$

Streamwise velocity profile for $Re_{T} = 2000$

Is this "log-layer" behaviour apparent in other statistics of TC flow?

Overlap layer in velocity fluctuations

Streamwise (azimuthal) velocity fluctuations

Spanwise (axial) velocity fluctuations

 Re_{T} is too small to see overlap in u',

Is this the full story?

Streamwise velocity fluctuations for $\text{Re}_{\tau} = 1000$

Streamwise velocity fluctuations for $Re_{T} = 1000$

Velocity fluctuations are much smaller in TC

"Frozen" rolls reduce the fluctuations

"Frozen" rolls reduce the fluctuations

The rolls affect the boundary layers

Look at the azimuthal velocity spectra

Large-scale rolls are **attached** to the wall

What about the radial velocity?

Rolls are **active**, they transport angular velocity near the wall

There is a **maxima** in the cospectra for axisymmetric rolls inside the BL

The spectra are similar at the mid-gap

Clear lack of -5/3 energy spectra, without applying Taylor's hypothesis

Sawtooth spectra indicates preferential wavelengths

Go back to the drawing board...

Large-scales modulate azimuthal velocity

Large-scales modulate azimuthal velocity

Large-scales modulate azimuthal velocity

Hairpins generated at certain places

Hairpins generated at certain places

Hairpins generated at certain places

Hairpins transport angular velocity – high $u_r \& high u_{\theta}$

Axially ordered – they cause the maxima in the cospectra

Same process at outer cylinder...

The rolls arise naturally due to linear instability!

Can we break the cycle?

Ostilla-Mónico, van der Poel, Verzicco, Grossmann, Lohse. J. Fluid. Mech, in press

Yes – through introducing asymmetry (curvature and solid body rotation)

In summary ...

• The boundary layers in TC flow behave in a very similar to those in other canonical flows, with one exception: Taylor rolls.

• Taylor rolls are stationary and are resistant to weak axial flows, but do not form in large curvature or for co-rotating cylinders.

• Taylor rolls are attached to the wall, and actively transport angular velocity through Reynolds stresses.

Questions?

TC in a Rotating frame: outer cylinder rotation as a Coriolis force

 $\partial_{t}\mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^{2}\mathbf{u} \qquad \partial_{t}\mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + 2\omega_{o} \times \mathbf{u} = -\nabla p + \nu \nabla^{2}\mathbf{u}$ $U_{\theta}(r_{i}) = r_{i}\omega_{i} \qquad \qquad U_{\theta}(r_{i}) = r_{i}(\omega_{i} - \omega_{o}) \equiv U$ $U_{\theta}(r_{o}) = r_{o}\omega_{o} \qquad \qquad U_{\theta}(r_{o}) = 0$

$$Ro^{-1} = \frac{2\omega_o(r_o - r_i)}{r_i(\omega_i - \omega_o)}$$

$$(Re_i, Re_o) \to (Ta, Ro^{-1})$$
$$Ta = \frac{r_a^6 d^2}{r_g^4} \frac{(\omega_i - \omega_o)^2}{\nu^2} \sim Re_s^2$$
$$Ro^{-1} = \frac{2\omega_o(r_o - r_i)}{r_i(\omega_i - \omega_o)}$$

 $Ro^{-1} = 0$ Pure IC rotation $Ro^{-1} < 0$ Counter-rotation $Ro^{-1} > 0$ Co-rotation

