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Active Microrheology

viscocity,
viscoelasticity,
structural changes

To probe the material response on micrometer length scales with 
microliter sample volumes.

Active micro-rheology in very dense fluids
A driven tracer particle interacting with a bath at equilibrium
creates an inhomogeneous nonequilibrium perturbation.

It pushes what is in front and runs away from what is left behind

This is observed in colloidal suspensions, monolayers of vibrated
grains and in glass systems.

Characterizing the motion of the intruder teaches us the
micro-rheological properties of the fluid

J Pesic, et al, PRE (2012) 86, 031403
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Because the probe’s motion is no longer purely Brownian in active microrheology, the
probe particle has an average displacement and therefore an average velocity, from which
we can define an effective microviscosity of the dispersion through the use of Stokes drag
law. This microviscosity is a function of the Péclet number—the ratio of the imposed
motion to the thermal motion—and the volume fraction of the freely suspended bath
particles. The results of a series of BD simulations are detailed in Sec. IV. The microvis-
cosity exhibits a Newtonian plateau for low Péclet numbers, force thins as the Péclet
number is increased, and finally reaches a second plateau region for high Péclet numbers.
The microviscosity is also an increasing function of volume fraction, and a simple theory
by Squires and Brady !2005" can be used to give appropriate scaling relations that
collapse the effective viscosities at different suspension volume fractions and Péclet
numbers onto a single universal curve !a brief overview of the dilute theory is given in
Sec. III". The dispersion with the highest volume fraction !55%", displays yield behavior,
and the simple scaling arguments of Squires and Brady !2005" only apply at the highest
Péclet numbers studied where the motion of the probe “liquefies” the material in its
immediate neighborhood. For small Pe, the system is solidlike. We also address the
difference in the measurements when the probe is dragged with a constant force versus a
constant velocity. These two cases result in different effective viscosities—when the
particle is dragged with a constant velocity, the probe cannot move laterally as it passes
suspended particles, the suspension is more dissipative and the effective viscosity calcu-
lated is higher than for the equivalent constant force measurement.

One of the central issues in the use of microrheology is the relation between the
microviscosity and the macroviscosity—the viscosity measured in a conventional mac-
roscopic rheometer—and, therefore, one of the key goals of this study has been to com-
pare our microviscosity results to the results obtained for a homogeneously sheared
suspension. A direct comparison can be made to the simulation work of Foss and Brady
!2000" who conducted BD simulations of suspensions at some of the same volume
fractions as used in this study. In the BD simulations of Foss and Brady !2000", a simple

FIG. 1. The model system: a probe particle is dragged by means of an imposed external force through a
surrounding suspension of monodisperse force-free bath particles. The relative strength of Brownian !UB

#D /a#kT /6!"a2" to driven motion !UF#F /6!"a" gives the Péclet number Pe=Fa /kT and governs the
behavior of the system. Here, D is the Stokes–Einstein–Sutherland diffusivity of a single particle of radius a and
thermal energy kT in a fluid of viscosity ". !Alternatively, the probe particle may be dragged with a constant
velocity U, in which case UF=U and Pe=Ua /D."
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Is the standard setting for studying the Einstein relation 
and other LR fluctuation-dissipation relations.



Theoretical descriptions
Mode-coupling theory: unable to describe superdiffusion       Harrer et al J.Phys. Cond Mat 2012 

Effective CTRW approach: parameters inferred only numerically    Schroer, Heuer et al PRL 2013 

There is no clear understanding  of superdiffusion
 is it related to glass transition?
 is it transient or the ultimate regime?

Winter et al PRL 108 (2012) 028303

motion from cage to cage. This is indicated by the
trajectory xðtÞ in the inset of Fig. 4. After being localized
in a cage for a time !, the particle moves quickly to the next
cage which is a distance !x apart. Figure 4 shows the
waiting time distribution Pð!Þ for different values of f,
again at T ¼ 0:14. The decay of Pð!Þ can be well described
by a stretched exponential function Fð!Þ / expð$C!"Þ
with " ¼ 0:5 (solid lines in the figure). Thus, Pð!Þ can
be described by a broad distribution associated with the
superlinear behavior of the MSD in force direction.

The scenario that we find here is reminiscent of a certain
class of trap models, introduced by Bouchaud et al.
[20,21]. The directed walk among traps with a broad
release time distribution is given by a master equation for

a one-dimensional lattice model with a random distribution
of asymmetric transition rates at each lattice site (caused in
our case by the force on a tagged particle in þx direction
and considering the surrounding particles as a random
energy landscape). This model yields superdiffusive be-
havior if the ratio between the mean bias and fluctuating
part of the random potential seen by the random walker is
between 1 and 2 (the latter ratio is quantified by a parame-
ter # [20]). In our case, the fluctuating part of the random
potential corresponds to the rattling motion of the tagged
particle in the cage and the mean bias to the directed
hopping from cage to cage. Note that for very high forces
(see above), the motion of the pulled particle becomes
diffusive again; in fact, this is predicted by the trap model
for #> 2.
Summary and conclusions.—We have presented an ex-

tensive molecular dynamics simulation to reveal active
nonlinear microrheology in a binary Yukawa mixture.
Beyond linear response, we find a regime of intermediate
Peclet numbers Pe& where Pe& follows a force-temperature
superposition principle. In this regime, the motion of the
pulled particle exhibits strong anisotropies in the long-time
limit; in particular, superdiffusion in parallel force direc-
tion is found.We have shown that the diffusion dynamics is
completely different from that of glass-forming liquids
under shear, and so we challenge a possible relationship
between microrheology and macrorheology.
The superdiffusive regime is only seen in the strongly

supercooled regime, characterized by a broad waiting time
distribution and a hopping motion of the pulled particle
through a quasifrozen environment. Thus, the latter regime
has not been observed in recent microrheological studies,
focussing on the diffusion dynamics of ‘‘nonglassy’’ fluids
[17,25]. We have indicated that superdiffusion at inter-
mediate Pe& can be understood in terms of a simple trap
model. However, this model does not take into account the
concept of an effective temperature Teff for the transverse
diffusion. As indicated above, Teff has a quadratic depen-
dence on the external force f and can be understood in
terms of a mean-field theory [24]. Via this route, the
transverse diffusion can be incorporated into a three-
dimensional trap model. This is an issue for forthcoming
studies.
We thank Pinaki Chaudhuri for a critical reading of the
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FIG. 3 (color online). Mean-squared displacement of A parti-
cles in the direction of force for different values of f, as
indicated. The temperature is T ¼ 0:14. The inset shows a
comparison between the MSD’s for the parallel and orthogonal
direction for f ¼ 1:5.
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FIG. 4 (color online). Waiting time distribution Pð!Þ for differ-
ent values of f. The solid lines are fits with stretched exponen-
tials with " ¼ 0:5. The inset shows an example for a trajectory
xðtÞ to illustrate the definition of waiting time !.
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FIG. 5. (a) Mean-squared displacement 〈!x2(t)〉 − 〈!x(t)〉2 for pulled A
particle at T = 0.14. The curves correspond to the forces f = 0.0, 0.5, 1.0,
1.5, 2.5, 4.0, 6.0, and 10.0 (from right to left). (b) Effective exponents α as a
function of f for different temperatures, as indicated.

all the results in Fig. 5(a) are taken in the steady-state regime.
Thus, the superlinear behavior occurs in the steady state and
is not a transient phenomenon.

Figure 5(b) shows the effective exponent α as a function
of f for different temperatures. At T = 0.14, it first increases
from about 1.3 to 1.5 in the interval 0.5 ≤ f ≤ 2.5, then it is
constant around 1.5 between f = 2.5 and f = 6, before it de-
creases to 1.0 for α > 6. Note that all the considered values of
f at T = 0.14 are beyond the linear response regime. At higher
temperatures the behavior of α is qualitatively similar but the
effective exponents are significantly lower than for T = 0.14.
From this, we can conclude that the superlinear (or superdif-
fusive) behavior is directly related to the time scale separation
between the motion of the pulled tracer particle and that of the
surrounding host fluid. A pronounced superdiffusive behavior
is seen if the surrounding host fluid is quasi-frozen on the time
scale of the tracer particle.

But what is the origin for the superdiffusive behavior in
force direction? One may argue that this anomaly is due to hy-
drodynamic backflow effects as a result of the coupling of the
tracer particle motion to the diffusion of transverse momen-
tum in the host fluid. To check this assumption, we compare
the MSD for f = 2.0 and T = 0.14 (Fig. 6), as obtained from
the DPD dynamics, to that obtained with an Andersen ther-
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FIG. 6. Mean-squared displacement 〈!x2(t)〉 − 〈!x(t)〉2 for pulled A par-
ticle at T = 0.14 and f = 2.0 for different thermostats (see text). The inset
shows the corresponding mean-squared displacement displacements divided
by t.

mostat with two different values of τ therm (see above). Since
the Andersen thermostat does not conserve local momentum,
backflow effects are absent in this case and thus the superdif-
fusive behavior in the MSDs should disappear if our assump-
tion about the connection between hydrodynamic backflow
and anomalous diffusion of the tracer particle is correct. That
this is indeed not the case, can be inferred from the different
MSDs in Fig. 6. The slope of the long-time behavior of the
MSD is identical for the DPD and the Andersen thermostat
and thus we can conclude that the observed superdiffusion is
not due to hydrodynamic backflow effects.

The time scale separation between the motion of the
pulled tracer particle and the quasi-frozen host liquid is as-
sociated by a hopping motion of the tracer from cage to cage.
This is indicated in Fig. 7 which shows typical trajectories
for the force f = 1.0. While at high temperatures, say at T
= 0.18, the trajectory is relatively smooth, at low tempera-
tures one can clearly identify the residence in the cage and the
hop to the next cage. Furthermore, the residence time in the
cages is rather heterogeneous at low temperatures (cf. the tra-
jectories at T = 0.14 in Fig. 7(a)). In a recent work,22 we have
determined waiting time distributions P(τ ) from trajectories
x(t) such as those shown in Fig. 7. For T = 0.14, these distri-
butions can be described by a stretched exponential function,
P(τ ) ∝ exp (−Cτβ), with β = 0.5. Thus, P(τ ) can be clas-
sified as a broad distribution with broad tails towards large
values of τ . The latter tails are reflected by the occurrence of
very long cage residence times in the trajectories of Fig. 7(a).

The hopping motion of the pulled particle from cage to
cage can be also seen in the van Hove correlation function in
x direction, defined by

Gs(x, t) = 〈δ(x − (xtracer(t) − xtracer(0)))〉 . (6)

This function gives the probability that the tracer particle is
displaced by the distance x at time t from its initial position
at time 0. In Fig. 8, Gs(x, t) for A tracer particles is shown
in linear-logarithmic plots for different times at T = 0.14 and
the forces f = 1.0 and f = 2.5. At short times, Gs(x, t) ex-
hibits a single peak with an emerging shoulder for x > 0.5.
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 A glass forming binary Yukawa fluid

Equations for the talk

December 10, 2014
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Superdiffusive fluctuations

but only in the vicinity of the glass transition



Biased intruder (TP) in a gas of unbiased hard-core particles on a d-
dimensional hypercubic lattice

The model: An ASEP in a sea of SSEP’s

! We consider a square lattice of Lx × Ly
sites, of unit spacing, with P.B.C and
populated with hard-core particles.

! Each site can be either empty or
occupied by at most one particle.

! The system evolves in discrete time n
and particles move randomly.

! One particle, the intruder, is subject to a
constant force F

• Bath particles move in either direction with equal jump
probability 1/4.
• The intruder moves in direction eν with probability

pν = Z−1e
β
2 F·eν ,

where Z = 2(1 + cosh (βσF/2)) and β is the inverse temperature.
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where Z = 2(1 + cosh (βσF/2)) and β is the inverse temperature.

Simple Exclusion Process:
an ASEP in a sea of SEP’s

	
 Our model



As the force increases structural changes around the TP are observed

observed in colloidal suspensions, monolayers 
of vibrated grains and in glass systems.
Mejia-Monasterio & Oshanin Soft matter 7 (2011) 993

Nonequilibrium inhomogeneity

The medium remembers the passage of the 
intruder on very large spatial and temporal scales

Nonequilibrium Inhomogeneity
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A single vacancy problem
! If the intruder is not around then the

new position is chosen randomly with
equal probability 1/4

! If at time n the vacancy at position
rn + eν is adjacent to the intruder at
position rn then the vacancy exchanges
its position with the intruder with
probability

qν =
p−ν

3/4 + p−ν

and with probability 1/(3 + 4p−ν) with
any of the three adjacent bath particles

• Limit of small vacancy density ρ0 = M/(Lx × Ly ) " 1

• Idea: trapping of the intruder by diffusive vacancies.

O Bénichou, G Oshanin, PRE (2001) 64. 020103

MJAM Brummelhuis, HJ Hilhorst, Physica A (1989) 156, 575

Overcrowding.   Theoretical approach

For a given configuration of the vacancies {Zjn}, the 
probability of finding the TP at position rn at 
discrete time n is

Intruder’s displacement
Derivation of the probability distribution

! Let Z j
n denote the position of the j-th vacancy at time n,

j = 1, 2, . . . ,M.

! We want to compute the probability of finding the intruder at
position rn at time n conditioned to {Zj

n}
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1
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! P(r1n, . . . , r
M
n |{Zj

n}) is the conditional probability that within the
time interval n the intruder moved to r1n due to its interaction with
vacancy 1, to r2n due to its interaction with vacancy 2, etc.

! In the lowest order in ρ0 the vacancies contributions are
independent and

P(r1n, . . . , r
M
n |{Zj

n}) !
M
∏

j=1

P(rn|Z
j
n)

The problem reduces to M single vacancies, correct to O(ρ0).

In the lowest order in the vacancy density   the interactions with different 
vacancies can be considered independent and
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The interactions with a single vacancy is written in terms of first return 
probabilities by summing over all jump moments and jump directions.

Brummelhuis & Hilhorst, JSP (1988)
Bénichou & Oshanin PRE (2002)



Theoretical approach

In the limit of large n and low vacancy density 

Intruder’s displacementDerivation of the probability distribution

Taking the thermodynamic limit Lx , Ly → ∞ with ρ0 fixed we
obtain for the characteristic function

Pn(k) # exp(−ρ0Ωn(k))

Ωn(k) is implicitly defined by

Ωn(k) =
n
∑

l=0

∑

ν

∆n−l(k|eν)
∑

Z"=0

F ∗
l (0|eν |Z) ,

F ∗
l (0|eν |Z) is the FPT conditional probability for a RW starting at

Z to be at 0 at time l , given that it is at site 0+ eν at time l − 1
and

∆l(k|eν) = 1− pl(k) exp (i(k · eν))

J.S
tat.M

ech.(2013)P
05008

A biased intruder in a dense quiescent medium

and
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↵

, (9)

and summing over R

n

, one finds that
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(k) ' pM

n

(k), (10)

which yields, upon going to the thermodynamic limit L
x

, L
y

! 1 (with ⇢0 = M/(L
x

⇥L
y

)
and n kept fixed), the following general result:

P
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(k) ' exp (�⇢0 ⌦
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Then, the desired probability distribution function obeys
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|Z), (13)

where F ⇤
l

(0|e
⌫

|Z) is the conditional probability for a random walk starting at Z to arrive
for the first time at the origin at the nth step, being at site 0 + e

⌫

at time moment n � 1
(see [71] for more details), and

�
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(k|e
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The function ⌦
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(k) can be determined by introducing the generating function
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for which one finds the following asymptotic solution [60]:
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�
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⇠
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(1 � z) ln(1 � z)
, (17)
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the mean number of new sites visited on the n-th time step.
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Anomalous broadening of the fluctuations
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Convergence to a gaussian distribution

Non-trivial behavior because the system is not in equilibrium 
and density profiles of the host medium particles around the 
TP are highly asymmetric!  



Drift velocity of the TP
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Velocity and variance
Velocity and Variance
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The intruder moves at constant velocity along the field direction
and diffuses along the transversal direction

O Bénichou, C M-M, G Oshanin, PRE 87 020103 (2013)
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               is the generating function of the propagator of 
a symmetric RW on a d-dimensional hypercubic lattice 

Note that the velocity vanishes for single-files as it 
should (since          ).

At equilibrium (F = 0), the TP’s diffusion coefficient is
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Exact results to          .

Intruder’s displacement
Derivation of the probability distribution

! Let Z j
n denote the position of the j-th vacancy at time n,

j = 1, 2, . . . ,M.

! We want to compute the probability of finding the intruder at
position rn at time n conditioned to {Zj

n}

P(rn|{Z
j
n}) =

∑

r1n

· · ·
∑

rMn

δ(rn, r
1
n + · · ·+ r

M
n )P(r1n, . . . , r

M
n |{Zj

n})

! P(r1n, . . . , r
M
n |{Zj

n}) is the conditional probability that within the
time interval n the intruder moved to r1n due to its interaction with
vacancy 1, to r2n due to its interaction with vacancy 2, etc.

! In the lowest order in ρ0 the vacancies contributions are
independent and

P(r1n, . . . , r
M
n |{Zj

n}) !
M
∏

j=1

P(rn|Z
j
n)

The problem reduces to M single vacancies, correct to O(ρ0).



Superdiffusive broadening of the fluctuations
Exact results for the variance of the TP’s 
position at intermediate times (             ).

Along the  direction of the bias the variance is

The variance in the perpendicular 
direction to the bias is always diffusive.
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 First term is always “diffusive” and is, in fact, 
responsible for the validity of the Einstein relation 
(A0(F) ≈ F for small F).

 Second term is “superdiffusive” in confined 
geometries, which signifies that is not the real 
spatial dimension d that matters, but the effective 
one.

 The coefficient in the second term is 
proportional to F2, which signifies that the 
superdiffive behavior emerges “beyond the linear 
response”.

 Note that A0(F) = 0 for single file case. It is a 
special singular.



Superdiffusive broadening of the fluctuations

Biased intruders in dense hard-core lattice 
gases, confined in 2D stripes and 3D capillaries. 
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subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!

2
x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys

lim
t!1

!2
x

t
"

#0!0

8
>>><
>>>:

B quasi-1D;

4a20$
#1#0 lnð##1

0 Þ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ(#0 3D lattice;

(3)

i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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(4)

where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3$=2

p
L2=ð4a20#0tÞ!2

xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3

ffiffiffiffi
$

p
L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems!2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds " ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit #0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1!

2
x at fixed #0. Importantly,

we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim#0!0!

2
x !

lim#0!0limt!1!
2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the #0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with #0 fixed, while the long-time behavior obeys
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i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of #0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=#0,
which may attain giant values in systems with #0 ) 1.
In 2D this effect is negligible and Dk is only a factor
lnð##1

0 Þ larger than D?. In unbounded 3D systems no
such strong anisotropy between Dk and D? will emerge.
Full dynamics: scaling regime and crossover.—Finally,

our approach provides the complete time evolution of the
variance in the regime corresponding to #0 ) 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that
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where the scaling function g is explicitly calculated and
satisfies gðxÞ "

x!0
x1=2 and gðxÞ "

x!1
const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and #0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t* " 1=#2

0, which can be very large when #0 ) 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, %ðtÞ ¼
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3$=2
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xðtÞ]
and stripes [filled symbols, %ðtÞ ¼ 3
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L=ð8a20#0tÞ!2

xðtÞ] with
density #0 ¼ 10#5, and theoretical prediction (solid line,
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).

(c) Simulations on a 2D lattice with density #0 ¼ 10#5 and
%ðtÞ¼ $

2a0
½!2

xðtÞ=ð#0a0tÞ#ð2a0=$Þðln8þ&#1Þ#2a0$ð5#2$Þ=
ð2$#4Þ#cothðf=2Þ( and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density #0 ¼ 10#6 and
%ðtÞ ¼ ½!2

xðtÞ=ð#0tÞ # a0 cothðf=2Þ(=ð2a20Þ and theoretical
prediction [solid line: A, defined after Eq. (1)].
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Superdiffusive broadening of the fluctuations
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Conclusions

In the limit of large n and low vacancy density In the limit of large n and low vacancy density 

 New phenomena: field-induced broadening of fluctuations in crowded 
environments.

 Biased TP dynamics in different geometries, infinite 3D, 2D, and in 
confined geometries, 3D slit pores, 2D stripes, 3D capillaries

 Exact results for the TP velocity (F > 0) and the TP diffusion coefficient 
(F = 0).

 Variance of the TP displacement :
 Intermediate time behavior. Qualitative explanation. 
 Simulations for lattices and off-lattice systems.  
 Long-time behavior. Qualitative CTRW-picture
 Convergence of the distribution to the Gaussian function

 New results for single files 
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